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We present two criteria for selecting the adaptive relaxation factor being used in speeding-up the value iteration algorithm for
undiscounted Markov decision processes. The criteria are: 1. Minimum Ratio, 2. Minimum Variance. For the problems tested it was
found that the criterion of minimum variance is most effective for Markov models while an hybrid use of both criteria yields best
results when solving semi-Markov decision problems. The advantage of using these criteria increases with the dimension of the
models.
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1. Introduction

The value iteration algorithm, based on a dynamic programming approach, is one of the best
computational methods for solving large scale undiscounted Markov decision models, avoiding either the
repeated solution of a system of simultaneous linear equations (as required when adopting Howard’s
Policy Iteration Algorithm) or solving large scale Linear Programming problems (see, for example, Tijms
[6D.

The algorithm may readily be applied to semi-Markov decision models (see Schweitzer [4]) by
performing a direct data transformation on both the cost values and the one-step transition probabilities.

The value iteration algorithm achieves at each iteration a cost vector with lower and upper bounds on
the optimal average cost per unit time. Under the assumption that the finite Markov chain is aperiodic for
each stationary policy, these bounds converge geometrically to the optimal cost rate (see Schweitzer and
Federgruen [5]). Varaiya [8] suggested changing the cost vector achieved at each iteration by introducing a
modified parameter. This idea was applied by Popyack et al. [3] who introduced an Adaptive Relaxation
Factor (ARF) by taking into consideration the lower and upper cost bounds and the associated states for
which these bounds are obtained. It was demonstrated that introducing the above factor might greatly
enhance and speed-up the convergence of the value iteration algorithm (see Tijms [6], Tijms and Eikeboom
[7).

The purpose of this paper is to propose criteria for an improved selection of the ARF in order to further
speed-up the convergence of the algorithm. In Section 2, we discuss aspects of the value iteration algorithm

0167-6377/91 /$03.50 © 1991 - Elsevier Science Publishers B.V. (North-Holland) 193



Volume 10, Number 4 OPERATIONS RESEARCH LETTERS June 1991
and emphasize the one-step look-ahead approach. In Sections 3 and 4, we introduce the Minimum Ratio
and Minimum Variance criteria, respectively. In Section 5, we present some numerical results and discuss
the relative advantage of the proposed criteria.

2. The modified value iteration algorithm

The recursive equation on which the standard value iteration for undiscounted Markov decision
processes is based can be presented (see Tijms [6]) by:

V(i) = Min (C(a) + T P, ()V i ()], i€l M
acA,; jel
where,
Vo(i), i €1, is an arbitrary chosen cost function, with 0 < V4(i) < Min, . ,C,(a),
V,(i) = minimal total expected cost when starting at state /, moving n steps and paying terminal cost
Vo () if the process ends up at state j,
A; = set of possible actions (decisions) admissible in state i,

C,(a) = one-step expected cost associated with the selection of action a while in state i,
P;;(a) = one-step transition probability from state i/ to state j when selecting action a,
1 = set of possible states of the analyzed system.

Without loss of generality we can assume that the values C;(a) (i € I, a € A4,) are positive, since adding
a constant to every C,(a) merely adds the same constant to the cost rate. In addition, the selection of V(i)
is aimed at achieving a good starting point for the algorithm. (In fact, another direction of investigation
might be how to select effectively the initial vector V,.)

Consider now the differences,

8,(i)=V,(i)=V,..(i), iel (2)

For large n the values §,(i) represent very closely the minimal average cost per unit time, as ¥, (i) ~ n - §,(i).
The algorithm stops at a certain iteration n when the values §,(i), i € I, become close enough to each
other. Following Tijms [6, p. 192], we use a relative accuracy stopping criterion, i.e.,

Max {8,(i)}/Min {8,(i)} <1+e (3)

where ¢ is a predetermined tolerance error, and where n must be chosen large enough that the
denominator is positive. Note that if V(i) = 0 for all /, then Min,_,8,(i) > 0. The actions for which (1) is
satisfied when the algorithm stops comprise the optimal stationary decision policy, provided that e is
chosen sufficiently small. Moreover, for any &> 0, Tijms [6] showed that the actions for which (1) is
satisfied comprise a policy which will achieve the optimal cost rate to within a relative error of e. (An
alternative stopping rule might be to apply an absolute accuracy criterion, such as 0 < Max;6,(i) —
Min 6, (i) < e. However, this criterion seems to us to be particularly suitable for discounted MDPs.)

It should be noted that two assumptions are needed to ensure convergence of (1), in the sense that
8,(i) — (cost rate) as n — oo. First, for this to occur all components of the cost vector must be equal. This
holds if the Markov chain is single-chained for every policy. Platzmann [2] relaxed this assumption and
showed that the value-iteration procedure as described in Schweitzer [4] will converge if the minimal cost
rate is state-invariant. This weaker condition may be verified by means of state connectivity tests. Second,
as mentioned above, aperiodicity is needed. This can be achieved by under-relaxation (see [4]) which will
force aperiodicity. _

In order to speed-up the value iteration algorithm, modified values V, (i), i € I, are used for the next
iteration as follows:

V(i) =V, (D) +wlV, (i) =V, i (D] =V, 1 (i) +w8,(i), iel (4)
where w is an ARF. (Clearly, for w =1, one gets the standard algorithm where I_/,,(i Y=V, (i).)
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For the semi-Markov case a similar development can be achieved, starting with the modified recursive
equation,

V(i) = Min [ G,(a)/m(a) + T B (a)V,a())). i€, s)
a€4, jel
where
~ Pij(a) *1/7(a), i#],
ij(a = P * +(l— ) s (6)
ij(a) /7 (a) t/7(a)), i=]j,
r,(a) = expected sojourn time of the system in state when selecting action a, and
0<r< Min {7(a)}. (7)
iel,a€A;

i

In order to explore the effect of replacing the original V,,(i)’s with the modified values I_/,,(i), we perform a
one-step look:ahead analysis. We start with the Markov decision processes and use the adaptive terms
V, (i) and 8, , (i), i € I, where,

Vorr(i) = G(R) + ZE;(RJI_/.,(J'), (8)

R, = selected action for state i, determined by (1) at iteration », and

8y11(1) = Vpur (i) = V,(i). %)
Then, from (4), '

8n+1(i) = Ci(Ri) + Z Pij(Ri)[V;n—l(j) + W6n(j)] - [Vn—l(i) + Wsn(i)]

=Ci(Ri)+ Zpij(Ri)I/rl—l(J')+w ZPij(Ri)'Sn(j)"sn(i) _Vn—](i)'
That is,
8,1 (i) =8,(1) +w[g,(i) - 8,()] (10)
where
gn(i)= ZPij(Ri)an(j)' (11)

jel
§,(i) will represent the value of §,. (i) for the standard algorithm (w = 1), if there is no change in the
decision for state i at the (n + 1)-st iteration.

Performing a similar one-step look-ahead analysis for the semi-Markov case (10) is modified accord-
ingly and becomes

8,1(i) =8,(i) + w[g,(i) = 8,(i)], (12)
where (11) is transformed into
g.(i)= X P,;(R)8,()). (13)
jeI

We shall use (10)—(13) to develop criteria for selecting ‘good” ARFs in order to further speed-up the value
iteration algorithm.
The ARF proposed in [3] is derived from the following equation:

Sn+l(h)=8n+|(u) (14)
where u and A are defined as the states achieving the minimum and maximum components of §,(-), i.e.,
8,,(h)=Malx{8,,(i)} and 8,(u)=Min{§,(i)}. (15)

ie iel
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Thus, from (10) and (14), one gets
8,(h) +w([8,(h) = 8,(h)] =8,(u) +w[g,(u) - 8,(u)],

or

_ 8,(h)—38,(u)
~8,(h) = 8,(u) + &,(u) — &,(h)" (16)

The above factor tries to reduce the gap between the values 8, ;(#) and §,, ,(«) and yields practically
an accelerated convergence process of the value iteration algorithm. However, finding an ARF by
considering only the states  and A (with the smallest and largest differences §,(i), respectively), neglects
to take into account the influence of all other states and thus might not be effective in certain iterations.

The computational effort per iteration of the standard value iteration algorithm for fully-dense case is
of order A|1|? (where 4 is the average number of actions per state). However, realistic large MDPs are
usually sparse with an average, say, of N < | I'| possible one-step state-to-state transitions, such that the
effort per iteration is of order NA | I|. The modified algorithm, which is aimed at reducing the number of
iterations, achieves this goal at the expense of increasing the computational effort per iteration. In [3] this
is done by increasing the effort per iteration by 2|/ |, which represents the computational effort of
calculating the ARF w.

In this paper an additional reduction in the number of iterations is achieved at the expense of further
increasing the computational effort of finding an improved ARF. This seems quite worthwhile in
particular for cases where the number of states and actions is high, which is characteristic for large scale
Markov decision models.

w

3. The minimum ratio criterion

Inequality (3) defines the stopping condition for the value iteration algorithm. If this condition has not
been satisfied by iteration n, it seems plausible for the next iteration to find an ARF w™* that will
minimize or at least reduce the term

m(w)
— 17

() (17)
where m(w) = Max, { t§”+1(i )} and m,(w) = Min, {8,, +1(0)}. (Clearly, the numerator (denominator) in (17)
estimates the highest (lowest) value of §,,,(i).) Note that this criterion is meaningful if we take w in the

range where m,(w) > 0.
For this purpose we define

m (wi*) = Min {m(w)} = N{vin{M’ax{B,,(i) + wa,,(i)}}, (18)

R(w)=

where,
a,(i)=g,(i) —8,(i). (19)

(Observe that a,(#) <0 and «a,(u) =0.)
Similarly, let

m(w3*) = Max (my(w)) = Mf.X{I\/Iiin{S,,(i) + wan(i)}}. (20)

Clearly, from (15) and (10), =,(0) = §,(h), and m,(0) = §,(u).

Observe that m,(w) is piecewise linear, and being the Max over a set of linear functions it is also convex
(Figure 1), so its minimum w;* can be found by descending from one segment to the next. Similarly, 7,(w)
is piecewise linear and concave (Figure 1) and its maximum at w;* can be found by ascending from one
segment to the next. Therefore, R(w) = m(w)/m(w) has its minimum in between w™= Min(w;*, w,*)
and w*= Max(w*, w,*).
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- W
Fig. 1. Schematic illustration of m(w), m(w) and R(w) when w;* < wy*
Moreover, R(w) is piecewise affine linear, i.e., R(w)=[A + Bw]/[C + Dw] and R(w) is monotone on
each segment:

_d_[A+Bw]_ BC—AD
dw| C+ Dw _(C+Dw)2'

Therefore one is only interested in the endpoints of any segment. Furthermore, the endpoints of the
segments correspond exactly with the breakpoints for 7 (w) and m,(w).

Denote the breakpoints of m(w) as 0=x,<x; <x,< -+ <x,,, and let A,,+ B,w be the line
segment over the range x,,_, <w<x,, (m=1,2,..., M).

From the properties of m(w) it follows that A4, is a decreasing sequence, while B, is an increasing
sequence. Similarly, if 0=y, <y, < --- <y, denote the breakpoints of m,(w), while C, + D,w is the line
segment over the range y,_, <w <},, then C,(D,) is an increasing (decreasing) sequence. Let

X={x,,0<m<M}, Y={y,0<n<N}

and

Z=XUY={z,0<k<K}.
Arrange the points of Z such that 0 =z, <z <z, < -+ <z,. Then the max of R(w) must occur at one
of the breakpoints {z,, z,,..., zx }. Hence, a reasonable heuristic is a one-pass scan along the z’s until a

change in sign is detected.

Another approach might be to try to retrieve quickly a ‘good’ starting point and then continue the
search for w*. Such a point could be either w,* which minimizes the function m (w), or w* which
maximizes the function m,(w). However, there is a danger that by devoting too much effort to finding the
optimal value w* in every iteration we may lose on overall efficiency. It was found empirically that
whenever §,(#) > 0, the selection of a point w* according to the simple rule

. 21
wy*  otherwise, (21)

= {wl* if R(w*) < R(wy*),
usually yields either an optimal or near optimal relaxation factor for the Minimum Ratio criterion. Hence,
it is desirable to develop an efficient procedure for finding w* and wy*.
For this purpose consider again (18). This is a Minmax problem that can be formulated as a Linear
Program:
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Set Max,.{s,, +1(i)} = ©. Then the (Primal) problem is
Min{ @}

subject to @ —wa, (i) =8,(i), iel,

w, = 0.

The corresponding Dual problem is

Max( 23,(1) ()}

subjectl to Zg(i)=1,
ian(i)é(i)zo,
£i(i) >0, iel.

As there are only two constraints for the Dual, a basic feasible solution will have at most two positive
¢£(iY’s. Furthermore, the optimal value of the objective function is obtained when the basis is composed of
states j and i, say, such that a,(j) <0 and a,(i) > 0. This follows since, if both a,(j) <0 and a,(i) < 0,
then the Dual problem is infeasible. On the other hand, if both «,(;) > 0 and «, (i) > 0, the value of the
Dual objective function is no larger than Max{38,(/j), §,(i)}, where a basis that represents either states j
and h or states i and & yields a higher objective function value. (The intuitive explanation for the opposite
signs of a,(j) and «,(i) is that the optimum wy* occurs where a downward-slopping line and an
upward-slopping line cross, as depicted in Figure 1.)

We use this property in developing a ‘greedy’ procedure for finding the value of w*. This procedure has
the advantage that it skips some of the x,, values.

Step 0. Set w* =0, 2 =4§,(h), and B =a,(h). (Clearly, 8,(h) >0, a,(h) <0.) If & (h) is not unique
select that state with the highest value of «,(-).

Step 1. Find
Q-38.(i)
= Min — =
"1 i:a,,(:)>0{an(l)_ﬂ}
Step 2. Find
©= Max {8,(i)+wa,(i)} =8,(r)+wa,(r),
ita,(i)<0

and set the new value of w;* to w;* + w,. (Step 2 ensures feasibility. Together with Step 1, the procedure
regenerates the initialization properties.)

Step 3. If @ =2+ w,B stop. w* is the required optimal value. Otherwise, set =0, B=a,(r), and
for all i update 8,(i) to §,(i) + wya,(i). Go to Step 1.

A geometric illustration of the procedure is presented in Figure 2. m(w) (m(w)) is depicted by the
upper (lower) envelope. In this illustration the algorithm starts at 8,(h), moves to B, then to C, and finally
stops at D. B occurs at the earliest crossing with a positive-sloped line. The reinitialization move from B
to C restores feasibility. The formulation of the Maxmin problem for finding the value w;* (see (20)) can
be converted to an equivalent Minmax problems in the following way:

Set Min ,.{5,, +1(i)} = ¢. Then the Linear Programming problem is

Max{ ¢ }
subject to ¢ —wya, (i) <8,(i), i€l;

wy = 0.
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ESE

8,(k)

8 (u)-

Fig. 2. A geometric illustration of finding the value w*

This is equivalent to
~Min{~¢)
subject to  —¢ +wya, (i) > =8,(i). i€;

w, = 0.

Thus, by substituting the negative values of 8,(i), e, (i), i €/, and starting at Step 0 with £ = —§,(u),
B = —a,(u), the algorithm of finding the relaxation factor wy* is identical to that of finding wy*. That is,
the Minmax problem is a ‘Mirror Reflection’ of the Maxmin problem (Figure 2).

Before concluding this section we note that our procedure makes an implicit assumption that the same
policy R, recurs twice in a row. This is usually not expected to occur for small n while the iterative scheme
is still hunting for good policies. Policy recurrence is almost certain to occur for moderate n, as evidenced
by the observed usually-good performance of the ARF method. However, there is a rare chance -
illustrated in the Federgruen and Schweitzer survey [1] — that in bizarre cases the policy can fail to
converge, in which case the ARF might fail. But this has never been observed in a real problem.

4. The minimum variance criterion

In this section we consider another criterion for selecting the ARF so as to reduce the number of
iterations of the algorithm. By this criterion we select the value w* that minimizes the variance of the
terms 8, ,(i), i € I. This criterion differs from previous criteria by considering the entire set of 8,,,(i)s
and not only its extreme components.

Consider the values 8, = {8,(i), i€} and a,= {«,(i), i€1}. Then the vector A, (w)=3,+wa,
has components {8,(i) + wa,(i)}. Clearly,

Var[ﬁnH(w)] = Var[§,] + w*Var[a,] + 2wCov[$,, «,]. (22)
Setting the derivative of Var[A,, (w)] to zero, one gets
—Cov[8,, a,]
et St Al E §
" var[e,] (23)

Usually Cov[8,, a,] < 0 and consequently w* = 0 (see Section 3). This happens as a, (i) =X,P, (R;)8,())
—8,(i), and §,(i) increasing (decreasing) usually results in «, (i) decreasing (increasing).

Since d?/dw?(Var[4,, (w)]} = 2Var[a,] >0, the optimal value w* minimizes indeed the variance of
A

n+1°
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In fact, w* represents the value of the regression coefficient in the linear regression of 8, on (—a,,), and
is easily calculated using equation (24):

N —{};an(t)anm - [;sn(i)}[;an(i)]/m} | ”

5 Lo ()] - [);an(f>]2/|1|

i

5. Computational considerations and numerical results

The effectiveness of the proposed criteria for selecting an ARF was tested on several problems. It was
revealed that the Minimum Ratio criterion is sometimes accompanied by two types of ‘congestion’ or
‘jamming’, which represent occasions with limited sensitivity (see also Varaiya [8]). Congestion-type-1 may
occur in iterations when the change in m(w) is only marginally sensitive to changes in w over the range
where m,(w) is decreasing. That is, when m(w™) is close to the value of 8,(4). Similarly, congestion-type-2
is associated with the function m,(w). Congestion-type-1 may be detected by testing whether there exists a
state i such that

18,(i)=8,(h) | <&, {la,(i)|<e or a,(i)>0},

where ¢, and ¢, are predetermined tolerance values. A similar test is applied for detecting congestion-type-2,
using &,(u).

When both types of congestion occur at a certain iteration, the Minimum Variance criterion tends to be
more effective than the Minimum Ratio criterion. Predetection of congestion cases has the potential of
saving computational efforts and leads to an hybrid use of Minimum Ratio and Minimum Variance
criteria as presented in the flow chart in Figure 3.

In turns out that the Minimum Variance approach becomes less effective for small values of w*.
Therefore, for practical considerations, it is recommended to predetermine a value w,;,, and use (24) if
w*>w_. . (In our computations we used the value w,,, =0.3.) It should also be noted that for both

Table 1

Number of iterations and CPU time units for various MDP and SMDP problems tested

Adaptive Prob. no. 1 Prob. no. 2 Prob. no. 3 Prob. no. 4

relaxation A=2,|1|=8 A=4,111=10 A=8, |1|=12 A=16, |I| =15

fa?t“”, MDP SMDP MDP SMDP MDP SMDP MDP SMDP
criteria

Regular value

iteration 25 27 50 53 52 77 64 86
algorithm (w =1) 144 17.2 63.5 74.8 161.2 250.2 507.3 948.7
Popyack,

Brown and 19 17 38 40 61 35 not 46
White [1] 11.5 11.2 50.7 57.8 193.2 118.5 convergent 419.4
Minimum 10 15 21 30 27 29 28 38
variance 11.1 18.1 47.5 70.2 1314 141.3 266.8 445.3

Hybrid use of

Mininum Ratio

and Minimum 15 8 27 23 31 22 36 31
Variance 20.8 12.1 62.6 58.2 150.1 110.9 376.1 373.6

MDP = Markov Decision Process; SMDP = Semi-MDP; A = number of actions per state; |/| = number of states
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Apply the “greedy”

procedure of Section 3
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Apply the “greedy” procedure
of Section 3 and find w;

i Use Eq. (21) and find w*

o)

and find wy
c=c+1
f
>
Dete'm N
of congestion
Type/
c=c+2
c=1 /\ c<1
w* = w, c§ 1
[coTnsgitilon] {no congestion]
( ~ Stop ) c>1
c<3 c=3
w* = wy c<3
congestion \/ two types
Type 2 of congestion

Use Eq. (24) to calculate w*

Fig. 3. Hybrid use of Minimum Ratio and Minimum Variance criteria

criteria the most time consuming factor in the process of finding w* is the calculation of the {g,(i)}
values, which requires computational effort of order O(|/ | .

Several real problems dealing with optimal dimensioning of telecommunication networks were tested on
an IBM XT personal computer. In Table 1 we present numerical results for 4 selected problems which
differ from each other mainly by dimension. The tolerance error used for the problems tested was
e=1073, with 2 < N < 4. As expected, the relative advantage of the proposed criteria rises with the
increase of the dimension of the problems. The table suggests that for the kind of problems tested the
Minimum Variance criterion is more effective than the other procedures for Markov decision models,
while an hybrid use of Minimum Ratio and Minimum Variance criteria yields best results for semi-Markov

decision models.

In order to investigate these findings, we consider again (10) and (12), which are related to the Markov
and semi-Markov models, respectively.
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Using the explicit expression for g,(i), as determined by (6) and (13), (12) becomes:
8uaa(i) =8,(i) + w{[f/v,-(Ri)] 1P, (R)S,(j)+[1-1/7(R)]8,(i) - 8"(:')}
y

or
8rir(i) =8,(i) + wlr/m(R)][8,(i) = 8,(i)] =8,(i) + wa,(i)7/7,(R,). (25)

Equation (25) demonstrates the role played by the mean sojourn times in the determination of w for the
SMDP. Indeed, the slope of each linear function §,, (/) depends not only on a, (i) but also on 7,(R)).
With respect to the Markov models this slope is restrained by a state-dependent factor 0 < 7/7(R;) <1

It should be pointed out that selection of different values of T does not affect the convergence rate of the
algorithm, as the adaptive coefficient wr, appearing in (25), does not vary with changes in 7.

Conclusion

In this paper we have proposed promising ARF methods which were tested on several problems and
reduced the unrelaxed computation time and number of iterations by a factor of 2 or 3. A limited
investigation of sensitivity to the selection criteria and to problem size has been carried out. It appears that
slight increases in the work per iteration can significantly decrease the total number of iterations. Further
research may be directed into choice of criteria for the over-relaxation factor, into achieving robustness in
behavior, and into better understanding of sensitivity to problem size, structure and sparsity.
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