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Abstract

Optimal dynamic control and scheduling of the server’s visits to the various channels
in Polling Systems are difficult problems that only recently have been successfully attacked
(c.f. Browne & Yechiali [1988a],(1989a}). The control problem is ‘which of the K channels
to visit next’ when the server exits a given channel, and how to achieve optimal schedules
based on the dynamic evolution of the system.

In this presentation we exhibit a class of optimal and ‘fair’ policies which preserve
the cyclic nature of polling systems by guaranteeing a visit to every channel in each cycle
(Hamiltonian tour), and at the same time be adaptive to the dynamically changing envi-
ronment. These policies are K-step look-ahead dynamic procedures which turn out to be
extremely simple index-type rules in a form amenable to direct implementation.

We analyze various systems with Exhaustive, Gated, Binomial-Exhaustive, Binomial-
Gated, Bernoulli-Exhaustive and Bernoulli-Gated service disciplines and derive the control
rules that minimize dynamically the expected duration of each new cycle. It is shown that,
in all cases, the optimal policies follow from a general scheduling principle, which is further
used to control systems with mized types of channels.

We then study a system where each channel has a buffer of unit size, and derive the
dynamic optimal control that minimizes the costs incurred per cycle. Finally, we present
and optimize the newly introduced Globally-Gated cyclic service scheme (Boxma, Levy
& Yechiali [1990]), and the (globally-gated) Elevator-type policy (Altman, Khamisy &
Yechiali [1990]). The Elevator-type policy is shown to be the ‘fairest’, in the sense that
the expected waiting times are equal for all channels. This is the first discovered non-
symmetric scheme that achieves such a goal.
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1. Introduction

Models of polling systems have important applications in telecommunication systems,
multiple access protocols, local area computer networks, multiplexing schemes in ISDNs,
reader-head’s movements in a computer’s hard disk, flexible manufacturing systems, road
traffic control, etc. (See, for example, surveys of Grillo [1990], and Takagi [1990].) As such
they have been the subject of extensive research in recent years, most notably in the context
of cyclic queues. The focus of much of this research has been on evaluating performance
measures of fixed-template server’s routing schemes, usually with the Exhaustive, Gated
or Limited service policies. Optimal server routing procedures were only recently studied
and dynamic policies derived (Browne and Yechiali [1988a], [1989a]) for systems where
either all channels are of the Exhaustive type, or all channels follow the Gated regime.
Probabilistic (yet static) service disciplines — the Binomial-Gated (Levy [1989]) and the
Binomial-Exhaustive (Groenendijk, see Boxma [1989]) — were proposed to help deal with
the control of polling systems by assigning different service proportions to distinct channels.
Other ‘“fractional’ service policies are the Bernoulli-Gated and the Bernoulli-Exhaustive
introduced in Browne & Yechiali [1989b].

In all of the above systems it is assumed that each channel’s buffer size is unlimited.
In some applications buffers are of unit size (Browne & Yechiali [1988b]). Such systems
resemble the classical K-machines repairman problems and are of considerable interest.
Recently, the Globally-Gated regime was proposed and analyzed (Boxma, Levy & Yechiali
[1990]), followed by the Elevator-type service discipline (Altman, Khamisy & Yechiali
[1990]). These two new regimes possess characteristics that allow for tractable and efficient
control of the systems.

In this paper we concentrate on deriving optimal dynamic control policies for efficient
and ‘fair’ operation of polling systems. The control problem is ‘which of the K queues to
serve next’ when the server exits a particular channel. A common measure of effectiveness
is the weighted sum of expected waiting times of jobs in the system. In order to minimize
this measure one may try to formulate a (semi) Markov Decision Process, calculate the
multi-dimensional one-step transition probabilities as well as the one-step expected ‘cost’,
and write down Bellman’s optimal equations. This has been accomplished (see Browne &
Yechiali [1988a], [1989a]), but it appears that there is no simple tractable solution to these
equations. The idea then is to consider a related measure of effectiveness and to optimize
systems’ performance over this criterion. Such a criterion is the minimization of cycle
times. Implicitly, if cycle times are reduced, then waiting times may also be reduced. Our
objective will therefore be to develop dynamic control policies that minimize the ezpected
duration of each cycle based on the dynamic evolution of the system. We require that each
cycle will be composed of a Hamiltonian tour, in which every channel is visited ezactly once
— thus providing a degree of fairness between the channels — but the order in which channels
are visited may change from one cycle to the other depending on the dynamic changes in
time. Surprisingly, it turns out that this criterion leads to very simple index-type rules in
a form amenable to direct tmplementation.



2. Dynamic Control of Polling Systems

A polling system, or cyclic queue, is composed of K queues, (channels) labelled ¢ =
1,...,K. Jobs arrive at channel i in a Poisson stream of intensity \;, independently of the
other channels. There is a single server in the system which moves from channel to channel
in a ‘cyclic’ fashion, i.e., the server stays at channel i (¢ = 1,..., K) for a length of time
determined by the queue discipline and then moves to channel i +-1. Upon ‘completion’ of
channel K, the server reverts to channel 1 and so on, hence the name ’cyclic’.

Each job in channel ¢ carries an independent random service requirement V; having
distribution function G;(-), ¢ = 1,..., K. The queue discipline determines how many jobs
are to be served in each channel. The disciplines most often studied are the Ezhaustive,
Gated and Limited service regimes (see Takagi [1986]). To illustrate these regimes, assume
the server arrives to channel ¢ to find m; jobs (customers) waiting. Under the Ezhaustive
regime, the server must service channel ¢ until it is empty before he is allowed to move on.
This amount of time is distributed as the sum of m; ordinary busy periods in an M/G;/1
queue. Under the Gated regime, the server gates off those customers already present upon
arrival to channel 7, and serves only them before moving on to channel i 4 1. As such, the
total service time in channel 7 is distributed as the sum of m; ordinary service requirements.
Under the Limited service regimes, the server must serve either 1 job, at most k; jobs, or
deplete the queue at channel i by 1 (i.e., stay one busy period of M/G;/1 type).

In the Binomial-Gated, Binomial-Exhaustive, Bernoulli-Gated or Bernoulli-Exhaustive
regimes, channel i is characterized by a parameter p; (0 < p; < 1), which determines the
“fraction’ of service given to this channel. Specifically, let N;(m;) be a Binomial random
variable with parameters m; and p;. Then, according to the Binomial-Gated (BG) policy
the server resides in channel ¢ until he serves N;(m;) customers, while according to the
Binomial-Exhaustive (BE) policy he stays there for Nj(m;) busy periods. That is, under
the BE policy, when the server exits channel i he leaves behind him m; — N;(m;) waiting
jobs, whereas under the BG policy he leaves behind him m; — N;(m;) + A; customers,
where A; is the number of new arrivals to channel : during the visit time of the server.
Clearly, the Gated and Exhaustive regimes are special cases of the BG and BE policies,
respectively, when p; = 1 for all 2.

The Bernoulli-Gated and Bernoulli-Exhaustive disciplines differ from their Binomial
counter-parts in that the decision whether to serve customers in channel 7 or not, is prob-
abilistically made before the server ‘switches into’ the channel. With probability p; he
enters the queue, and with probability 1 — p; he skips it. When the decision is to enter and
render service, then according to the Bernoulli-Gated (BRG) regimes, service is completed
only to those m; customers present at the moment of decision, whereas according to the
Bernoulli-Exhaustive (BRE) scheme, the server resides at queue ¢ for m; busy periods.

Dynamic optimal control of cyclic polling systems where service is either of the Gated-
type everywhere, or of the Exhaustive-type at all channels was only recently achieved
(Browne & Yechiali [1988a], [1989a]). Suppose that at the beginning of the cycle the state
of the system is (n1,n2,...,nk), where n; is the number of jobs waiting in channel 2
(1 <i < K). Assume further (this will be relaxed later), that switching times between
channels are negligible. The objective is to choose a path, or Hamiltonian tour, through
the queues so as to minimize the expected time of traversing this path. It was shown for
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both service disciplines — the fully Gated and the fully Exhaustive - that this measure of
effectiveness is minimized if the channels are ordered by increasing values of the indez
n;/X;. This is a surprising result, as the index n;/)\; does not include the service times at
the various channels. It is surprising as well that the same index-rule holds for both service
regimes. Moreover, this is an extremely simple rule which can be directly implemented.

3. Minimizing Cycle Time under the Binomial-Gated and Bernoulli-Gated
Policies

Binomial Gated. Suppose that at time 0 the state of the system is (n1,m2, .y K ),
where n; is the number of customers present in queue ¢. Suppose also that the server visits
the channels following the order (policy) m = (1,2,...,K), and the service discipline is
Binomial-Gated. Suppose (for the time being) that switching times are negligible. Let X;
be the server’s sojourn time in channel j if he finds there m; customers upon entering the
queue. Then, it readily follows (see Browne & Yechiali [1989b]) that

E(X;) = njp; E(V;) + b;p; E(Sj-1) (1)
j—1
where S;_1 = Y, X; denotes the exit time of the server from channel j — 1, and b; =
i=1

X;E(V;) is the average amount of work flowing to channel j per unit time. By adding
Z;_1 = E(Sj_1) to both sides of Eq. (1) we obtain a system of difference equations

Z; — (1 +p;bj)Zj—1 = n;p; E(V;) , (Zo =0) (2)

whose solution is

Zj = szan(Vt)[ H (1 + prbr)]a (.7 =1,2,... 1K)' (3)
i=1 r=i+1

Result (3) may be explained intuitively as follows: pin; E(V;) is the expected sojourn time of
the server in queue i due to the original n; jobs present at time 0. During that period of time
one expects Ai11p;n; E(V;) new arrivals to channel i+1, but only a fraction p; 41 of them will
be served, requiring p;t1bi+1pin; E(V;) time. Thus, the total expected delay in channels :
and i + 1 caused by the original n; customers in queue i will be pin; E(Vi)(1 + piyabit1)-
Proceeding in this manner it follows that the total expected delay caused to the cycle by

K
the n; initial customers in channel ¢ is pin; E(V;)[ I1 (1+ prb;)]. Therefore, the expected
i+1

r=t+
total cycle time, following policy g, is the sum of the expected delays caused by all initial
" customers present at the start of the cycle

K K
Zx = C(mo) = Y pins B(VI)[ [T (1 +2:50)] - (4)

=1 r=1i+1



Define a; = p;n; E(V;), and o; = pib;. a;is the initial expected processing time requirement
at channel i, called its core, while ¢; is the expected growth in service requirement at
channel i for every unit time delay in performing service to channel i. Thus,

K K
Clm) =Y al [ 1 +ar)] (5)
i=1 r=itl

Similarly, if the server polling sequence is determined by the policy = = (w(1),7(2),..., 7(K)),
then the mean cycle length is

K K
C(m) = axnl J] (1 + axe)] - (6)
i=1 r=i+1

Applying an interchange argument it can be shown (Browne & Yechiali [1990]) that
Eq. (6) is minimized if the channels are visited following a sequence determined by ordering
the channels via increasing values of a;/a;. We therefore conclude

Theorem 1. Suppose that at time 0 the state of the system is (n1,n2, ...ynk). Then, for
the Binomial-Gated policy, the cycle time is minimized if the server visits the channels in
an order determined by increasing values of n;/ ;.

Proof: a;/a; = pini E(V;)/(pibi) = ni/ Ai. Q.E.D.

Remark. It is interesting to note that the optimal policy is independent of the p;’s and
E(V;)’s, and it is the same as the optimal policy for the reqular Gated policy (see section
2 above).

Bernoulli-Gated. Consider now the Bernoulli-Gated service discipline. If m; cus-
tomers are present at channel j when the server reaches the station then his sojourn time
there is

* Viy, with probability p;
X; =14 k=1

0, otherwise
where Vjj, are all distributed as V; and are independent. It follows that equations (1),(2),(3)
and (4) hold in this case as well, with the same core a; = pin; E(V;) and growth rate o;.

That is, the same order of visits — by increasing values of n;/A; - minimizes the cycle time
under the Bernoulli-Gated regime.

4. Switching Times

The above analyses need be only slightly modified to account for switching times.
Assume that a direct switch from station i to station j takes time 8; + T, where 6; is the
time to switch out of queue i and Tj is the time to switch into channel j (T; and ; are
independent of each other and of X;, T; and 6; for all j # 1). Let Y; denote the total
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server occupation time with channel j during one cycle, so that now the exit time from
g

channel j is §; = Y Y; with mean Z; = E(S;). Assuming that the customers are gated
=1

only after the server switches into a channel, then, for the Binomial-Gated,

E(Y;) = pjn; E(V;) + p;b; E(Sj-1) + (1 + p;b;) E(T;) + E(6;) - (7)

Upon identifying p;n; E(V;) + (1 + p:b;)E(T;) + E(6;) as the ‘core’, a;, and p;b; as

the ‘growth rate’, a;, we can write, for the Hamiltonian tour mo = {1,2,,...,K},

K K
Zx = Y [P E(V:) + (1 + pibi) E(T) + B[ [ (1 +2.80)] - (8)

i=1 r=i+1

From our previous principles we obtain

Theorem 2. The order of visits that minimizes cycle time in a Binomial-Gated policy
with switching times is determined by an increasing order of

pini E(Vi) 4 (1 4 p:ibi) E(T:) + E(6:)
pibi

(9)

Now, for the Bernoulli-Gated with switching times and routing policy o, suppose
that the coin is flipped after leaving channel j—1, and before entering station j. Then,

E(Y;) = p;[E(6;) + n; E(V;) + (1 + b;)E(T;) + b; E(S;-1)] (10)

Thus,
Zj — (14 pjb;)Zj-1 = piln; E(V;) + (1 + b)) E(T;) + E(6;)] (11)

which results in arranging the channels in increasing order of

n;E(V;) + (1 + 5;)E(T;) + E(6;) (12)
b;

It is interesting to note that the policy dictated by Eq. (12) is identical to the optimal
policy derived for the pure Gated regime. Note also that the (small) difference between
result (9) and policy (12) is due to the fact that in the derivation of Eq. (9) the server
switches with probability 1 to channel j and only then the value of the random variable
Nj(mj;) is realized, whereas in the derivation of Eq. (12) the coin is flipped before the
server switches into the channel. Thus, while the growth rate p;b; is identical for the
Binomial-Gated and the Bernoulli-Gated regimes, the cores are different. For the former
the core is a; = E(T) + pi[n: E(Vi) + b;E(T;)] + E(6;), whereas for the latter the core is
pilE(Ty) + ni E(Vi) + b, E(T:) + E(6:)]-



5. The Binomial-Exhaustive Policy

Consider now the Binomial-Exhaustive regime where the server, if he finds m; cus-
tomers in queue i, stays there until the queue length is depleted by N;(m;) customers (i.e.,
for N;(m;) busy periods), where N;(m;) is Binomially distributed with parameters m; and
p;. This is the Binomial-generalization of the Exhaustive class of disciplines.

Suppose first that there are no switching times. Then, as the expected length of a
busy period in an M/G;/1 queue is E(B;) = E(V;)/(1 — b;), we have, under m,,

nipiB(V;) | pibiE(Si-1)

B(X;) = 1—b; 1-b;

(13)

We can now identify p;n;E(V;)/(1—b;) as the ‘core’ of channel j, and p;b;/(1—b;)
as its ‘growth rate’. Correspondingly, it is immediate that the expected cycle length has

the evaluation « «
nipiE(lfi) p'rbr
ZK:Z(—1—b,- II i) (14)

i=1 r=i4+1

and that the optimal policy is to once again order the channels in an increasing order of
n;/A;, which is identical to the optimal policy for the Binomial-Gated and again indepen-
dent of p; and E(V;).

When switching times are incurred, utilizing previous notation, we can readily modify

the above by observing that Yj, the server’s occupation time with channel j, can be written
N; (m;)
asY; =T;+ Y Bjir+0; where m; = nj + A;(Sj—1 + T;), A;(T) is the number of
k=0

arrivals to queue j during a time interval of length T', and Bj are distributed like B;.
Hence,

E(Y;) = pin; E(V;)/(1-85)+[p;b; /(1= 5;) E(Sj-1)+[1+p;b; / (1-b;)| E(T5)+ E(8;) - (15)

Similar to the previous derivations, this leads to a mean cycle time

3 ~ 1+ prb.

Zk = Y _{[pinsE(Vi)+ (1 —bi+pibi) E(T) + (1 - ) E(6:)l/(1 - 8:)} | T] (_1_____b_) _
r=i+1 r

(16)

=1

We conclude

Theorem 3. The optimal sequence of visits by the server is determined by arranging the
queues in an increasing order of

pin; E(V;) + (1 — b; + pibi) E(T;) + (1 — b;)E(6;)
pib;




6. The Bernoulli-Exhaustive Scheme

Under this scheme, if the server enters channel j and finds m; customers, he resides
there for m; busy periods. As before, the decision whether to enter or not is governed
by a Bernoulli trial w1th proba.blhty of success p;. As m; = nj + A(S;_1), then, without

switching times, X; = Z B, with probability p;, and 0 otherwise. This leads to

B(X;) = p3ln;B(B;) + N B(B)E(S;-1)] = 720 (nE(V)) + ,E(S;-0) (17

Identifying a; = 3131{’—'35(’,1,1-)- and a; = %’_i_—b,f;_-, the optimal order of visits is determined by
increasing values of a;/o; = n;/)\;, ezactly as in the case for the Binomial-Exhaustive
regime without switching times.

If we take into account switching times, we write

Y; = {T + En’+A’(S’ 1+75) Bjr +6; , with probability p;

otherwise
so that
E(Y;) = p; [E(e)+n,E( ’)+(1+ b; )E(T)+ bi E(SJ 1) (18)
Setting
4 = p; {njE(vj)nLE(f,g;(l—bj)E(oj) , and aj=1Li”.§;,

the optimal sequence is determined by the index

ai _ nE(V;) + E(T;) + (1 — b;) E(6;)

a; b;

which is identical to the case with (fully) Exhaustive regime.

7. A General Scheduling Principle and Mixed Sets of Channels

Consider K tasks that must be sequentially performed in a non-preemptive manner
by a single processor. All tasks are available at time O (as is the processor). Task i
carries a random initial processing requirement of expected size a;, called its core, but
if processing is delayed until ¢, the ezpected requirement has grown to a; + a;t (i.e., a;
is the expected growth per unit time delay in performing task i) ¢ = 1,...,K. Browne
and Yechiali [1990] showed that the dynamics of this process is such that if the tasks are
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performed following the policy = = (w(1),m(2),...,m(K )), then the total time to process
all K tasks has expectation

K K
C(ﬂ') = Z a,,(,-) H (1 + a,,(,.)) )
=1

r=1+1

which is minimized when following the permutation based on increasing values of the
critical quantity a;/a;, the ratio of each task’s core to its growth rate.

Our representation of the cycle times for the above four service disciplines in terms of
cores (a;) and growth rates (a;) allows us to use this principle and immediately solve for
cases with Mized channels, where the the service discipline is not common for all channels,
but rather, some channels require a pure Exhaustive regime, others — a pure Gated mode,
and others — one form or other of ‘fractional-type’ discipline. In addition, some channels
may require switch-in or switch-out times or both. The above general scheduling principle
leads directly to '

Theorem 4. The mean cycle time is minimized if the channels are arranged by increasing
values of a;/a;, where, if a channel is Binomial-Exhaustive, then

a; = [pini E(V;) + (1 — bi + pibi) E(T) + (1 — b:) E(6)]/(1 — bs)
a; = p;bi/(1-b;)
whereas if it is Binomial-Gated,
a; = pin; E(Vi) + (1 + p:b) E(T3) + E(6;) , o= pibi .
If a channel is Bernoulli-Gated, then
a; = pi[n; E(Vi) + (1 + &;)E(T;) + E(6:)] ,  ai =pibi
whereas, if it is Bernoulli-Exhaustive,

a; = pi[n; E(V;) + E(T3) + (1 — b;)E(6;)]/(1 - b;) a; = pib;/(1—b;) .

8. Systems with a Unit-Buffer at Each Channel

Suppose that each channel can store at most one request at a time and all arrivals to
a channel that find the ‘buffer’ full (occupied) are lost to the system for ever. An occupied
channel reopens only upon the completion of the occupier’s service request.

Browne and Yechiali [1988b] assumed the following cost structure: a holding cost at
rate $h; per unit time a type i job is held in queue, and a penalty cost consisting of a
payment of $g; per type i job lost to the system, ¢ = 1,..., K. The penalty cost could
denote the entrance fee to a secondary transmission network that accepts the overflows of
the primary system.



To ease exposition and illustrate some basic ideas, we will first analyze the system
with zero switching times (; = T; = 0 Vi). Let c;(a,t) denote the total cost incurred
in channel ¢ in the (time) interval (a,t] without channel i having been served in the said
interval.

Let Q;(a) denote the state of channel i at time a, then, E(ci(a,t) | Qi(a) = 1) =
[hi + Aigi](t — a), and

E(ci(a,t) | Qi(a) =0) = ‘/: Aie NCED R, 4 Aigi](t — z)dz

— e~ Ai(t—a)
— ot (€m0 - 25—) . (o)

Consider a special instant where the system starts at time ¢ = 0 with all buffers
K
full, i.e., Q(0) = (1,1,...,1) = 1. Clearly, the cycle time, C = _ V;, is invariant with

i=1
respect to policy. Therefore, it can be shown (Browne and Yechiali [1988b]), that the total
expected cost incurred by the system following tour mo = (1,2,...,K) is

[im(o )| Q(0) = 1,m0) = (E(C)— —) Z(h,+/\g,)+z (" “9') I %o

i=1 i=1 =i+l
(20)
As only the second term in equation (20) is effected by policy, it is that term we need to

minimize. By applying an interchange argument we have,

Theorem 5. The tour of minimal expected cost is prescribed by the policy m* which
orders the channels in decreasing values of the index

A h; +~)\9i (21)
Y

Remarks. (i) If A — 0 then the index (21) reduces directly to the classical ‘cp rule’
which orders channels by decreasing values of the ratio: [cost rate/expected service time].
This follows since

Hm hi+Agi _ hi

NoT1-V(n)  EW)

(i) When switching times are included, the Hamiltonian tour of minimal expected cost is
achieved by ordering the channels in decreasing values of the index

(h; + Agi)8;()\)

el (22)
1 - T8 (N)
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9. Globally Gated Regime

Boxma, Levy and Yechiali [1990] introduced a (cyclic) Globally Gated (GG) service
scheme which uses a time-stamp mechanism for its operation: the server moves cyclically
among the queues, and uses the instant of cycle-beginning as a reference point of time;
when it reaches a queue it serves there all (and only) customers who were present at that
queue at the cycle-beginning. This strategy can be implemented by marking all customers
with a time-stamp denoting their arrival time. In its nature the GG policy resembles the
regular Gated policy. However, the GG policy leads to a simpler mathematical model
which in turn allows for derivation of closed-form expressions for the mean delay in the
various queues. As a result, the operation of the polling system by the GG policy is easy
to control and optimize. As in earlier sections the system consists of K infinite-buffer
channels, the offered load to queue ¢ is b; = M;E(V;) and the total system load-rate is

p = Y b;. We assume that, when leaving queue 7 and before starting service at the next
i=1
queue, the server incurs a switchover, or ‘walking time’ penod whose duration is a random

variable 8;. The total ‘walking time’ in a cycle is § = E 0;.

=1

Boxma, Levy and Yechiali calculated the mean and second moment of the cycle time

C (under policy m):
E(C)=E(9)/(1-p), (23)
E(C?) = [E(oZ) +2E(0)pE(C) + Z A E(VZ)E(C)] (24)

i=1
They further showed that the mean waiting time for an arbitrary customer at channel
k(k=1,2,...,K)is given by

k-1

E(W) = 1+2(Zb)+b;c E(CR)+ZE(0), (25)

Jj=1 Jj=1

where E(CRr) = % is the mean residual time of a cycle.
It readily follows from (23), (24) and (25) that E(W;) < E(W;) < --- < E(Wk). In

particular,
E(Wit1) — E(Wi) = (bet1 + bx)E(Cr) + E(6%) -

That is, if the server always performs a cycle by traversing the channels in the same order,
it is advantageous to belong to a queue with a small index. In other words, the closer a
channel is positioned to the starting point of the cycle — the better.

Dynamic Optimization. At the beginning of each cycle the current queue lengths,
ni,...,nx are evaluated and the visit order of the nezt cycle is determined. By the very
na.ture of the Globally Gated scheme, the visit order taken in one cycle does not affect the
future stochastic behavior of the system. Moreover, the cycle-time duration C(ny,...,nk)
is the same for any Hamiltonian tour of the queues. Thus, if we consider the costs incurred
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during a cycle by the customers present at its initiation together with the costs incurred by
the new arrivals between two cycle-beginnings, the long run minimal cost can be achieved
by optimizing each cycle individually.

The mean total waiting cost incurred during the coming cycle is:

K k-1 R4 K
ch Z [n,E(V,)+E(0,)] -}E\’kzz +chz\kE[C(n1,...,n;{)2]/2 é"
k=1 j=1 =1 k=1

where the first term is the contribution to total cost of the customers present at the cycle-
beginning, and the second is due to the customers arriving during the cycle starting with
n1,7M2,...,nk (see Yechiali [1976]). The only term that depends on the order of visits is
K k-1
- /E&)Z [n; E(V;) + E(6;)]. It readily follows that the optimal order for the next cycle
k= Jj=1
W, is determined by increasing values of the indices u; = M, which is, once more, <€<—

—
a cu-type rule. ™

10. Elevator-Type Service Discipline

An Elevator-type service policy is the following: instead of moving cyclically through
the stations, the server first serves stations in one direction, i.e. in the order of 1,2,...,K
(‘up’ direction) and then reverses its orientation and serves the channels in the opposite
direction (‘down’), i.e. going through stations K, K —1,...,2,1. It then again changes
direction, and keeps moving in this manner back and forth. This type of service discipline
is encountered in many applications, e.g. it models a common scheme of addressing a hard
disk for writing (or reading) information on (or from) different tracks. We assume that
it takes the same (random) time to ‘walk’ from channel j to channel j +1 as it takes to
move ‘backwards’ from 7 + 1 to j.

All the service disciplines that have been considered in the literature with relation
to cyclic movement (e.g. the Gated, Exhaustive, Limited, Globally Gated) can be imple-
mented also with the Elevator approach.

Altman, Khamisy and Yechiali [1990] introduced the following globally-gated version
of the Elevator scheme. Consider a moment when the server is ready to start service at
station 1 and the system state is (ny,n2,...,nk). Then a ‘global’ gate is ‘closed’ and the
server starts its up cycle, moving from 1 to K, serving in channel i only those n; jobs
that were present at the beginning of this cycle. As soon as the last job of the nx jobs at
channel K is completed, a new ‘global’ gate is closed, the system state is (ny,n},...,nk)
and the server starts its down cycle serving at ¢ only the n} marked customers. Then, a
‘global’ gate is closed again, and the server starts its up cycle, etc.

As the cycle duration is unchanged if we alter the order of the stations being served
and/or the order of the walking times, the distribution of a cycle duration (‘up’ or ‘down’)
for the Elevator scheme is equal to the distribution of a cycle duration for the case of cyclic
Globally Gated service discipline with zero walking time from station K to station 1. As
a result, equations (23) and (24) hold in this case too, with the trivial modification that
0 =0.
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Waiting Times. Consider now an arbitrary customer arriving at station k. It has
probability 0.5 to arrive during an ‘up’ cycle and probability 0.5 to arrive during a ‘down’
cycle. Thus

E[W}] = 0.5(E[W, | up] + E[W} | down]) . (26)
From (25), . -
B |upl = (1+ W be) B(CR) + > 500 (27)
Similarly we have
E[W,, | down] = (1 +2 f: b + bu)E(CR) + E E(9) . (28)
t=k+1 i=k

Combining equations (26),(27) and (28) we obtain, for k =1,2,..., K,
E[W, | Elevator] = (1 + p)E(CRr) + E(8)/2 . (29)

Result (29) reveals an interesting phenomenon: in the (globally gated) Elevator regime
ezpected waiting times in all channels are the same. This is the only known non-symmetric
polling system that possesses such a property. In such, the Elevator discipline is the ‘fairest’
of all service procedures and any order of the channels yields expression (29).

11. Conclusion

We have presented and derived optimal dynamic control policies for various polling
systems with a single server and Poisson arrivals. Boxma [1990] addressed another aspect
of the problem of optimization in polling system, viz. “Determination of that polling table
in a (static) periodic polling model that minimizes a certain weighted sum of the mean
waiting times”. Using both avenues in designing, operating and control of polling systems
will lead to more efficient, better-managed and ‘fairer’ systems.
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