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Polling systems have important applications to Telecommunication Systems,
Data Link Protocols, Local Area Computer Networks, Flexible Manufacturing
Systems, etc. As such they have been the subject of extensive research in recent
years, most notably in the context of cyclic queues. The focus of much of this
research has been on evaluating performance measures of fixed-template rout-
ing schemes with different service disciplines, namely the Exhaustive, Gated and
Limited Service policies. Analyses have concentrated on obtaining equilibrium
mean-value or approximate results for various policies, and only recently have
pseudo-conservation laws been derived.

In this paper, optimal routing policies are derived that lead to adaptive dynamic
control of the server’s polling schemes for both the Exhaustive and Gated ser-
vice disciplines with or without switching times between channels. These dy-
namic routing rules utilize current system information at suitably defined decision
epochs, they are surprisingly simple, and of a form amenable to direct engineering
implementation.

1. INTRODUCTION

Cyclic queues is the name given to a specific queueing network. In its most basic form it is
a system composed of K channels, where customers arrive at each channel independently
via a random stream. There is one server in the system who moves from channel to channel
in a “cyclic fashion”, i.e., the server stays at channel j (f = 1,...,K) for a length of time
determined by the queue discipline and then moves to channel 7 + 1. When the server
completes channel K he must revert to channel 1, hence the name cyclic. Recently, as
computer scientists continue to make use of queueing theory to design efficient systems,
the name “Polling Systems” has arisen to describe cyclic single server networks, as has the
“Token Ring” description. Cyclic queues have usually been studied under the assumption
of Poisson arrivals, although the study of discrete-time polling systems utilizes other arrival
schemes (e.g., Kleinrock and Levy [1], (1987)). The jt* channel is characterized by a general
service time distribution function G;(z), which is assumed degenerate at z = 1 in slotted-
time models. Although Cooper (2] (1970) was the first to explicitly name and study cyclic
queues, the origins of these systems and the methods of analysis appropriate to them are
found in (alternating) priority queues and queues with server interruptions.
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The queue disciplines most often studied in the context of cyclic queues are the Exhaustive,
Gated, and Limited Service. The Exhaustive discipline requires that the server stay and
service channel j until the moment that the server becomes idle at j, (i.e., until channel
j is empty) whereupon the server moves on to channel j + 1, serving it exhaustively. If
there is zero switching time or set-up times between channels, then for K = 2 the system
is obviously an “Alternating Priority Queue” (Avi Itzhak et al (3] (1965), and Takacs [4]
(1968)). The case K = 1 where there is non-zero switching or set-up time is a queueing
system whose server goes on vacation (Levy and Yechiali (5] (1975)).

The Gated discipline requires the server to service only those customers present in channel
7 upon his arrival to channel j, i.e., the server “gates off” the customers he sees upon his
arrival, serves them and then moves on to channel j + 1. The Limited Service discipline
specifies for the server visiting channel j to serve either 1, at most k;, or to deplete the
channel by one customer. As cyclic queues are so important in applications, for example in
Telecommunications systems, Data Link protocols, Local Area computer networks, Flexible
Manufacturing systems, etc., they have been the subject of many recent papers and at least
one monograph (Takagi [6] (1986)). However, a study of the literature reveals that much of
the research deals with only mean-value or approximate analysis of different performance
criteria, (see, for example, Watson [7] (1984), Eisenberg [8] (1972), and Halfin [9] (1975)).
Moreover cyclic queues have until recently been studies only under a fized cyclic ordering,
and only in special cases (e.g., identical service or arrival rates) do exact results seem to
be known for waiting times during a cycle. Recently Boxma and Groenendijk [10] (1986)
have derived “Pseudo-conservation” laws. To our knowledge, as of this writing, no studies
of optimization within cyclic queues have been published.

In this paper we explore optimization of various performance criteria for a cyclic-type queue-
ing system. The control, or decision variable, is the choice by the server, at properly defined
decision epochs, of which channels to service over the decision horizon. We study this control
problem for both the Exhaustive and Gated disciplines under 2 scenarios:

1. Zero switch times: The server upon completion of service to a channel moves
instantaneously to another channel.

2. Non-zero switch times between all channels: If the decision is made by the server
to switch from channel 7 to channel j, a switch time S;; occurs between completion
of service in 7 and commencement of service in j, where S;; is a suitably defined
random variable.

In section 2 we analyze the problem of controlling the server’s path so as to minimize
weighted waiting times of the customers. We study the Exhaustive and the Gated disciplines
with zero switching times, formulate both models as Markov Decision processes, and derive
the optimality equations for controlling the system under each regime. However, the curse
of dimensionality has precluded us, so far, from obtaining “nice” and easily implementable
operating rules similar to the “Right of Way” policies derived by Meilijson and Yechiali [11]
(1977). Nevertheless, the optimality equations allow for numerical computations of optimal
polling policies.

We consider next (Section 3) optimization of the server’s “greedy” instincts: the server
wishes to choose the path to minimize cycle time, thus, implicitly, reducing waiting times.
Of course, if the server can choose this path, then the system is no longer a cyclic queue.
We name it a “Pseudo-Cyclic” Queue. This corresponds to a dynamic priority rule for
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choosing channels. The rules derived are of a surprisingly simple form, and thus constitute
an adaptive control procedure amendable to direct implementation within the system.

2. MINIMIZING WEIGHTED WAITING TIMES
2.1 The Exhaustive Regime

Recall that we deal with K channels, where the Poissonian arrival rate to channel ¢ is A;,1 =
1,...,K. Each type ¢ customer brings along a random service requirement distributed as
V;, where V; has probability distribution function G;(-).

Consider first the Exhaustive regime. The server, having chosen to serve a specific channel,
say j, must stay there and service all customers at that channel exhaustively, i.e., until
channel j is empty, whereupon the server must decide which channel to service next. Define
the state of the system at any point in time, ¢, as

Q) = {Q1(¥),.-.,Qk(t)}

where Q;(t) = number of customers in channel ¢ at t. Deciston epochs occur when the
server has completed one channel, and now must move to some channel with a positive
number of occupants, as idleness is not permitted. The State Space is therefore I K where
I ={0,1,2,...}, and the Action Space is A = {1,..., K} with generic element a, where if
t is a decision epoch, then a(t) = ¢ simply means the server has chosen to service channel ¢
next.

By looking at the system only at decision moments (channel completions), {t;}52,, we can
define an embedded Markov chain over the system at these points. Letting a(t;) = a; =
action taken at *# transition, we have

P(Q(t:)eS|Q(ti—1), ai—1; Q(ti-2), ai—2i - - -3 Q(to), @0) = P(Q(t:)eS|Q(ti-1), @i-1)

where S C I¥ | and a; = channel served during (t;41 — ¢;). Under the stability assumption,

K K
Z/\iEVi 2 Zp,‘ <1,
{=1

=1
the t; are well defined stopping times.

Let a; = 7, and say a;—; = £, and for ease of exposition, let £ < j, then Q(t;) =
{n1,...,me-1,0, ngy1,---,nj,...,nk}, Where obviously Q,(t;) = n,. The server must
now service channel j exhaustively; as there are n; occupants in channel j at transition
time t;, it is obvious that the server will stay at channel j for a random time distributed
as the sum of n; M/G/1 busy periods of type j. Suppose a; = j, and let X; =t;41 —t; =
“Occupation time of the server at the channel chosen at the it* transition”. It is clear that
X; is a function of nj, Gy, };, and it is known (Cooper [12] (1981) Pg. 231, Takacs [13]
(1967) Pg. 109) that

e .t ALY
P(X; <t)= Z 7:?,—]/0 e")‘fz%lj);j—)rdG;"(z) = Fx;(t) (1)
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where G*"(+) denotes the n** convolution of G.

As X is the sum of n; ordinary M/G;/1 busy periods it readily follows that its Laplace
Transform is given by

E(e™*%) £ X;(s) = (Bi(s)™ 2 Vils +4; = 4 Ble))™ @

where B, is a random variable distributed as an ordinary M, /G/1 busy period of type j,
and B;(s) is its Laplace transform. Equation (2) leads directly to

n; E(V5)
B(x;) = 20 ®
B =~ | EYD) Ly )

(1—p5)% [1-p;

We may define the one-step transition probabilities for our system quite simply; let

Q_(t,:) = 9_, and g(t{+1) = 9_’ N

where
Qj(t:)=n; and  Qj(tiy1) =nj .
Then
Pg,q'(a) = P(Q(ti+1) = Q'|Q(t:) = Q,a: = a) (8)

Of course, to have defined an embedded Markov chain over the system means that in reality,
Q is a semi-Markov process with kernel

(Ajz)™ "

¢
P tiy1 —t: < t|9_,a) =/o exp —(Z Aj)z H

J#a J#a

K
since obviously (41 — t,-|a,,- = a) = X,, and for our process, if Y p; < 1, P(tiy1 —t; <
i=1
oo) = 1 Vi. Equation (5) is therefore simply equation (6) evaluated at ¢ = oo, i.e.,

Pg,q(a) =

o '(E Aj)z Aoz n_’,-—n:,-

/; e J#e H ((#?—:-—n;j—'—dea (.’l:) (7)
Jj#a 7

is the set of one-step transition probabilities if we take action a in state Q. Note that
to apply (semi)-Markov Decision Process theory to our problem, we need the one-step
transition probabilities, equation (7), and their associated “one stage costs”, which are
defined only in the context of a performance criterion to be optimized. So, as one example,
say we want to minimize the expected (average) cost of running the system by choosing
a proper operating rule. A sufficient condition for an optimal policy to exist is that the
semi-Markov process, Q(t), be regenerative, with finite expected length, (Ross (14] (1970),

Pg. 159). However as Q is a recurrent state (Z:;l pj < 1) this is obviously satisfied.
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To get the costs associated with a transition, assume linear holding costs in that the system
is charged $ C; per unit time for each type ¢ customer waiting in the queue. Therefore costs
incurred per transition from state @ to Q' are:

1. Costs incurred to channel a (a is the serviced channel)

2. Costs incurred to channels 7, ¢ # a.

The costs incurred to channel ¢, ¢ # a are
a) The cost of holding the initial n; during X,, and
b) The waiting cost of arrivals during X,.

Now, if m; = n} — n; = number of new arrivals to ¢ during X,, then by Poissonian arrivals
it is obvious that E(m;) = \;E(X,), and

Expected costs in ¢ = C; - (total expected waiting time in 7 during X,) (8)

= C; - (expected waiting time of original n; + expected waiting time of new arrivals) .

Following Yechiali [15] (1976), by Poisson arrivals the expected total wait of new arrivals
can be written as the product:

E(wait of an arbitrary new arrival) - E(number of new arrivals),
and as shown there, the expected waiting time of any arbitrary arrival during X, is %(}%37’
the random modification of X,. Therefore equation (8) is
E(X?) As

= Ci(niE(X,) + /\,-E(Xa)m) = C;(n:E(X,) + —2-’-E(X3)) (9)

By equations (3) and (4), total costs incurred to the system besides those in channel a
during X, is

) {cin~"“E(V“) L ON _ne [BVS) o, 1)(EV,,)2)]} (10)

irta 1—pq 2 (1“pa)2 1-p,

As for the costs incurred in channel a while servicing it, we have total expected cost of
serving channel a exhaustively

= C, - E(wait of original n,)

(11)

+ C, - E(number of a—arrivals during X,) - E(wait of each a—arrival)

Recalling that the expected number served during a regular busy period in an M /G/1 queue
is l—i—p, we immediately see that E(number served during Xo)= na/(1 — pa). In general,
from the concept of delayed busy periods, or server vacation, we can get the average waiting
time of a customer who arrived (and obviously was served) during a busy period that started
with 7 initial customers, i.e., simply treat the period spent serving the original n customers
as the delay, or vacation period (U in Levy and Yechiali [5] (1976)), and the remaining part
as the (delayed) busy period.

Recall equation (38) in Levy & Yechiali (5] (1976)
2 2
EW) = 5553 + 55md + EV (12)
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= E (wait incurred by a customer arriving during a “busy cycle”)
where V is the service time, A the arrival rate, and p = AEV.

To apply (12), simply realize that U = >or _1Vm = service of original n customers, where
Vo ~ V. Hence,

EU =nE(V), and E(U?) =nE(V?) +n(n - 1)(EV)? (13)
Now for our case,

E(waiting time for each type a arriving and serviced during X,) =
pa  E(V2) + noE(V2E) 4 ne(ne — 1)(EV,)?

= E(V,
1— pa 2E(V,) 21, E(Va) + EB(Ve) (14)
1 E(V2) ng.+1
= E(V,
1—pg 2E(Va) 2 ( a)
so that the total wait of the new arrivals to channel a is
Pamia 1 EWVE n.+1
E(V,
1—pa{l1—pa 2E(Va) 2 ( a) (15)
XanoE(V2)  pang(ne +1)
= ; 2 E(Va) )
2(1 - Pa) 2(1 ~ pa)
as the number of expected new arrivals to channel e during X, is {L“_'—:,-‘:.
The expected waiting time for the original n, customers is obviously
ng(ng +1
relte * Uy, (16)

Therefore, the expected total waiting time incurred at channel a during X, is (15) +(16)

_ AanaE(VE) | ng(ng +1)E(V)
~2(1 - pa)? R TR B )

Using (17) and (10), we can finally write the total ezpected cost incurred by a transition
from Q during an “exhaustive sojourn” at channel a, as

C@ ) = (L el E0 4 3 T+ (e = (V) "
AanaE(VE)  ng(ne + 1)E(Vy)
el 2(1 - Pa)? 2(1 - pa) )}

Equations (18), (7) and (1) are the necessary ingredients for formulating the optimality
equation of this semi-Markov decision process. (See equation (24) below).
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2.2 The Gated Regime
By similar reasoning, we can get the law of motion and one-step costs for the gated regime.

Let Y, denote the server occupation time in channel a under the gated regime. Then, if
Q(t) is as above,

Fr) = P(Ye S 9) = P()_Vai S3) = G2 (0) (19)

where V,; ~ V,. Obviously, ¥,(s) = [V,(s)]" so that

E(Y,) = n,E(V,) (20)
E(Y]) = na(na = 1)(E(Va))® + na E(VS) - ‘

Our one-step transition probabilities are now

oo x K A
No,q'(a) = / e_(z.:x Xy H (2:9) dFy,(y) {21)
=z 0 i1 ;!
where Q@ = (n,...,n%), @ = (n1+71,...,Ra1 4+ Tar1;7as Rat1 + Tas1s- -,k + k). Now

the expected costs incurred to channel 7, 7 # a (see equation (9)) are

CnsE(Y,) + S p(v2)
c. A? (22)
= Cining E(Va)+—o— (na(na — 1)(E(Va))? + naE(VY))
and the expected costs in a are
al\a 1 A
0u (2te T p) + R2lmalre ~ (B +maBOD]) - (2)

2.3 The Optimality Equations

Denoting the sum of equations (22) and (23) as I'(Q, a), we may write the optimality equa-
tions for the erhaustive and gated regimes, respectively, as (see Ross [14] (1970) Theorem
7.6)

h(Q) = min (0(9_, a) +)_ Pog(a)h(Q) - gE(xa)) (24)
gl
and
$(Q) = min | I'(Q,a) + )_ Ng,g (@) (Q) — BE(Ya) (25)
Q’

where g and § are the average minimal costs incurred by the system, per unit time, under
the exhaustive and gated regimes, respectively.
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In principle, equations (24) and (25) may be solved for the optimal policies to minimize
weighted waiting times. However, a glance at the transition probabilities is sufficient to
conclude that this would be a formidable task. Difficulties of this sort have precluded
previous investigators from solving such problems. However, in what follows, we will be
able to get simple and elegant optimal routing rules if we approach the problem via an
alternative procedure. Rather than investigating ways to minimize the sum of the individual
waiting times, which is notoriously difficult, we focus on methods of routing the server
so as to optimize a system objective. We also seek rules which are amenable to direct
engineering implementation. To that end, we first truncate the decision horizon to a single
cycle to exploit the nature of ‘Polling’, in that we propose a class of policies, “Pseudo
Cyclic”, in which the server must complete a “Tour” (rather than a cycle) of the ‘unserved’
channels before returning to any ‘served’ ones; a “Tour” being any path, or route that is
a permutation of the labels (1,...,K). There is a degree of fairness that is incorporated
into this class of policies in that channels may not be overlooked during a tour, but yet the
server may still optimize the system performance within a tour.

Many possible system objectives may be dealt with in this manner, some possibilities are:
1. minimizing the length of each tour. :
2. maximizing the number of customers served during each tour,
3. minimizing the number of customers in the system at the termination of each
tour.

Note that in a system with zero switching times, the length of the busy period is unaffected
by any service policy as long as the policy disallows idleness. However, when switching
times are positive, the policy associated with any objective will determine the length of this
busy period. These issues must be studied and evaluated in the system design.

We devote our attention for the remainder of this paper towards objective 1, the minimiza-
tion of ‘pseudo cycle’, or ‘tour’ times.

3. MINIMIZING CYCLE TIME
3.1 Exhaustive Regime, Zero Switching Times

Consider the exhaustive regime with zero switching times. Say the server is faced at the
initialization of the cycle at time ¢, with state

Q(t) = (n1,...,nk) (26)

Consider the policy mo = (1,2,..., K), whereby the server serves the channels via path
mo. The expected cycle time may be analytically solved, as in Browne and Yechiali (16]
(1987-A). It is however interesting to derive mo directly via probabalistic reasoning.

As there are n; customers at channel 1, the expected server sojourn there is simply the
sum of n; busy periods of type 1, n; EV,/(1 — p;), or a delay busy period of type 1 caused
by service to the “original” n; customers. The expected service sojourn in channel 2 is the
delay busy period of type 2 caused by the n, original customers plus the delay busy period
of type 2 caused by the delay busy period of type 1, i.e.

ngEV2 + nlEVl/(l - p1) _ 'FL2EV2 nlEV1

1-p, 1-pg T 1-py (1-p))(1-p2) (27)
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Proceeding in this manner we may observe that the n; original customers in channel 5 cause
a delay busy period of type j in channel 7 with expected duration 1{%’?—, which directly

7
causes a delay busy period of type j+ 1 to channel 7+ 1 of expected duration ﬁi-%yf{,—f,i——l_—ﬁﬂ,

which causes a delay busy period of type 7 + 2 to channel j + 2 with expected duration
(f:p—:f%/(l — pj+2), etc. The impact of the original n; customers in channel 7 on the

entire expected cycle time following path g is therefore seen to be
n; EV;
(1=p)Q—pjp1) - (1 —px)

We immediately see that the expected cycle time following mo, denoted by C(mo), can be
decomposed into the sum of the impacts caused by the initial customers present at t i.e.,

(28)

_ nlEVI vnQEVQ
C(mo) = (1=p1)(1—p2)--- (1 - pK) * (1~p2)(1—p3)--- (1~ PK)+ (29)
s i EBV; .4 EEVE
(1=p)(1 = pj+1) -+ (1 - pK) 1-px

Consider now the path m; = (1,2,...,5—-1,7+1,75,7+2,..., K), i.e., 71 consists of mp with
the jt* and j + 1°¢ terms interchanged. The expected cycle time under 7y, denoted C(my),
now has the evaluation

nlEV1 nJ-+1EV]-_|_1
C(mrqy) = e
(m) (1=p1)(1—p2)--- (1 - pK) (1= py+1)(L = p5)(1 = pjs2) - (1 = pK)
) n;EV; nrEVyx
+ el e = 30
(1= p)(1 = pjt2)--- (1~ px) 1-pk (30)

As we wish to determine the cycle path that minimizes cycle time, we calculate C(mp) —
C(m1). Upon manipulation, we find

niEVipj1 = ni+1EVir10;
(1= 0)(1 = pj41) -~ (1 - pk)

C(mo) — C(m) = (31)

from which it is apparent that the switch is unprofitable (time-lengthening) i.e, C(m) <
C(my), if and only if

niBVi  nj+1EVin

Py Pj+1
equivalently, if and only if
ny Ny41
— < . 32
o< (32)

Upon repeated pairwaise interchanges, we immediately deduce that
THEOREM 1:

For the ezhaustive regime with zero switching times, the server faced with choosing the
‘route’ to minimize a cycle (time to serve all k-channels once) starting at time ¢ from state
Q(t) = (n1,...,nk), should choose the route (path) based on increasing values of n;/;.

The optimal routing rule of Theorem 1 is puzzling in that it is seen that service times play
no role in the determination of the optimal route!
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3.2. Gated Regime, Zero Switching Times

Before we attempt any further analysis of the surprising result given by Theorem 1, we
examine the gated regime with zero switching times. Recall that under gating, the server
serves only those customers present in channel j upon his arrival to j during any cycle
(tour). Consider once again a ‘cycle’ being determined at ¢ based on Q(t), and following
route mo. We give here a direct probabilistic derivation, based on the analytic derivation
of Browne and Yechiali [16] (1987-A). The server serves only the original n; customers in
channel 1 so that his expected sojourn there is n; EV;. During his sojourn at channel 1, an
expected Az(ny EV;) customers arrived to channel 2, and the server must serve the original
ny customers and those new arrivals to channel 2. The expected sojourn in channel 2 is
therefore

no EVy + Ag(nlEVl)EVz =nyEVy + pan1EV7 . (33)

Similarly, the n; original customers in channel j require expected service n; EV}, this lets
in an expected Aj41(n;EV;) customers to channel j + 1, with expected service requirement
pj+1(n;EV;). However, this delay (caused by the initial n; customers in channel j) lets
in an expected Aji2(n;EV; + pjiin,;EV;) customers into channel 7 + 2, with expected
service requirement pjy2(n; EVj + pjp1n;EV;). The expected total delay caused by these
n; customers to channels 7,7 + 1 and 5 + 2 may therefore be written as

n;EVi+ pit1(n; EV;) + piva(n; EVj + pip1(n; EV;)) (34)
=n;EV;(1+ pj+1)(1+ pj+2) -
Proceeding in this manner, we recognize that the total expected cycle time may be decom-

posed into the sum of the total delays caused by all the initial customers. Letting T'(mo)
denote the expected cycle time from Q(t) under the gated regime, we conclude that

T(mo) = n1EVi[(1+ p2)(1+ p3)--- (1 + px)] + n2EVa [(1 + p3) -+ (1 + pk)]

(35)
+"'+njE'Vj[(1+pj+1)--'(1+px)]+"’+anVK .
Utilizing m; as before, we observe that
T(mo) — T(m1) = [njEVjpjt1 — njr1EVjp1p5] (1 + pyt2) -+ (1 + px) -

Once again T' (7o) < T'(m) if and only if
nj . N+l
- < , . 36
Ai A (36)

Leading to the tdentical form of the optimal server route:
THEOREM 2:

The server, in the gated regime system with zero switching times, minimizes the expected
cycle time by following the route based on increasing values of n;/A;.

Once again service times play no role in the determination of the optimal route!
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3.3. Dynamic Routing

In practice the above results are directly implementable as they make use of only the on-line
information Q(t), and A (where A = (A1,...,Ak)). One can envision a continuous routing
policy (actuale a dynamic priority rule) whereby the server may always choose the next
channel to service, i.e., each channel completion affords the server a decision epoch. To be
consistent with our previous definition of pseudo-cyclic policies, the server dichotomizes the
set of channel indices into two groups; A = {channels served on this tour}, A = {channels
unserved on this tour}, where a “tour” consists of a route visiting each channel at most
once. At each channel completion, the index of that channel is placed into A and the server
chooses the next channel from A. When 4 is empty, A is now labelled A and vice versa.
The optimal routing policy under this scenario can be seen (see Browne and Yechiali [16]
(1987-A) to be equivalent to the server always choosing to service that channel with minimal
value of ny(t)/Xi;i € A,t a decision epoch, where n,(t) is the current number of occupants
in channel s.

3.4. Swap-in and Switch-out Times

When switching times between channels are non-zero, the analysis is only slightly more
complicated, but it turns out that the service times as well as the switching times do play
a role in the determination of the optimal routes.

Letting S; be the random time it takes the server to switch-out of channel 7, and P; be the
random time it takes the server to switch:into, or swap-in to channel j, we may simplify the
form of a general switching time from channel 7 to channel j, S;;, by assuming they combine
additively, i.e., we assume S;; = S; + P;, where S;, P; are independent, Vi,5. Under this
assumption, Browne and Yechiali [16] (1987-A) have shown that the above discussion holds
true when the server chooses the next channel with minimal

ni(t)EV,‘ + EP; + (1 - p,')ES,'
pi

for the ezhaustive regime, and with minimal

ni(t)EV; + (1 + p;) EP; + ES;
pi

(38)

for the gated regime. Decision epochs now occur when the server has completed switching-
out of a channel.

It may further be seen from Browne and Yechiali [17] (1987-B) that these routes correspond
to the Gittins Index (see Whittle [18] (1982)) for the problem of minimizing each tour (or
‘pseudo-cycle’) time.

4. CONCLUSION

Rules (37) and (38) minimize “tour” times, or “Pseudo-cyclic” times for the exhaustive and
gated regimes in a polling system with swap-in and switch-out times. These rules, or server
routes, are dynamic, adaptive and of a simple form amenable to direct implementation.
A study of the impact of these dynamic routes on waiting times of customers and the
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connection with the optimality equations (24) and (25) is the next step in the analysis of
control policies for polling systems.

REFERENCES

[1] Kleinrock, L., and H. Levy [1987], The Analysis of Random Polling Systems, Technical
Report, AT&T Bell Laboratories.

[2] Cooper, R.B. [1970], Queues served in cyclic order: waiting times, The Bell System
Technical Journal 49, 399-413.

(3] Avi-Itzhak, B., W.L. Maxwell, and L.W. Miller [1965], Queues with alternating priorities,
Operations Research 13, 306-318. :

(4] Takacs, L. [1968], Two Queues Attended by a Single Server, Operation Research 16,
639-650.

[5] Levy, Y., and U. Yechiali {1975], Utilization of Idle Time in an M/G/1 Queueing System,
Management Sience 22, 202-211.

(6] Takagi, H. [1986], Analysis of Polling System, M.LT.

[7] Watson, K.S. [1984], Performance Evaluation of Cyclic Service Strategies - A Survey,
Performance 84, E. Gelenbe (ed), 521-533, North Holland.

[8] Eisenberg, M. [1972], Queues with Periodic Service and Changeover Times, Operations
Research 20, 440-451.

[9] Halfin, S. [1975], An Approximate Method for Calculating Delays for a Family of Cyclic
Queues, The Bell System Technical Journal 54, 1733-1754.

[10] Boxma, O.J., and W.P. Groenendijk [1986], Pseudo-Conservation Laws in Cyclic Queues,
to appear in Journal of Applied Probability.

(11} Meilijson, I., and U. Yechiali [1977], On Optimal Right of Way Policies at a Single
Server Station when Insertion of Idle Times is Permitted, Stochastic Processes and Their
Applications 6, 25-32.

[12] Cooper, R.B. [1981], Introduction to Queueing Theory, 2nd edition, North Holland.

[13] Takacs, L. [1967], Combinatorial Methods in the Theory of Stochastic Processes, John
Wiley.

[14] Ross, S. [1970], Applied Probability Models with Optimization Applications, Holden Day.

[15] Yechiali, U. [1976], A New Derivation of the Khintchine-Pollaczek Formula, Operational
Research '75, K.B. Haley (Ed.) 261-264, North-Holland.

[16] Browne, S., and U. Yechiali [1987-A], Dynamic Priority Rules for Cyclic-Type Queues,
submitted for publication.

[17] Browne, S., and U. Yechiali [1987-B|, A Note on Pairwise Interchanges and Gittins Indices
in Stochastic Scheduling, submitted for publication.

(18] Whittle, P. [1982], Optimization Over Time, Volume I, John Wiley.



