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An N-node tandem queueing network with Bernoulli feedback to the end of the queue of
the first node is considered. We first revisit the single-node M / G /1 queue with Bernoulli
feedback, and derive a formula for EL(n), the expected queue length seen by a customer at
his nth feedback. We show that, as n becomes large, EL(n) tends to p /(1— p), p being the
effective traffic intensity. We then treat the entire queueing network and calculate the mean
value of S, the total sojourn time of a customer in the N-node system. Based on these
results we study the problem of optimally ordering the nodes so as to minimize ES. We show
that this is a special case of a general sequencing problem and derive sufficient conditions
for an optimal ordering. A few extensions of the serial queueing model are also analyzed.
We conclude with an appendix in which we derive an explicit formula for the correlation
coefficient between the number of customers seen by an arbitrary arrival to an M /G/1
queue, and the number of customers he leaves behind him upon departure. For the
M /M /1 queue this coefficient simply equals the traffic intensity p.
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1. Introduction

The following model was studied in [13]: A single job is made up of N
independent tasks, all of which must be successfully performed for the job to be
completed. The tasks are performed sequentially and may be attempted in any
order, where each attempt of task i requires a random time X; and is successful
with probability p; (1 <i<N). Upon failure at any stage the job has to be
started all over again, i.e., the job is fed back to the first stage. It was shown
that E(X), the expected total time to complete the job, is minimized if the tasks
are indexed such that EX;/(1 —p,) is an increasing sequence, and that

N N
E(X) = Z[E(Xi)/ JI;Iipf) : (1)

i=1
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Fig. 1. The basic model.

An application of such a model could be, for example, a manufacturing process
where at the end of each stage the product is tested and if it does not comply
with a certain standard it is completely dismantled and the whole process starts
again.

In this work we extend the above model to an N-node tandem Jackson
network with a special set of switching probabilities, i.e., upon completion of
service at node i each customer either moves forward to node i+ 1 (with
probability p;) or is fed back (with probability 1 — p,) to the end of the queue of
the first node. An illustration of the model is depicted in fig. 1, where 7y is the
rate of the external Poisson arrival.

Our goal is to characterize orderings of the nodes so as to minimize the
expected fotal sojourn time of a customer in the system.

Jackson networks have been extensively studied in the literature and various
general results have been obtained (cf. Gelenbe and Mitrani [8]). Nevertheless,
we concentrate on the particular configuration of fig. 1, which may be consid-
ered as a generalization of the simplest form of Jackson network, this being a
single-node queue with Bernoulli feedback.

Takacs [12] studied the M /G /1 queue with Bernoulli feedback to the end of
the queue, and derived the Laplace-Stieltjes transform (LST) of the sojourn
time of a customer in the system. Disney, Konig and Schmidt [6] further
- analyzed Takics’ model. They concentrated on the time spent by a customer
waiting in queue at each visit, depending upon the epochs at which the queue is
being observed (i.e. arrivals, departures, instants of feedback, joining of the
queue or end of service). Laplace transforms were developed for each case. Van
den Berg, Boxma and Groenendijk [4] considered an M/G /1 queue where the
customer is fed back a fixed number of times. Following this, van den Berg and
Boxma [1,2] treated the case where the probability of success changes with each
feedback. Additional investigations of sojourn times of feedbacking customers in
closely related models are reported in Doshi and Kaufman [7], Boxma and
Cohen [5] and van den Berg and Boxma [3].

In section 2 we revisit the M /G /1-queue-with-feedback and derive a formula
for EL(n), the expected queue length seen by a customer at his nth feedback.
We show that, as n becomes large, EL(n) tends to p /(1 —p), where p is the
effective traffic intensity. In section 3 we analyze the N-node tandem Jackson
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network with feedback to the first node, and calculate ES, the mean total
sojourn time of a customer in the network, giving an intuitive interpretation to
the result. In section 4 we consider the problem of optimally ordering the nodes
so as to minimize ES. We show that this is a special case of a general
sequencing problem and derive sufficient conditions for an optimal ordering. A
few extensions are analyzed in section 5. We conclude the paper with an
appendix in which we derive the correlation coefficient between the number of
customers seen by an arbitrary arrival to an M /G /1 queue, and the number of
customers he leaves behind him upon departure. For the M/M /1 queue this
coefficient simply equals the traffic intensity p.

2. The M /G /1 queue with feedback revisited

Consider a single-server queue with Poisson arrival rate vy, service times V'
and feedback to the end of the queue with probability (1 — p), which we denote
by M/G’ /1 (see Disney et al. [6]).

Our goal is to derive an explicit formula for the mean queue size E[L(n)]
seen by a customer at his nth feedback.

It is well known (cf. Takacs [12]) that as far as the variable of interest is the
number of customers in the system at an arbitrary point of time (denoted by L),
then the system is equivalent to a regular M/G /1 queue with the service time
V being a geometric sum of ordinary service times V}’s, i.e., V' = Zf‘,’, 1V; where
P(IN=k)=(0-p)~'p (k=1,2,...,). The Pollaczek-Khintchine formula
yields

yzE[I}Z]
2(1-p)°

where p =vE[V], EIV]=EWV1l/p, EIV?1=EIV*/p+{2(1 -p)EYV]1/p?).
Thus,

, _YREWV]+vE[V?] - 2yE?[V])

EL =p+

2(p —vE[V])
p v {E[V?] -2E[V]]
1,72 p(i-p) 21

Consider an arbitrary customer C that arrives at time #,. Let S be its total time
in the system. Then,
E[S] =m,E[V] + Y. mE[R;] + E[L]E[V]
i=1

+ 2 (1-p){E[L(n)] +1E[V], (22)

i=1
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where L(n) is the number of customers found by C in the system uporn his nth
feedback (n>1), and R, is the residual service time of the customer being
served when C arrives, given that there are i customers in the system (Ry=V).

We first calculate X7, E[R,]. Clearly, X7_,m,E[R;,]1=pE[R| L > 1], where
R is the residual service time of the customer being served at time ¢,. Let
R,=R,+ ):"CIV where N is a shifted Geometric distribution such that P(N =
k) (1 p) (k 0,1,2,...). R is the residual total service time to be
devoted to the customer bemg served at time ¢,, given that i customers are
present. Now,

. X A 1
E[R;] =E[R] -E[N]-E[V] =E[R/] - (; - 1)E[V]. (2.3)
Following Mandelbaum and Yechiali [11] we have
[ R . E{I}Z]
E,lqr,.E[R,.] =pE[RIL>1] ek

where R is the total additional service time that will be devoted to the customer
being served when C arrives. Hence, using (2.3),

E|p? 1 ‘
[72] - (;—I)E[V](l—wo). (2.4)

E[R] = -
El”' [Rl=r7g 7]

Substituting E[V], E[V?] and (1 — ) =p, in (2.4) we obtain

T mElR] =vEV?] /20 @)
Thus,
E[RIL>1] = g‘,lw,.E[R,.]/p - ZEE[I[/V]] . (2.6)

That is, the expected remaining time until completion of the “current” service
in an M/G’/1 queue is the same as its corresponding value in a regular
M/G /1 queue.

We now turn to calculate EL(n) for n > 1.

E{L()|L =i} =v{E[R] +iE[V]} + (1 -p)i, 2.7)

where the first term is the expected number of new arrivals, and the second
term gives the expected number of feedbacks during the time between C’s
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arrival and his first feedback. Thus,
E[L(1)] =mw,vyEV + Y. mE[LQ1)|L =i]
i=1

2yE[V](p —vE[V]) +72E[V2]
2p
yE[V?]
2p

where 6 =yE[V]1+ (1 —p). For the (n + 1)st feedback, n > 1, we can write a
recursive equation for L(n + 1) in terms of L(n):

=0E[L] +

=9E[L]) +yE[V](1-p)+ (2.8)

L(n)+1 -

Y

j=1

L(n+1)=N + B(1—p, L(n)),

where N(x) denotes the number of Poisson arrivals during a time interval of
length x, V; are all distributed like V, and B(1 —p, L(n)) is a Binomial random
varlable resultmg from L(n) Bernoulli trials with individual probability of
“success” 1 —p.
The generating function Gy, ,1(z) = E[z*"* V] is derived as

GL(n+1)(Z) = I}[')’(1 "Z)]GL(n)(I;[’Y(l “‘Z)][P +(1 _P)Z])-
It readily follows that for n > 2,
E[L(n)|L(n—1)] =yE[V][L(n = 1) +1] + (1 —p)L(n - 1),

which can also be obtained directly by setting E[V] instead of E[R,] in (2.7).
Hence,

E[L(n)] =0E[L(n—1)] +vE[V] (n=2,3,4,...), (2.9)
so that

E[L(n)] = 6" E[L(1)] + —;—_—;]yE[V] (n=2,3,4,...). (2.10)
Therefore, with the use of (2.8), eq. (2.10) becomes

E[L(n)] =6"E[L] +6""'¢ + (L;—f)_;)yE[V], (2.11)

where

,YZE[VZ]

¢=yE[V]Q-p)+ 2
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In a stationary queue p <1, so that @ =yE[V]+ (1 —p) < 1. Thus, after some
algebra, we get that T _ (1 —p)"E[L(n)] =((1 —p)/p)E[L], as if EL(n) =EL
for all n (which, of course, is not true in general). Another observation is that
the probability of n > 1 feedbacks by C, given that he feeds back at all, is
(1 —p)"p/(1 — p). Therefore, the mean system size seen by a fed back customer
is given by

oo

Y. [(1=p)"p/(1 —p)| EL(n) = EL.

n=1
Substituting (2.11) and (2.5) in equation (2.2), we obtain (see Takécs [12])
yE[V?] 1-p
E[S]=(1 -—p)E[V] + T +E[L]-E[V]+ —p—(E[L] + l)E[V]
E[L] +1
=~ _EV-p[EV—-ER]. (2.12)

Equation (2.12) may be rewritten so as to give further insight, i.e.
E[L]

E[S] =p|E[R] + ;

E[V]|+(1-p)E[V] + l-;—p(E[L] +1)E[V].
(2.13)

The first and second terms in (2.13) give the expected time until first service
completion by C, given that he found the server busy or idle, respectively. The
third term equals X% _ (1 —p)*"[L(n) + 1]E[V'], which is the expected sojourn
time due to feedbacks. Clearly, by Little’s law, E[ L] = yE[S], as can be verified
by looking at eq. (2.1).

It is of interest to note that

E[L(n)] nw,[pf[;’[]ll] ] p

That is, after many feedbacks C observes a mean queue size that is independent
of the second moment of the service time and is the same for all service time
distributions possessing the same mean. The explanation is that the second
moment affects mainly new arrivals (through the residual service time), while
feedback customers find no customer in service.

It should also be pointed out that E[L(n)]=6""6E[L]+£¢—p/(1 —p)]+
p/(1 —p) is a monotone sequence: if a=0EL+¢&—p/(1—p)=(y2/2p)
[E[V2]-2EYVII1/(1 —p) —p + 1] is positive (negative) then E[L(n)] is de-
creasing (increasing). As [1/(1 —p) —p +1]1>0 the answer depends on the
difference & = E[V' 2]~ 2E?[V']. For example, if V' is deterministic, then § =
—E?[V]and E[L(n)] is increasing.

L(n) is closely related to the nth cycle-time of an arbitrary fed back customer
in an M/G’/1 queue. Denoting this time by CT,, n > 0 (CT, is the initial pass

= . .14
- (2.14)
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through the system of a newly arrived customer), it has been shown by Doshi
and Kaufman [7] that for the M/M’/1 queue the correlation coefficient
between CT, and CT, is given by Corr(CTy, CT,)=p. Van den Berg and
Boxma [3] extended this result and showed that Corr(CT,, CT, ;) =p for all
n>0. The correlation between CT, and CT; in the general service-time
M/G'/1 queue may be obtained from the results in [7]. In the appendix we
derive an explicit formula of Corr[ L(0), L(1)] in the regular M/G /1 queue, and
show that if ¥ is Exponential then Corr[L(0), L(1)] =p.

From (2.9) it readily follows that E[L(n)]=E[L], for all n > 1, if and only if
E[L]=p/(1—p). This is true (see (2.1)) if and only if E[V2]1=2E*}V]. An
example of such a case is, of course, the Exponential distribution. Yet, for the
M/M /1 queue this result can be obtained directly:

E[L(1)I L] =y(L + DE[V] =p(L +1),

so that
E[L(1)] =p(E[L] + 1) =ph—§—; + 1] =——=E[L].

Therefore, E[L(n)]=E[L] for all n > 1.

When the service time is Exponential, E[R] = E[V], so that eq. (2.12) reduces
to E[S]={E[VIE[L]+ 11} /p. This can be given the following interpretation:
each time C joins the end of the queue he observes (on the average) E[L]
customers ahead of him. Together with his own service time he resides in the
system E[VIE[L]+1] units of time until his service is completed (in this
round). As the average number of times the server is visited by C is 1/p, the
total sojourn time of an arbitrary customer C is given by the product of these
two terms.

3. N-node tandem Jackson network with feedback to the first node

We now turn back to our original model, as depicted in fig. 1, and assume
that X, is Exponentially distributed with parameter w;. It is well-known [8,10]
that the effective arrival rates at the various nodes can be found by solving the
set of traffic equations

A=[1-R"]y, (3.1)

where A; is the effective arrival rate to node i, R is the transition-probability
matrix of movements from node to node, v, is the external arrival rate to node i,
and 7 is the identity matrix.
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In our case,

r s

Y
0
0 1—p1 I3 0 ee ]
. __p2 0 p2 . ..
y={0|, and R=
. 1-py., O 0 Pn-1
0 l1-py 0 0 0
0
Solving (3.1) we get
N
Ai=v/ ij- (3.2)

j=i

Assuming A; <pu,; for i=1,..., N, we can use Jackson’s theorem [8] and write
down the steady-state distribution of the network, i.e.,

N
P(L,=n,, Ly=n,,...,L,=ny)=T1P(L;=n,), (3.3)
i=1

where P(L;=n,)=(1—A,/u,XA,/un,)" is the steady-state probability of having
n; customers in node i, as if it is an M /M /1 queueing system with arrival and
service intensities A; and u; (i=1, 2,..., N), respectively. It follows that the
average number of customers at node i equals

N

I Hp,») —y
Jj=i

and the average total number of customers in the system is

N N N
EL= ) EL,=vy 2{1/ Miﬂpj)—v]}]- (3.5)
i=1 i=1 j=i
Clearly, for N=1, EL=1v/(p,u, —v).

The mean total sojourn time of an arbitrary customer C in the system is given
by applying Little’s rule E[S]=EL /vy to (3.5), i.e.,

ELiz)‘i/[.Ufi"’\i]=Y/ (i=1,2,...,N), (3.4)

N N
E[s]= X {1/ uin,—v}}- (3.6)
i=1 j=i
Using (3.4) this can be written as
N N
E[S]= X |[(EL;+ 1) /| ] 1p; |- (3.7)
i=1 j=i
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Clearly, the average number of times C visits node i is (IT)_; p;)~", and on the
average the time he spends in node i at each visit is (EL; + 1) /u;. Hence, the
mean total sojourn time of C in the system is given by the sum of these
products. Observe also that the mean residence time of C in node i at each visit
is given by EL,/A;, whereas the total time he spends at i is

N
P«inpj) =EL;/y.
Jj=i
Finally, if in Yechiali’s model [13] we replace EX; with EL,/A; we obtain

N N
E[S] = Z (ELi/Ai)/gp)“ (3.8)

i=1

(EL,+1)/

4. Minimizing sojourn time

With the results obtained in the previous section our goal now is to find a rule
for ordering the nodes so as to minimize the expected sojourn time of a
customer in the system. We are looking for something similar to the simple
index-rule (EX,/(1 —p,) increasing) derived in [13] in as much as the optimal
placing of each node can be determined by its relationship to its immediate
neighbours. Unfortunately, there is no general simple index-form rule that
nullifies the need for a more involved combinatorial analysis. One simple case
can be solved by applying a direct interchange argument to eq. (3.6). Consider-
ing the stations in order 7y, =(1, 2,...,k, k+1,..., N) and comparing it to the
order w,=(1,2,...,k—1, k+1, k, k+2,..., N), where stations k and k +1
are interchanged, it readily follows that if u, =pu for all &, then the optimal
ordering is determined by increasing values of p,. Naturally, one would expect
such a result since if service times are the same it is better to try first the
stations with higher risk.

Another observation is that in the case where the time spent for service is of
no consequence (i.e., only times spent with the servers are important) then the
problem reduces quite simply to Yechiali’s model.

The problem of minimizing E[S], as given by eq. (3.6), turns out to be a
special case of the following general sequencing problem: Given N pairs of real
numbers (x;, y,), where x; €[0, +), and y, € (—», +x), find an ordering of
the pairs so as to

N
Minimize { Y lI/(zi)}, (4.1)
i=1
where ¥ is a monotone function and

!
Zi= ij‘l'y,. (4'2)
j=1
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Table 1
Sufficient conditions for optimality of
Non-decreasing ¥ Non-increasing ¥
Concave ¥ X < Xppq D Xy 2 xp 4 GD
and and
Vi < Vi1 Ye € Vi1
Linear ¥ Xy < Xppq (D Xy 2 Xpqq (V)
order of y’s unimportant order of y’s unimportant
Convex ¥ X < Xppp ) X 2 Xppq (V)
and and
Yi 2 Yi+1 Yi 2 Y41

Comparing the orderings 7, and mr, it follows that 7 is better than o, if and
only if

k
’I’( ij-i-yk

i=1

+v

k+1
ij+)’k+1)
j=1

k-1

k+1
SU| X X+ 201+ Vi

ij+Yk
j=1

+v : (4.3)

=1

We consider cases where ¥ is either concave or convex. This leads to a set of six
possible characterizations of ¥, and for each case the sufficient conditions for
r, to be an optimal sequence are summarized in table 1.

To show that these are indeed the conditions we observe that for all six cases

k+1 k+1
1[/( Z xj+Yk+1) -—1If( Z Xit Vet ~xk)

j=1 j=1

k+1 k
<1Jp( ij+)’k+ ) _q’( ij+yk+1)

j=1 . ji=1

k+1 k
<U7(ij+yk v XXyl
i=1 i=1

which is equivalent to (4.3).

Before showing that minimizing ES, as given by (3.6), is equivalent to (4.1) we
describe a few examples where one encounters the sequencing problem (4.1)
and (4.2).

Example 1
Consider the problem where N items, having processing times x; (i=
1, 2,..., N), are to be processed sequentially on a single machine. Suppose that
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upon completion, item i requires an additional service of length y; from an
independent server which is always available. The objective is to minimize the
sum of final completion times. Setting ¥(z;) = z; this is case (iii) whose solution
is to arrange the jobs in increasing order of x;, with no regard to the y; values.
That is, the optimal rule is shortest processing time first.

Example 2

Same problem as in example 1, but with discounting on the completing time,
ie., ¥(z,)=[1—exp(—az)l/a. Clearly, ¥ is concave and non-decreasing,
which corresponds to case (i).

Example 3

Each of N jobs of length x; has to be ready by time d;, otherwise a linear
charge C,- max(Zi_,x; —d,, 0) is levied for tardiness (C, > 0). Setting y, = —d,,
and ¥(z,) = C,- max(z,, 0), we see that ¥ is a convex non-decreasing function
(case (V).

We now show that our original problem is equiyalent to (4.1). Set Q =
Y, p;, x;= —log(p)), y;=loglu,;p,), so that z;=X;_,x;+y, Evidently, (3.6)
becomes

Z

E[S] = 1{1/[Q exp(z;) —v]} = g ¥(z,). (4.4)

)

Differentiating with respect to z, we get ¥'(z,) = —Q exp(z,)/[Q exp(z;) —y [
<0, and ¥"(z,) = Q exp(z,)Q exp(z,) +v]/[Q exp(z,) — v]2. Since we assume
that w; > A;, i.e., Q exp(z;) =u,IT),; p; > v, it follows that ¥"(z,;) > 0. That is,
V¥ is a convex monotone decreasing function (case (vi)). The conditions x, >x, ,,
and y, > y,,, are now translated into

DPrSDPpyr and WPy >ty Prsr- (4.5)

Result (4.5) establishes conditions for another special case: if p, =p for all k,
then it is optimal to sequence the stations by decreasing values of u,. Intu-
itively, if feedback probabilities are equal, one would arrange the stations in
increasing values of processing times (u; 1), since the first stations are repeated
most.

5. Extensions
Following [13] the results above can be extended to a case where feedback

occurs either internally to node i itself, with probability g;, say, or all the way to
the first stage, with probability f;, such that f; +g;,=1—p; (see fig. 2).
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Fig. 2. Two-way feedback.

If each internal feedback is to the head of the queue then, as the total time
that customer C spends in service at node i is Exponential with parameter
A;=u,(1—gq,), we can set p;=p,/(p;+f)=p;,/(1 —q,) and make the relevant
substitutions in the previous model, so that all the results of sections 3 and 4
hold with p; and £, replacing p, and p,;, respectively. Note also that p, /i, =
piii- If upon repeating a node customer C rejoins the end of the queue, then
the set of equations (3.1) takes the form

N
PiAy = X k=7, (5.1)
j=2
pl—ll\l'—l_(l—ql)/\l:‘)’ i=2, 3,...,N.
The solution of (5.1) is
N
A= (v/p;)klll [(1 - ae)/pi]- (5.2)
=i

As before, EL; =\, /lu; —A;), EL =YX EL,, E[S]=EL /y. Setting now

N
Q= I:I1 [p/(1—a;)], %= —log|p;/(1~q;)], yi=log(n:P:),

eq. (4.4) holds in this case too, and all the results of the previous section apply
here as well. In particular, the sufficient conditions for optimality, x, >x, .,
and y, >y, are now translated, respectively, into

/(1= a,) <ppr /(1 ~qy1) and @ Dp > Rpi1Prir-
Another simple extension to our first model is the addition of a “general

Y P P P
Ha b Wy . Ly L8
1- 11-P 1-P,

Hof— >

Fig. 3. A model with a “general feedback™ node.
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feedback” node, i.e., a node through which all fed back traffic must pass (node 0
in fig. 3). For example, in some production processes if the product is found
defective in stage i, it is moved to a special “station” where it is dismantled so
that its parts may be recycled.

It can be verified that (3.2) holds in this case for 1 <i <N, and that

N

The expected total sojourn time is now obtained by adding eq. (5.4) below to eq.
(3.6), where

ELO/')':[]-—ﬁpi]/[(ﬁpi)(“o+7)_7} (5.4)

Equation (5.4) is obtained either directly by setting ELy=Ao/(uq— Ao), or by
calculating EL,/y =[(ELy+ 1)/poll1/Q — 1, where Q=TI;p;. The last
equation follows since 1/Q is the expected number of times customer C passes
through channel N, and [1/Q — 1] is the expected number of times he visits the
general feedback node, where his mean sojourn time per visit is [(ELy + 1)/ ].
It should be noted that (5.4) is independent of the order of the nodes (as the
sojourn time in node i is independent of the order of nodes i +1 to N in the
original model). Therefore, an optimal order in the original model will hold
here too. A combination of the above two extensions (fig. 2 and fig. 3) can of
course be made with our previous analysis quite simply applied.

Appendix

The correlation between the number of customers found in the system by an
arbitrary arrival to an M /G /1 queue, and the number of customers he leaves
behind him upon departure

Consider a customer C who joins a stationary regular M/G /1 queue with
arrival rate y and service times V. Let I denote the number of customers in
front of him, and let J denote the number of customers that C leaves behind
him upon service completion. We wish to calculate the correlation coefficient
between these two random variables. If I =i, then C resides in the system a
total time of S=R;+ LI)_,V}, where R; is the residual service time of the
customer being served given that there are /=i customers present (Ry=V),
and V; ~ V. Since all customers that are left upon departure have arrived during

the time S, we readily have,

(vt)’
j!

E[1-]]=% Z:ijqr,.f:exp(—~yt) d((V* « R)()), (A1)
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where {7 ;}7_, is the stationary distribution of L, the number of customers in the
system, and (VV*' * R,)(t) is the convolution between i service periods and the
residual time of the customer in service. Now, E[I-J]=yLm[5t d
(V* » R)t), and since R, is independent of the V}’s, this reduces to

E[I-J] =y{E[L2]E[V] + f}m,.E[R,.]}. (A.2)

i=0
It was shown by Mandelbaum and Yechiali [11] that
1 —
1- Z Wk]’
yqr
where p = yEV. Hence,

ptr-n-pel2 <0-n £ E |
i=0 \k=i+1
—pE[12] + (1-p) £, LD
k=2

E[R;] =

=pE(L?) + l—;—p—E[L(L —1)] =3{(1 +p)E[L?] - (1 —p)EL}.
(A.3)

As the marginal distributions of I and J are the same as that of L, the
correlation between I and J now becomes

E[1-7]-E?[L]

E[L?] —-E*[L]

{(1+p)E[L?] ~ (1-p)E[L]} /2~ E*[L]
E[L?] - E?[L]

It is well known [7] that for the regular M /G /1 queue the generating function
of L is given by II(2) = ¥5_m;z/ = STy(1 —2)], where S[-]is the LST of S, the
sojourn time of a customer in the system. Therefore,

E[L(L -1)] =y2E[S?]. (A.5)
It is also known (cf. Kella and Yechiali [9]) that
yE[V?3] s AE[V?]
31-p) 1-p
where W, denotes the waiting time before service, and

E[W,] =AE[V?]/2(1-p)) (A7)

Corr[I,J] =

(A4)

E[w] - 5[] (4
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(cf. Kleinrock [10]). Using S = W, + V' together with egs. (A.5), (A.6) and (A.7),

we arrive at
ME(WV?3 ME[V?
3(1-p) 1-p
where E[L]=AE[W,]+p. Substituting E[L] and E[L?] in (A.4) gives an
explicit formula for Corr[I-J].

For the M/M /1 queue, due to the memoryless properties of V, the condi-
tional expectation of J is linear in 7, i.e.

E[J|I=i] =y(ER,+iE[V]) =p(i + 1).
Therefore,

+1|E[L] +NE[V?], (A.8)

o(I)
where o(X) denotes the standard deviation of a random variable X. Clearly,

(A.9) could be calculated from (A.4) by substituting E[L]=p /(1 —p) and
E[L?]=p(1 +p)/(1 —p)*

Corr[1,J] = (A.9)
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