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The problem of optimal dynamic sequencing for a single-server multiclass service
system with only unit storage (buffer) space at each queue is considered. The model
is applicable to many computer operating and telecommunicating systems (e.g.,
polling systems). Index policies to minimize costs for the special case of symmetric
arrival rates are derived. Simulations suggest that using these indices provides a
substantial improvement over cyclic schedules.

1. INTRODUCTION

Consider a system composed of N queues or channels serviced by a single
server. Arrivals to channel i are governed by a homogeneous Poisson process
with random, channel-specific, general service requirement distributed as V;,
i =1,...,N. Each channel can store at most one request at a time and all
arrivals to a channel that find the “buffer” full (occupied) are lost to the system
forever. An occupied channel (queue) reopens only upon the completion of the
occupier’s service request. Thus, we may equivalently consider a system that
takes an exponentially distributed amount of time to generate a new service
request at each queue after the service to the previous job has been completed.

This type of system describes the workings of many computer and commu-
nications systems. Specifically, for a server that moves in a fixed cyclical fashion
around the queues [i.e., following the fixed template (...,j+1,...,N~—
1, N, 1,2,...)], it has been analyzed as a polling system. The literature on
this topic is immense and rather than refer to it directly, we call the reader’s
attention to the excellent monograph of Takagi [11] (which is updated in [12)
for a thorough analysis and bibliography on the model, as well as a wealth of
applications.

A feature that complicates the analysis of these systems is the nonnegligible
“switching time” the server incurs in moving from one channel to another. As
such, almost all analyses have concentrated on cases where the server follows
the fixed cyclic route, stopping only to service the occupied channels. These
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studies [11] have concentrated on evaluating various performance criteria (e.g.,
waiting times) for mostly special cases, while probabilistic results for the fully
asymmetric systems have only recently been derived (see Takagi [12] and Takine,
Takehashi, and Hasegawa [13]). The optimal dynamic scheduling of this model
appears to be an open problem, and only recently (see Browne (2] and Browne
and Yechiali [3]) has the problem been considered for systems with infinite
buffers.

In this article we examine the problem of what route the server should follow
if he is allowed to choose his path, or schedule, across the channels at suitably
defined decision epochs to optimize a measure of system performance. We as-
sume the server has full system-state information; that is, he knows which chan-
nels are occupied at every decision epoch. Admittedly this assumption might
nullify the application to local area networks (see Takagi [11]), unless we assume
further that token passing delays (switching times) are insignificant relative to
packet transmission (service) times. However, we will derive index policies for
the semisymmetric case (identical arrival rates with arbitrary service times) that
can be used to prioritize the channels and could thus be used in conjunction
with general polling tables, as discussed in Baker and Rubin [1].

The remainder of the article is organized as follows: In Section 2 we model
the fully asymmetric system as a semi-Markov decision process and find that
analytic problems preclude a simple analytical solution. We are therefore led to
consider optimization over a Hamiltonian tour of the semisymmetric system in
Section 3, which leads to an index rule. We generalize the index to account for
switching times in Section 4. In Section 5 we consider the dynamic implemen-
tation of the index rule, and evaluate its effectiveness by reporting results of a
set of simulations. We conclude with a comparison with related results for infinite
buffer systems.

2. FORMULATION

In the general single-buffer multiclass (parallel) queuing system, the ith queue
or channel is characterized by an independent Poisson arrival stream of intensity
4;, an independent service requirement distributed as V; with distribution func-
tion G;(-), and a switching time. As our interest lies in determining optimal
server paths, we assume that all channels i and j are connected by a switching
time §; that decomposes additively into S = 0; + 1;, where 6, denotes the time
the server needs to switch out of channel i and 7; denotes the switch-in or setup
time for channel j.

At most one outstanding message or service requirement can be stored at
each channel, with those messages arriving to find the buffer full being lost to
the system forever. The buffer frees up only at the termination of the occupiers’
service.

The following cost structure is imposed on the system: a holding cost at rate
$4; per unit time a type i is held in queue, and a penalty cost consisting of a
payment of $b; per type i lost to the system, i = 1, ... N. The penalty cost
could denote the entrance fee to a secondary transmission network that accepts
the overflows of the primary system.

To ease exposition and illustrate some basic ideas, we will first analyze the
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system with zero switching times (6; = 7, = 0, V). Let ¢;(s, t) denote the total
cost incurred at channel i in the (time) interval (s, t] without channel i having
been serviced in said interval. Let Q;(s) denote the state of channel i at the
initial time s; that is,

0.(s) = 1 if buffer i is occupied at s,
! 0 if buffer i is vacant at s.

As

E(ci(s, 9)|Qi(s) = 1) = [m + AibJ(t = 5) (€))
and

E(ci(s, )|Qi(s) = 0) = J’I eIk + AbJ(t — x) dx

= [k + Abi] ((t —-5) - 1__'%:1:(5—5)) 2

we may write

— e Mi=9)

E(ci(s, )1Qi()) = [ + 4ibi] ((t -5 - '1—"/1—““ 1 - Qf(S))>' ®)

Consider now the general problem where the server is faced at the decision
epoch s with the state vector Q@) = (Qu(8), - .- » On(s)). We restrict our
attention to the class of nonidling as well as nonpreemptive policies, so the
only available action the server may choose is to.serve a channel j for which
Q,(s) = 1, and then to stay at j until that service is completed.

To ease notation, let Q(s) = Y = (Y, ..., Yy). Under action j, the next
decision epoch will occur at time s + Vj, with resulting state Q(s + V;) =
Y = (Y, ...,Y%), where Yj = 0.

Conditional upon Y, the expected cost to channel i under action j is [directly
from Eq. (3)] '

(b + Aby) [E(V,) - 1————1‘1@—) a- Yi)], 4)

where V;(«) denotes E(e*"), the Laplace-Stieltjes transform of V; at a.

The transition probability for channel i under action j, conditional on V;, can
be written as

E(Pyy(DIV)) = [(1 = Y)emst = YD1 = e"#)¥E + Y,Y{]
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The state transition probabilities are then
PY.Y’(f) = E(H E(Pl’,».Y,'(j),V;'))- (5)
i#) ‘

We have now a standard semi-Markov decision process with average cost
optimality equation (see, e.g., Ross [10, p. 162)).

H(Y) = {{n_igl}{ﬁ (h+ ) | By - L0 7))
+ ; Pyy (HH(Y') - gE(V,)}, 6)

where if a bounded function H and a constant 8 exist to satisfy (6), then a
stationary policy exists such that it prescribes an action to minimize the RHS of
(6) for each Y.

While one may now use brute-force methods on Eq. (6) to solve for full
optimality, the forms of the transition probabilities of Eq. (5) are in general too
complex to yield simple-form solutions. In fact Katehakis and Derman [8] as
well as Nash and Weber [9] considered a simpler, somewhat related, problem
for only the exponential distribution and found that the (in that case Markov)
dynamic programming approach did not yield to solution. In our terminology,
they considered the case of preemptive service with a constant cost rate whenever
any customer was in the system (regardless of how many). Using novel meth-
odologies they were able to solve the problem only for the exponential service-
time case.

These problems lead us to search for a good heuristic with simple structure
that is useful for any size N (such as an index policy) with which to operate the
system.

3. OPTIMAL TOURS: THE SEMISYMMETRIC CASE

One family of heuristics can be described as the “pseudocyclic” class (see [2,
3]), which restricts the server to continuously complete cycles or (Hamiltonian)
tours of the index set 7 = {1, ..., N}, but allows him to choose the order in
which he visits the channels within each tour. The dynamic implementation of
this type of policy will be discussed more fully in the next section, but recognize
that an element of fairness across channels is implicit in that no channel need
wait longer than one tour to be served. We will first consider the problem of
how to optimally perform one tour. Specifically, what policy achieves the tour
of minimal fotal cost? Assume for now that this tour starts at time 0 with all
buffers full; that is Q(0) =1 = (1, ..., 1). It is clear by the definition of a
(Hamiltonian) tour and our restriction to nonpreemptive service that this (op-
timal) policy is merely (at least) one of the N! possible permutations of I. This
is an optimal scheduling problem with a very complicated cost function, as the
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probability of new arrivals during a tour causes, in general, a high degree of
nonlinearity.

Fortunately, the problem becomes tractable under the simplifying assumption
that the system is semisymmetric in that arrival rates are equal across channels;
that is, A, = 4, Vi, which we now examine. '

It is clear that the time to perform this cycle—or tour—say T, is invariant
with respect to policy as

N
T=> V. ©)
i=1
Consider now the permutation or schedule 7o = (1, 2, . . . , N), and note

that by definition of 7, channel i will be occupied until time 2i_,V;, whereupon
its buffer frees up at its service completion, so that Qi(Zi.V;) = 0. We can
therefore use Eqgs. (1) and (2) directly (with 4; = 4, Vi) to evaluate the expected
total cost incurred by channel { under 7, as

E(c(0, T)‘Q(O) = 1, mp)

i i 1 — e MT - .Y
B[ 10 3 Vi s ab) [T X V) - I}
i=1 i=1

= (h + Ab)(E(T) - %) n (w) E(e-3mv)

_ (h + 1b) [E(T) - ﬂ + (5‘—2—“1) 1 V. )

j=i+1
The total expected cost incurred by the system following tour 7, is therefore
E(C(0, 7)|Q(0) = 1, 79)
1\ & Yol + b\ & o
- (E(T) - ;) S (b + 4b) + 3 (—;—) I vm. o
i=1 i= j=i+l

As only the second term in Eq. (9) is affected by policy; it is that term we need
to minimize. Consider therefore the policy 7, = a...,r—=4Lr+1,rr+
2, ..., N); that is, simply interchange the rth and r + 1st terms in 7. It is
then straightforward to show that

E(C(0, DIQ(0) = 1, m) = E(C(0, NIQ(O0) =1, m)

= [+ 280 (F0) — o + 20 (L=2D)] 11 v,

j=r+2
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from which it follows that policy z; improves upon = iff

hevy + Abyy,
1 - Vr+1(/l)

h, + b,

’ -V 4y

> 1

Iteration of the pairwise interchange is sufficient to prove the following theorem.

THEOREM 1: The tour of minimal expected cost is prescribed by the policy
n*, which is ordered by decreasing values of the index

h; + Ab;
A iTm (12)

DISCUSSION: Note that as A ~y 0, the above policy reduces directly (as
expected) to the classical “weighted shortest expected processing time first”
(W.S.E.P.T.) (see, e.g., Conway, Maxwell, and Miller [5]) as

lim J h; + Ab; _ h;
w1 = Vi) EW)

However, for A > 0, while 4, + Ab; can be considered the effective cost rate
per unit time for a serviced arrival (with no other costs being incurred), 1 —
Vi(4) is the probability of at least one arrival during a type i service. As such,
n* is sensitive to all the moments of V; [assuming G(-) is determined by all its
moments], whereas W.S.E.P.T. depends only on E(V;).

4. SWITCHING TIMES

To incorporate switching times into the model, assume the server takes an
independent random time 7; to switch in or setup at channel i prior to service,
and an independent random time 6; to switch out of channel i postservice there.
We further assume the channel, or buffer, frees up at the termination of a service,
that is, if the server enters channel i at ¢ (obviously, it must have been occupied
at t), the buffer will reopen at time ¢ + 1; + V;, and the server is free @, or
completes, channel i at time £ + 7; + V; + 0;. Because the buffer is still occupied
during the switch-in period, 7; can be easily incorporated into the service time
and we may equivalently let W; = t; + V; denote the new service requirement.
Let Z; denote the completion time of channel i in 7,; that is

Zi= 3 (W, +6).
j=1
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Then, using Egs. (3) and (8) where now T 2 Zy, we may write the total expected
cost to channel i following 7, as

E(c;(0, DIQ(0) = 1, 7)
= E{(h,- + Ab YN Zioy + W) + (B + Ab)

_ oo KT-Z W)
><[(T—z,~.1—w,-)—1 o ]}

= (b + 4b)) [E(T) - %] " (hi Zib') A CRE BRCALL)

= (b + Ab;) (E(T) - %) + (h" - Ab") 8.(2) ﬁ W, (4)6;(%)-

/1 j=i+l

(13)
A pairwise interchange, as in Eq. (10), suffices to prove the following.

THEOREM 2: When switching times are included, the tour of minimal

expected cost is prescribed by 7*, which is ordered in decreasing values of the
index

(h; + '1bi)0~i(/1)
T~ WD) (14

5. DYNAMIC OPERATING POLICIES
5.1. Heuristics

The fact that we obtained index policies for the problem of optimally sched-
uling the first tour is a great help in the search for good heuristics to operate
the system dynamically, as index policies are in general easy to implement. As
an example, consider the following implementation of a pseudocyclic policy
where the server must always complete a Hamiltonian tour on [ before pro-
ceeding to the next tour and always chooses the tour of minimal cost. For ex-
ample, suppose he just completed a tour at time ¢ and observes the state vector
Q(¢), with Q;(¢) being 0 or 1 if channel i is, respectively, vacant or occupied at
t, and say that K channels (buffers) are occupied. The next tour [which must be
determined at ¢ based on Q(¢)] with minimal cost is to “‘serve” first the currently
vacant channels taking zero time at zero cost and then serve the currently oc-
cupied K channels in decreasing order of the index (14), (12), thus completing
a tour. At the termination of this tour (i.e., these K steps), say at time ¢ + <,
he is thereupon faced with the new state Q(¢ + 7) containing, say, J occupied
buffers. The server now chooses the next tour of minimal cost, which, in effect,
is simply the next J steps ahead, and so on. The server idles only when no
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customers are in the system. In this manner, the server effectively utilizes a static
index over dynamic (decision) horizons dictated by the current workload in the
system. There is an element of fairness built into this policy, as an occupied
channel will not have to wait longer than one tour to be ‘served.

Another attractive heuristic results if we utilize the index but drop the pseu-
docyclic, or Hamiltonian, restriction. Consider the case where each channel
completion epoch affords the server a decision epoch; that is, he is always allowed
to choose the next channel to be served. The server may use the index results
to operate the system under a simple strict absolute priority scheme, where the
server always chooses to serve the occupied channel with maximal value of the
index (14). This policy is easier to implement than a pseudocyclic one as it
requires no memory about the previous tours. Note though that this policy results
in a different priority scheme in general than the more classical cu rule (see [5,
7, 14]). This heuristic will be evaluated via a simulation study in the next section,
where for obvious reasons we will refer to it as greedy.

5.2. Performance Evaluation—Simulation Study

The evaluation of the relative merits of the policies suggested above appears
to necessitate a simulation study, as the associated analytics seems to be intrac-
table at present. For example, while the system does regenerate (e. g., each time
the system empties), even the mean “busy period” for the much simpler M/G/
1/N system is not available in closed form. Furthermore, it is a direct conse-
quence of the work of Katehakis and Derman [8] and Nash and Weber [9] that
for general service times, the system busy period remains policy dependent (as
well as unknown at present) even for symmetric arrivals, leading to major an-
alytical problems. To get some idea though of the effectiveness of our heuristics
we resorted to a simulation study. The design is based loosely on the methodology
of Coffman and Gilbert [4], who studied a limiting continuous version of a fully
symmetric system. Their objective was to study the effectiveness of a “greedy”’
server (i.e., one who always serves via nearest neighbor) versus one who just
polled continuously in a cyclic manner. They concluded after a simulation study
that in heavily loaded systems, the cyclic server was superior, while in a system
with light loads the greedy server outperformed the cyclic one.

In our study, we chose to compare the second heuristic mentioned in Section
5.1 with a strictly cyclic server; that is, we compared a server following a strict
absolute priority scheme based on index (12) with one who always completed
the same identical cyclic tours [i.e., (1, ..., N — 1, N, 1,2,...,N,1,
... )]. As a strict absolute priority scheme is a form of a greedy algorithm, we
refer to it so below. We simulated a 10-station system under 100 different load
factors. Without loss of generality, we set A = 1 for all cases and assumed
zero switching times. As such, we define the load factor of each run to be
S E(V;), and report the average load ((1/10)SE(V,)) of each simulation
in (i.e., AVGLOAD), which ranges from 0.01 to 0.998.

The individual service requests were chosen from a uniform distribution in
the following manner: Letj = 1, . . ., 100 denote the test-case indices, and let
i =1,...,10 denote the individual station indices. We set X, =0.015,j=1,
c ,\TGO\gnd then chose numbers A;, B, randomly generated from a uniform
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distribution over (X; — d;, X; + d;), pairwise ordered so that A; < B;, j = 1,
..., 100. The individual service times at station i for the jth test case was
distributed uniformly on (L;, U;), where L;, U; were themselves chosen ran-
domly from a uniform (A4;, B;) distribution, i = 1, . . ., 10,j=1,...,100.
Note that E(V,|A;, B;) = (A; + B;)/2.

The grid size d; was

0009 j=1,...,4,
004 j=5,...,8,
d; =
007 j=09,...,12,
0.1 j=12,...,100.

Although we wanted to keep a constant grid size across the entire scale, it
was necessary to shorten the grid length at the very low (i.e., light traffic) loads
to keep service times positive.

The cost parameters for each test case (i.e., hy, b;) were always chosen
randomly from a uniform (0, 20) distribution.

Each test was simulated 10 times each under the two alternative operating
disciplines, greedy (i.e., the index rule heuristic described above) and simple
cyclic polling. Every simulation had run length of 1,000. For each run the total
cost incurred under greedy was divided by the total cost under cyclic to get the
ratio, which we use as our basic comparative measure. Averages and standard
deviations were then calculated over the 10 runs. The raw data from each run
(i.e., 100 - 10 = 1000 observations) is presented in Figure 1, as a plot of the
Ratio - 100 against the average loads.

It is apparent from Figure 1 that only under very light loads (e.g., AVGLOAD
from 0.01-0.06) is there no clear domination of greedy over cyclic. The greatest
improvement seems to occur between average loads of 0.15-0.3 (i.e., for 1.5 =
31 EV, = 3), after which the ratio appears to increase towards 100% again.

The summary data (100 observations) is presented in a plot of the average
ratios (of the 10 replications for each test case with identical parameters) against
the average loads (i.e., XRATIO versus AVGLOAD) in Figure 2.

The identical plot is presented with 95% confidence intervals in Figure 3. As
Figure 3 demonstrates, no upper confidence limit exceeds 100% after 0.06. The
simulations suggest that the greedy heuristic (based on the index rule) outper-
forms cyclic polling under all but extremely light loads.

6. CONCLUSIONS AND SUGGESTIONS FOR
FUTURE RESEARCH

The indices derived above bear a strong resemblance to the important results
of Harrison [7], which were later found to correspond to the Gittins index for
Whittle’s “open bandit process” (see Whittle {14, pp. 228-232]). The problem
Harrison considered was setting the priorities for an asymmetric multiclass
M/G/1 queue with infinite buffers to maximize total discounted reward over an
infinite horizon. In Harrison’s notation, the problem is equivalent to a terminal
reward of », + h;/f for each type i served, where f§ denotes the discount factor.
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value of the index

(r. + hIBV(B)
1= Vi)

should be granted highest priority and gave the (complex) forms for the indices
for the descending priorities.

Whittle [14] generalized Gittins [6] results on the multiarmed bandit to the
case where new “arms” are generated via a homogeneous Poisson stream—the
open bandit process—and proved that an index policy obtains discount opti-
mality and rederived Harrison’s results in that vein. Note that as  \ 0, Har-
risons’ index corresponds to the cu rule k;/ E(V;) (here we call it cu, as arrivals.
are now still allowed, while previously our use of W.S.E.P.T. was more appro-
priate, as there no arrivals were allowed).

The key bandit theorems prescribe the policy of always serving the available
customer with maximal index. This would seem to correspond to the (undis-
counted though) one-step look-ahead policy described above; however, due to
the unit buffers, the arrival stream (of serviced customers) can no longer be
considered Poissonian. Whittle [15] recently conjectured on a bound for the
distance from the optimal policy of the Gittins index policy for “restless bandits,”
where the arms may change in a Markovian manner when not being served.
Although such a transformation is not known at this time, it would be extremely
interesting to see if the system can be modeled as a restless bandit and use this
result to clarify how close to optimality use of Theorems 1 and 2 is. This kind
of approach may also yield additional insight into good operating policies for
the fully asymmetric system.

Note Added in Proof: After submission of this paper, Hirayama, T. “Optimal
Service Assignment In A Finite-Source Queue,” I.E.E.E. Trans. Aut. Contr.
34, 67-75 (1989), appeared where the optimal preemptive policy in the semi-
symmetric case with zero switching times is obtained for the special case of
exponential service times. The index obtained there reduces essentially to our
eq. (12) for average cost optimality in that special case.
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