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An infinite random stream of ordered pairs arrives sequentially in discrete time.
A pair consists of a “candidaté” and an “offer,” each of which is either of type
I (with probability p) or of tybe IT (with probability ¢ = 1 — p). Offers are to
be assigned to candidates, yielding a reward R > 0 if they match in type, or a
smaller reward 0 < r < R if not. An arriving candidate resides in the system until
it is assigned, whereas an arriving offer is either assigned immediately to one
of the waiting candidates or qut forever. We show that the optimal long-term
average reward is R, independent of the population proportion p and the “sec-
ond prize” r, and that the op,{imal average reward policy is to assign only a
match. Optimal policies for aiscounted and finite horizon models are also
derived.

1. INTRODUCTION

|
In recent studies (see David and| Yechiali [3,4]), we introduced the notion of se-
quential assignment match processes (SAMPs) in which offers arriving in a ran-
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dom stream are to be sequentially assigned to a group of waiting candidates.
Each candidate as well as each offer is characterized by a random vector of at-
tributes drawn from a known discrete-valued joint probability distribution func-
tion. Upon assignment of an offer to a candidate, their corresponding vectors
of attributes are matched and the Higher the compatibility, the larger the reward
realized by this assignment. 1

The initial motivation and stillia model application for such processes is the
problem of optimal donor-recipient assignment in live organ transplants. The
decision of whether to transplant a_{n organ (e.g., a kidney) that becomes avail-
able depends on the degree of histocompatibility between the donor (offer) and
the recipient (candidate). One relevant criterion for compatibility is the match
level in the so-called HL-A antigen; system. Basically, one counts the number of
antigens of the donor that are no{t possessed by the recipient, and with each
match level a value is associated, sﬁlch as the odds for successful operation. This
value is the “reward” of assigning a given offer to a waiting candidate. An im-
portant aspect of the problem is that new candidates for transplant join the
waiting list while a live organ that:is not assigned in a short period of time be-
comes unusable. Further descriptiop of the problem may be found in David and
Yechiali [2]. f

In the aforementioned study LeZ], the focus was on a single candidate. We
considered an appropriate time-dependent stopping problem and derived opti-
mal assignment policies under various assumptions on the arrival process and
on the decay properties of the lifetjme distribution of the candidate. In the fol-
lowing studies [3,4], we considered the case of many, but fixed, numbers of can-
didates competing for the randomly: arriving offers. Optimal assignment policies
were derived, maximizing the total expected (discounted) reward for various
models —both in discrete and continuous time. However, the models in [3,4]
dealt with a single attribute distritjution, resulting in only two possible match
levels, “good” or “bad” (in the live organ transplant application, this means con-
sidering only one component in the antigen vector). Within the same limit on
the number of match levels, it is the purpose of the present work to incorporate
an additional factor, namely, allowing for an infinite incoming stream of can-
didates, alongside a parallel stream of offers. This extension brings the analysis
one step closer to reality. Still, the model is somewhat restricted mainly because
of the assumption to be made that candidates and offers arrive in pairs.

The model definition is thus the following: A joint incoming stream con-
sisting of independent ordered pairs (offer, candidate) arrives sequentially in dis-
crete time. The candidate and offer are, independently of each other, either of
type I with probability p, or of type II with the complementary probability g.
Offers are to be assigned to candidates, yielding a reward R > 0, if they match
in type, or a smaller reward 0 < r < R if not. An arriving candidate resides in
the system until it is assigned, whereas an arriving offer is either assigned im-
mediately to one of the waiting candidates or lost forever.

The presentation becomes easier if we visualize the two types of attributes
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as two different colors, say, blue and white. The decision maker earns a bigger
reward for matching identical ¢olors and a smaller reward for a bicolored as-
signment (blue offer to white candidate and vice versa). His objective is to max-
imize the expected total discounted, or long-run average, reward.

In Section 2, the average-reward problem is addressed. We show that the
optimal long-run average-reward policy is to assign only a match, and that the
optimal long-term average reward is R, independent of the population pro-
portion p and the “second prize” r (as if each arrival results in a match). The
optimal policy leads to an infiinite-state space model, while for any ¢ > 0, a
finite-state ¢ near-optimal poliéy is also specified.

Next we study discounted models in finite and infinite horizon (Sections 3
and 4), where future rewards are discounted by a constant discount factor 0 <
a < 1. As natural in some contexts of SAMPs, o« may be thought of as the
whole process’s one-step survival probability. It is found that, for any o < 1,
the total discounted reward is mtaximized by a finite-state policy, whose control
values are explicitly derived.

2. AVERAGE-REWARD CRITERION

In this section, our objective is to find an assignment policy that maximizes the
long-run expected average rewayfd per unit time. For any policy 7, we denote by
r-(n) the reward earned in stage (day) n. This is either O (rejection), r (assign-
ing a mismatch), or R (assignillﬁg a perfect match). We let

L E[ n=o T« (n)|initial state = s]
¢, (s) = lim inf — , )

t—o0 : t

calling a policy average-reward optimal if it maximizes Eq. (1) for all states s.

States are represented by ordered pairs (i, /) denoting i white and j blue can-
didates waiting in the system (¢) =<i,j < o), It is well known that for infinite-
state average-reward models, pptimal policies need not exist (see Ross [6]).
However, in our case, we may conjecture that a stationary optimal policy does
exist, giving a gain g, r < g < R, independent of the initial state. We may fur-
ther expect our hypothetic optimal 7 to be reasonable, where a reasonable pol-
icy is defined by the following: (i) it assigns a match whenever possible, and (ii)
if it assigns a mismatch when n, candidates (either all white or all blue) are
present just prior to arrival, thén it also does so for any larger number of such
candidates n > n,. (Although 11 might seem at first glance that there could be
two different thresholds n, and n, for the two types of candidates, we show in
the sequel that symmetry in th{: two types of attributes holds for all values of
p-) A reasonable policy is of order k if k is the smallest number 7, specified in
(ii). Such a policy is denoted by 7. The policy =, induces a finite-state Markov
reward process, as described by Howard [5].

For any state and every stage, there are four possible joint arrivals WW,
WB, BW, and BB, where W stands for white, B stands for blue, the first let-
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ter indicates the offer, and the second letter specifies the candidate. The corre-
sponding probabilities of these events are pp, pq, gp, and gq, respectively. A
few examples of one-step transitions and rewards for the resulting process un-
der 7, are given below: ;

i
i

Present state Arrival Probability Reward Next state
(1,2) wB rq R 0,3)
(1,2) BW qp R .0
(1,2) BB qq R (1,2)
0,2) ww . pp R 0,2)
0,2) wB t o pg 0 0,3)
0,2) BW qp R (LD
0,2) BB qq R 0,2
0,k) ww pp R 0,k)
0,k) wB pq r 0, k)
0,k) BW qp R (Lk=-1)
(0, k) BB aq R 0,4)

i
i

Remark: 1t is evident that with no loss of generality, R could be taken as 1.
Nevertheless, for the sake of clarity, we retain the R, r notation.

By grouping probabilities of arrivals leading to identical transitions, the pro-
cess may be depicted as in Figure 1. The diagram illustrates that in the corre-
sponding Markov chain, all states are transient except for those on the main
diagonal. The diagonal states form an ergodic class with k + 1 states (i/,k — i)
and stationary limiting probabilities 7 (i, k — i) = 7 (i), 0 < i < k. The transi-
tion probability matrix P for the ergodic class may now be deduced from Fig-
ure 1:

[1-pg pq 0 1
pg  1-2pq  pq 0
0 pg.. 1—-2pq pq..
P= .."—._' ._.‘... .‘~-'
0 Cpg 1—-2pq " pg
I 0 pq 1 —pq |
P is a doubly stochastic matrix. As such, =P = = implies « = (c,c,...,c), and

f‘;o w(i) = 1 implies ¢ = 1/(k + 1). We conclude that under 7, the system
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>

i
(Whites)

Ficure 1. Flow diag:ram for the Markov process under 7.
|

reaches an equilibrium in whic;h there are always k waiting candidates, and all
k + 1 possible combinations of blues and whites are equally likely. If we let g;
be the immediate expected reward from state i, we have

Go=¢qr= (1 —lpq)R+pq-r=R—pq(R—r)
g; =R, O<i<k

and hence,

L 2 k-1 2pq
g—(gﬂ(l)ql'—m%'*'m'R—R—m(R r) 2
is the average gain of the stationary reasonable policy of order k.

Equation (2) leads to an interesting result: By definition, the limiting pol-
icy of the ;s when k tends to infinity, call it w*, assigns only a perfect match.
This is clearly a reasonable policy of order . As will be justified formally at
the end of this section, its gain is the limit in & of Eq. (2), namely, R. Hence,
no matter what the mismatch reward and population proportion are, the achiev-
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able gain is as if there were a perfec¢t match every day. We write this conclusion
as the following.

THEOREM 1: Forany 0<p <1 andi0 < r < R, the average reward for the match-
ing problem is maximized by the persistent stationary policy that assigns only
perfect matches. The optimal gain is the perfect-match reward, R.

The optimal policy =* induces a two-dimensional random walk on the first
quadrant (see Figure 1). All states here are transient, and the system expands
forever. One might speculate that, under 7*, a moment arrives after which
only perfect matchings take place (many candidates of each type are present).
This is wrong. On the contrary, wijth probability 1 we shall face a mismatch (a
point on one of the axes in Figure 1) sometime in the future. 7* treats such an
event with persistency, namely, er:ilarging the number of waiting candidates.
These events become rarer and rarer, probabilistically not effecting the ratio in
Eq. (1). :

Theorem 1 practically says that we may always ensure maximal gain, but
at the expense of infinite patience and infinite resources (waiting place, infor-
mation capacity, etc.). This raises ﬁhe question, what if, as in reality, resources
are limited to handling at most & candidates? The answer is given in the theorem
below.

THEOREM 2: For a finite-state spacie with at most k candidates allowed, the rea-
sonable policy of order k, =, is average-reward optimal.

Proor: It should be noted that once on a diagonal (see Figure 1), one cannot
move to a lower diagonal. Assurr:ﬁe inductively that for any waiting capacity
n < k, the optimal policy is the rea:sonable policy =, (which is obvious for n =
0). By Eq. (2), the gain for =, is ihcreasing in 7, and hence, 7 is better than
7, i.e., the optimal policy stays on the diagonal with states S; = (i,k — i). It
is left to show that =, is better than any other policy on the kth diagonal.

We use Howard’s improvement routine (see Howard [5]). The value-
determination equations are

g+1/,=q,-”k+ﬁop,;rw,, O<i<k.
<
These equations take the form
g+ W=gqo+ (1 = pg)Vs + pgV
g+ Vi=R+pqVo+ (1 =2pg)Vi + pqV;
: ! 3)
g+ Vici =R+ pqViz + (1 = 2pg)Vi_y + pgVi

g+ Vi=qo+pqVie + (1 — pg)Vs.
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By letting 2 = (R — g)/pq, we can write the inner K — 1 equations as
V,=2V, = Vo—h
V,22V,— Vi —h

Vi=2Viy — Vica = h,

admitting a symmetric solution for the relative values

V,-_I(k;l)h, 0<is=k @

Substituting Eq. (4) in the first eguation of (3) and using g = R — pgh, we obtain
- 2(R-7)

h=———, 5

‘ k+1 ®

as was formerly given in Eq. (2).

We now attempt a policy improvement. In Table 1 we illustrate the transi-
tions and compute immediate expected rewards for several modes of action.
Note that the term “action” has been used in connection with the actual rejec-
tion or assignment of an offer upon arrival of a pair. By “mode of action,” we
mean a local policy specifying before arrival the action to be taken in each of
the four possible joint arrivals. Since for each state S; (0 < i < k) on the di-
agonal associated with m,, only the actions of matching or mismatching are al-
lowed, there are 2* = 16 modes|of action. For state S, (S;) where white (blue)
candidate assignment might not! be possible, only 22 modes of action exist. The
modes of action presented in Téble 1 are denoted by R, the “reasonable” one;
WR, the one that assigns offers only to white candidates; BR, the one that as-
signs offers only to blue candidates; and IR, unreasonable at all, the one that
assigns a white candidate to a blue offer and vice versa.

Now, take 0 < i < k. To show that , is optimal, it suffices to establish
that, for each mode of action 4,

g+ Vizql + Pl Vi) + PiVi+ Pl Vig

where ¢/ and Pj are the corresponding one-step expected-reward and transition
probabilities, respectively. Substituting g = R — pgh in the above inequality,
using the fact that P, + P + P41 =1, and utilizing Egs. (4) and (5), we
see that the above is equivalent to
a R —-r s a a a

qi + Tl {2i = k) (Pfic1 — Ziv1) + [P — (1 —2pg)} = R. (6)
For the reasonable policy, Pf;., = Pfiv1, P§i=1—2pq, and gf = R, so that
Eq. (6) holds as an equality. Relation (6) also holds as an equality for all modes
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TasLe 1. Four Possible Modes of Action at States S;, 0 <i < k

Mode of
State action Arrival; Probability Reward Next state
S; R ww p? R S;
wB Pq R Sici
BW aqp R Sixt
BB q? R S;
Transition ‘ One-step
probabilities P;;_, =pg P;=1- %pq P; ;1 = pg expected reward g, =R
S, WR 1744 p? R S;
WB - pq R Si
BW qp r S;
BB q* r Si-1
Pii=q Piy=p Pii=0 gi=pR +qr
S; BR ww p? r Sit1
WB pq r S;
BW qp R Sit1
BB q° R S;
P i, =0 Pii=Q; Piisi=p q; =qR + pr
S, IR ww p? r Sit
WB . pq r S;
BW qp r S;
BB q? r Si-i
Pi,i—l=q2 Pii=2Pl7 Pi,i+l=p2 qi=r

|

of action if » = R. As the left-hand side of Eq. (6) is linear in r, it is only left
to show for all @ that (6) holds for » = 0. One may further use the fact that P
is independent of /, so that the LHS of Eq. (6) is maximized for i = k when
Pfiy= Pf;.and for i = 1 when Pf,_, < P?;,,. By proper substitution of the
values of the transition probabilities and the g&’s (see, for example, Table 1),
condition (6) holds.

For the “corner” states Sp and S, similar but simpler calculations show
that the reasonable policy w is optimal. n

Remark: Theorem 2 shows that the optimal policy selects at each state the mode
of action that results in the highest immediate expected reward, i.e., it is “my-
opic,” or “one-stage look ahead.”

As was previously claimed, the optimal policy * requires an infinite-state
space. If we are content with ¢ nedr-optimality, a finite waiting room will suf-
fice. Its minimal size is given below.
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COROLLARY 1: For any ¢ > 0, tke reasonable finite-state stationary policy Ty,
is e-optimal, where i

k(e) = 9:—‘1 (R—r)—1.

ProoF: By Theorem 1, g(7*) = R. The best one can achieve with a waiting
room of capacity X is, by Theo;fem 2, the gain g of m; given by Eq. (2). Now
substitute k (¢) in Eq. (2) to acquire g[mi )] =R —e. n

We conclude our discussior‘i of the average-reward criterion with a formal
proof of Theorem 1. 1

Proor oF THEOREM 1: Since R%is the best gain a policy can earn, it is enough
to show that the policy stated in the theorem, = *, achieves this gain. For the
random walk that this policy insuces on the first quadrant, we first compute the
expected time the process stays on any diagonal. Let 7; (0 < i < k) be the ex-
pected time the process stays ole diagonal k before jumping to diagonal & + 1,
starting from state S;. Then, the T;’s satisfy the recursive equations

To=1+(1-2pg)To + pqT
Ti=1+pgTo+ (1 = 2pg)T\ + paT>

Ti-1 =1+ pqTi_r + (1 = 2pq)Ti—1 + pq Ty
T, =1 +quk—l + (1 = 2pqg)T;

(see Figure 1 again).

If we set h = 1/pg and rearrange térms, the inner k — 1 equations of the
above set become identical to those we wrote for the relative values V; in the
"proof of Theorem 2. They have, therefore, the same solution up to an additive
constant (as always in Howard’s equations); call it c(k). It follows [see Eq. (4)]
that 7; = c(k) + i(k — i)/2pq.1’ Substituting in the first and last equations for
the 7;’s, we find that Ty = T} = c(k) = (k + 1)/2pq. Thus, the expected time
for jumping from a diagonal to the next one starting at either one of the two
“corner” states, Sy or Sy, is pyoportional to the number of states in the di-
agonal. :

Now, let N(¢) be the process counting the number of these jumps in (0, ¢).
Then,

- ¢.+(-) = lim inf [

. t—oo

[t—I:;N(t)]}R‘

It suffices to show that lim,_, ., E{N(#)]/t = 0. If we let X;,X5, ... be the inter-

occurrence times of the jumps, we have shown that EF{X,] = cn (for some
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¢ > 0), increasing without bound. The result then follows in view of the elemen-
tary renewal theorem applied to nonidentically distributed renewal times (see
Cox [2]).

3. FINITE-HORIZON DISCOUNﬁED MODELS

We turn now to study discounted models. In this section, we analyze the finite-
horizon case. States will be denoted by quadruplets (m,n, W,N) and (m,n,
B,N), where m is the number of white candidates at hand (possibly including
the one who has just arrived), » is the same for blues, W or B refers to the type
of offer that has just arrived, and N is the number of stages to go (including the
present one). It is found helpful to introduce an auxiliary notation of triplets
(m, n,N), indicating the state of the system “a moment before the arrival of a
pair.” As usual, V(s) denotes thé optimal total expected discounted reward
from state s onward, enabling us tlp use the same symbol ¥ for both triplet and
quadruplet states. [
The optimality equations ma{r now be written simultaneously as follows:
\
V(im,n,N) =p?*V(m+ l,n, W,N) + q*V(m,n + 1,B,N)

+pgV(imn+ 1, W,N)+ qgpV(m+ 1,n,B,N).
|

()

[In the right-hand side of Eq. (7), %the first term refers to the arrival of a white
offer and a white candidate, and sQ forth. As before, when writing arrival prob-
abilities, the left letter will refer to the offer and the right one to the candidate.]

V(m,n,W,N) = max{R + a¥(m — 1,n,N — 1),

3)
r+aV(mn—1,N-1),aV(m,nN - 1)}.

(The first term refers to assigning the white offer to a white candidate, the sec-
ond to assigning a mismatch, and the third to not assigning at all. It is assumed
here that m,n > 0. If m = 0 or n = 0, the appropriate term is omitted from the
equation.) An equation similar to!(8) holds for V(m,n, B,N).

As initial conditions, we have V' (m, n,0) = 0 for all m and »n. The function
V'is thus uniquely determined, andlclearly, a (finite-stage) optimal strategy exists
for any 0 < a < 1. The following list of properties pertains to the optimal re-
ward V. They all have intuitive explanations and can be formally proved by the
use of the optimality equations. We avoid the technicalities and mathematical
inductions involved.

1. For any (m,n,N), each value function V appearing in Eqgs. (7) and (8)
is symmetric around p = 1/2, where it attains its minimum. This readily
follows if one is willing to dccept at this stage the intuitive fact that it is
always optimal to assign a perfect match when possible. In such a case,
combining Eqs. (7) and (8) results in
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V(m,n,N) = (p*H ¢*)[R + aV(m,n,N = 1)]
+pé[V(m,n + 1,W,N) + V(m + 1,n,B,N)]

which is interchangeablé in p and g. Thus, inductively, all value func-
tions are symmetric in p.

2. There is a symmetry in %blue and white for all values of p
V(n,m,N) = V(m,n,N),
1
Vin,m,W,N) = V(m,n,B,N).
1

The above follows fromiproperty 1, since interchanging p and g is equiv-
alent to interchanging tlhe colors of all members involved.

3. All V’s are monotone-ipcreasing in m,n,N,a,r, and R.

4. (In what follows, all “white” formulations have “blue” counterparts.)

(@ V(m,-,W,N)=R+aV(m—1,-,N—1) foranym = 1.

(b) If V(0,n, W,N) =ri+ aV(0,n — 1,N — 1) for r = r*, then the same
equality holds for any r = r*.

(¢) If V(0,n*, W,N) =fr + aV(0,n* — 1,N — 1), then the same equal-
ity holds for any n = n*. Property 4(a) follows since it is optimal to
assign a good matcﬂ when available. 4(b) is true since if it is optimal
to assign a mismatcb and receive the second reward 7*, then it is all
the same so when receiving a higher second reward, » > r*. If it is
optimal to assign a mismatch to one of n™* unicolored candidates, it
means that there are “enough of them” for the future, and thus, it
is also true for any n = n* [4(c)].

From the above properties we obtain the following.

THEOREM 3: Fora finite—horizel)n model, the optimal policy is of the following
form: Always assign a perfect'match when available. In states (0,n, W,N) or
(n,0,B,N), assign according fo a control-limit (threshold) r; v, i.e., assign a
mismatch if and only if r > rpin.

Naturally, r;  is a function of R,p,a, and N. ry T N, and r; v | 1 [by
property 4(c)].

The calculation of the confrol limits 7 » is a straightforward manipulation
of Egs. (7) and (8) and demonstrates the properties stated above. For example,
starting with ¥(0,0,0) = 0, we obtain

V(0,0,1) = p?R + q?R + pgr + qpr = (1 — 2pq)R + 2pgr = &, 9

£, is the expected reward achieved by matching the individuals of a random
pair. Clearly, £, is a parabola, symmetric around its minimum at p = 1/2. In-
deed, p = g = 1/2 means maximum heterogeneity in the population and, thus,
the least prospect for well-matched pairs.
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TasLE 2. Finite-Horizon Optimal Control Limits

n N \ reN

Cpgall+a+ ...+ a2
:1+pqa[l+a+...+ozN"2]

3 (pga)®
I + (pga)?

(Pgo)’[1 + a(2 = 3pg)]
"1+ (pga)*[1 + a(2 - 3pg)]

(pga)* {1 + a(2 = 3pg) + a[2 — 3pg + (1 — 3pg)?])

n=2 N= > 3 .
1+ (pga)* {1+ a(2 = 3pq) + a?[2 — 3pg + (1 — 3pg)?*])
; n
Any N=n+1 _(_w
I + (pgor)™

The method of direct computation becomes laborious and no general for-
mula emerges for the r; 5’s. Still, ,we present some results in Table 2.
We conclude this section with:a few remarks:

1. Again, R emerges naturally just as a scale factor in the expressions for
the controls 7, .

2. As far as optimal policies arfe concerned, the probabilities p and g always
appear in product form as pq. Thus, one may replace this product with
a single symbol, signifying (half) the mismatch probability, relaxing the
independence assumption between arrivals of offers and candidates.

3. For finite-horizon models, the total undiscounted reward is also mean-
ingful. For these cases, Talyle 2 supplies some specific results, e.g.,

« _ (N=1)pq
nnN= T
1+ (N-1)pg

4. INFINITE-HORIZON DISCOUNTED MODELS

We consider now the infinite-horizon discounted case. We use the same scheme
of states and the V notation, where the horizon N is omitted. The V’s relate to
an optimal policy 7 that certainly exists for a denumerable-state-discounted dy-
namic programming model. Furthérmore, the value functions V(-,-,-,N) are
successive approximations of the expected discounted total reward function
V'™, where the convergence is uniform in the space of states (see Ross [6]).
V™ = V inherits all qualitative properties discussed in the previous section, e.g.,
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a perfect match is always assighed and there is symmetry between the blue and
white colors. Naturally, the st?tes of interest are (0, k, W) or (k,0, B) where a
decision must be made whether to assign a mismatch or to reject the offer. We
have :

V(0,k, W) = ma{jx{r + aV(0,k — 1),aV(0,k)) 190)

for any k = 1. As in the finitelhorizon case, the max in Eq. (10) is chosen ac-
cording to a control limit 7 on 7. That is, in state (0, k, W), one optimally as-
signs a mismatch if and only if r > r{. Also, by property 4(c) in Section 3, the
controls are monotone-decrea$ing in k. We summarize in the theorem below.

THEOREM 4: The mfmtte-horzzdm discounted-reward optimal policy is of the fol-
lowing structure: :

(i) Always assign a perfe@ct match.
(ii) Assign a mismatch acbording to a set of controls

1
I
rernz---z2r,.zr=

on r and according tojk, the number of mismatching candidates.
!

We may expect that limk_.%r,}“ = 0 because with an infinite number of can-
didates, it would be optimal to “give up” one and obtain any positive second re-
ward r. Indeed, by monotonic:ﬂty and boundedness (by R), V' (0, k) converges
in k. So, for any r = ¢ > 0, lim; ... V(0,k) = lim,_. V(0,k — 1), implying that
r=a[V(0,k) — V(0,k — 1)] for some &, or by Eq. (10), 7} < .

We wish now to find theiexplicit values of the controls r}’s, thus com-
pletely determining the optlm:lll assignment policy. One approach is to apply
a limiting procedure to the flmte horizon controls. For example, by using Ta-
ble 2, we find !

rb = lim /= pqag[l/(l —a)] ‘R _ PqoR .
N—oo 1+pqoz[1/(1—oz)] 1 —a(l —pg)

anmn

However, since the task of con)pletmg Table 2 is not an appealing direction, we
proceed in a different way. !

4.1 Back to the Reasonable Policies

From Theorem 4, it follows tdat the optimal policy is reasonable of some or-
der k*. Recall that we defined a reasonable policy as one that assigns a perfect
match whenever available and satlsfles property 4(c) in the previous section. If
k + 1 is the least number of candidates (including the arriving one) among which
we assign a mismatching offetl then that policy, denoted by m, is said to be

“reasonable of order k.” Cleax{ly, under m;, exactly k& candidates reside in the
system in a steady state, if we aSsume that initially there are no more than k can-
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didates. Thus, =, leads to a finiteﬁ’state Markov chain. We have (see Ross [6],
Proposition 2.4) ;
V(0 k + 1, W) = r+ aV™(0,k). 12)
Now, for k= 1 and i =0,
V(0,k) = (1 —2pq) [R + on"k(O k)] + pqV ™0,k + 1, W)
+ gpV™(1,k, B)

= (1 -2pg)[R +EaV"k(0,k)] + pqlr + aV™(0,k)] 1
+ gp[R + aV™(1,k - 1)].
For 1 =i <k, |
V(i k — i) = (1 —2pg) [R + aV™(ik — i)}
+pq[R+aV"k(z‘—1,k—i+ 1)] 14)
+gp[R + aV™(i+ Lk—i—-1],
and finally, for i =k, [
Vrk0) = (1 - 2pq) [R + @V ™ (k,0)] + pa[R + V™ (k=101 o
+gplr+ aV™(k,0)].
In case k = 0, we get a single equijation,
¥™(0,0) = (1 — 2pq) (R4 aV™(0,0)] + pglr + aV™(0,0)]
+ gplr + aV™(0,0)]
=&, + aV™(0,0),
yielding
Vr0,0) = o (16)

Indeed, if we start at (0,0), mo always matches the randomly coming pair, S0
its total expected discounted reward is £, + af, + o 2, + =§£,/(1 — a).
Using Eqgs. (12) and (16), we write

V0,1, W) = r + aV™(0,0) = r + (—1“—55’—;
i -
‘ an
_ (1—2pq)ozR+ 1—-(1-—2pq)ar
l—jOl 1 -«

which is /inear in r.
The set of equations (13), (14), and (15) may be written in matrix form

Ax =b(r) (18)
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where x; = V™*(i,k — i), 0 < i <k,

1—-(1-pg)a —pqo
—pqo 1= (1-2pg)o —pge., 0
0 ~pqe: 1—(1—2pc_1)a.."
A= ,
0 " lpga 1-( 2@ -paa
L 0 ~pgo 1= (1 - pg)a |

and b(r) is a vector function of r

(R — pq(R - "]
R
b(r)y=b= :
R

| R —pq(R —r) |

One can see that (except for p = a = 1, or ¢ = a = 1) A is a regular matrix. Fur-
thermore, a symmetry [well expected by the interpretation of the x;’s as
V(i k — i)] holds: xo = Xi, X; = Xx_1, etc. To see this formally, consider the
matrix ;

-1 O-

The operator J reverses a row or column vector, and J 2 = It is easy to
see that Jb = b and JAJ = A. Thus, using Eq. (18), we have

A(JX) = JAJ(Jx) = JAJ*x = JAx =Jb =b,

and hence, Jx is a solution of Eq. (18). Since A is regular, JX = x, i.e., x; =
Xc—i- The above symmetry reduces the number of unknowns to 1 + [k/2].
Also, as r appears (linearly) only in the right-hand side of Eq. (18), each x; is
linear in r.

Now we develop an explicit expression for V™4 (0,k + 1, W). Considering
Eq. (12), we may write V™ (0,k + 1, W) = r + axo(r). By the linearity of x;
(and in particular xo) in r, it suffices to calculate the values of V™¥(0,k + 1, W)
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at the two points 7 = R and r = 0. Write the matrix A as (ag,a;,...,a;) and
write A(r) = (b,a,,az,...,a). If r =R, then b7 = (R,R, ..., R). Also, by
adding all the columns of A onto the first column, we get a matrix A=
(1 - a,a,,a,,...,a;) where (1 — o)’'=0-a,1—a,...,1 —a). It follows
that for r = R,

det A(R) _ detA(R) _ R

V0, k) = xo(R) = =5 detA 11—«

This result is natural since, for r = R, one always gets a reward R (either by a
match or mismatch), and the total discounted reward is R + aR + a’R ++--=
R/(1 — «). 1t follows that Vm(0,k + 1, W) =R+ aR/(1 —a) =R/(l —a).
For r=0, V™(0,k + 1, W) = 0 + axo(0) = y§, where

(_,, detA©)

Yo = det A 19)

To summarize, V™ (0,k + 1, W) as a function of r displays a straight line

stretching from the point (0, y&) to the point [R,R/(1 — a)]. (Note that the

second point is common for all k.) We give specific results for k =0,1,2.
For k = 0, we have from Eq. §(17)

o (1 —2pq)a

yo= — L2 R (20)
11—«
For k = 1, with
1—(1— - R — pgR
A=[ (1 - pg)e pqa } and b(0)=[ pq }
—pqa -1 -pg)a R — pgR

we immediately find x, = x; = (1 — pg)R/(1 — «), and thus,

1l -«

Stretching a line between (0,y) and [R,R/(1 — )], we get

1 — — (] —
( pQ)aR+1 (1 pq)ar'

V0,2, w) = :
1 -« ] —«

21

The case k = 2 is treated in a similar way, using the symmetry x, = x,. For
r=20,

_a — )1 = ) + (3 — 2pq) pqe: R
0 (1 -a)(l - (1-3pg)al

which determines, as before, y¢ and V' ™2(0,3, W).
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4.2. Constructing Optimal =

Considering again the optimal value functions, one could envision a picture of
the V(0,k, W)’s, put together under the same scale as functions of  for any k.
This may be based on Theorem 4 and Eq. (10), while using the monotonicity
of V(0,k,W) in r and in k [see property (3) in Section 3]. Each function
V(0,k, W),k = 1, is partitioned into two: To the right of r§, it equals r +
aV(0,k — 1) [the first alternative to be taken in Eq. (10)], and to the left of rg,
it equals oV (0, k) [the second alternative in Eq. (10)]. By the nature of the m;’s
and definition of the r}’s, we conclude that to the right of re, V(0,k, W) =
y™-1(0,k, W). That is, the respective parts of the V(0, k, W)’s ending at the
point [R,R/(1 — «)] are straight-line segments. The above observations sug-
gest a method for determining the ri’s: Take, for instance, k = 1. At r{, two
line segments of V(0,1, W) intersect. To the right of r{ the line segment is
V70,1, W). To the left of r{" it is aV(0,1), which, by considering V(0,2, W)
for r3 < r < r{, may be written as

aV(0,1) = V0,2, W) —r=V" (0,2, W) —r

_(-pga o [1—(1—pq)a _1]r= (1 -pg)e P

r
-« l—«a l-« l—«
22)
[see Eq. (21)]. We now equate Eq. (22) with (17) to obtain
\ pgaR
r

T1-al-pg)’

exactly as anticipated in Eq. (11). Any other r{ is found independently in the
same manner.
The general result is given in the next theorem.

THEOREM 5: Let y& be defined by Egs. (19) and (20) for k = 0. Given a mis-
match reward r, perfect-match reward R, type I population-proportion p, and
discount factor o, the optimal total expected discounted reward policy is to as-
sign a perfect match whenever possible, and to assign a mismatch if and only if

r=rg
where k is the number of candidates at hand, and

. WE-YyEHR
Te = R k _ yk—1y°
+ (Yo=Y )

(23)

ProoF: By means of Theorem 4 and the previous discussion,.for any k = 1,

k—1
V(0,k, W) = V™1(0,k, W) =yi™" + (1 L yOR >r, (24)
-
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where the first equality holds for r = rg, and the last expression is the one con-
necting the points (0,y§~!) and [R,R/(1 — «)]. Similarly, for ri,, = r=rg,
we get
1 k
V(O,k, W) =aV(0,k) =V™0,k+ 1, W) —r =y + (1— - )—)R?— - l)r.
. -«

25)

Equating Eqgs. (24) and (25) gives the desired expression, Eq. (23), forry. ®

Practically, given the rewards (R, r) in a specific problem, the optimal wait-
ing capacity k is determined by k = min{n:r; < r}. It is found that, although
the undiscounted average-reward assignment problem is not maximized by any
finite-state matching policy, the discounted problem is maximized for any o <
1 by a finite-state reasonable policy m,, where k is extracted from Eq. (23).
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