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ABSTRACT

Optimal dynamic control and scheduling of the server’s
visits to the various channels in Polling Systems are
difficult problems that only recently have been suc-
cessfully attacked (cf. Browne & Yechiali [1988a],
[1989a]). The control problem is ‘whick of the K
channels to visit nezt’ when the server exits a given
channel, and how to achieve optimal schedules based
on the dynamic evolution of the system.

In this paper we exhibit a class of optimal and ‘fair’
policies which preserve the cyclic nature of polling
systems by guaranteeing a visit to every channel in
each cycle (Hamiltonian tour), and at the same time
be adaptive to the dynamically changing environment.
These policies are K-step look-ahead dynamic proce-
dures which turn out to be extremely simple index-
type rules in a form amenable to direct implementa-
tion.

We first consider systems with Exhaustive, Gated,
Binomial-Exhaustive, Binomial-Gated, Bernoulli-
Exhaustive and Bernoulli-Gated service disciplines and
derive the control rules that minimize dynamically
the expected duration of each new cycle, with the
idea that by reducing the durations of cycles, wait-
ing times are also reduced. We next analyze systems
with ‘switching times’ between channels, and show
that, in all cases, the optimal policies follow from a
general scheduling principle. This principle is further
used to control systems with mized types of channels.

We then treat a system where each channel has a
buffer of unit size, and derive the dynamic optimal
control that minimizes the costs incurred per cycle.
Such systems resemble the classical K-machines re-
pairman problem.

Finally, we present and study the newly introduced
Globally-Gated cyclic service scheme (Boxma, Levy
& Yechiali {1990]), and the (globally-gated) Elevator-
type policy (Altman, Khamisy & Yechiali [1990]). For
the former we show that the long-run minimal cost is

achieved by dynamically optimizing each Hamiltonian
tour individually. The Elevator-type policy is shown
to be the ‘fairest’, in the sense that the expected wait-
ing times are equal for all channels. This is the first
discovered non-symmetric scheme that achieves such
a goal.

1. INTRODUCTION

Models of polling systems have important applica-
tions in telecommunication systems, multiple access
protocols, local area computer networks, multiplex-
ing schemes in ISDNs, reader-head’s movements in
a computer’s hard disk, flexible manufacturing sys-
tems, road traffic control, etc. (See, for example, sur-
veys of Grillo {1990], Takagi [1990], and Levy & Sidi
[1990].) As such they have been the subject of ex-
tensive research in recent years, most notably in the
context of cyclic queues (see Cooper & Murray [1969)],
Cooper [1970], Eisenberg [1972}, Watson [1984), Tak-
agi [1986]), Boxma & Groenendijk [1987]). The focus
of much of this research has been on evaluating per-
formance measures of fixed-template server’s routing
schemes, usually with the Exhaustive, Gated or Lim-
ited service policies. Optimal server routing proce-
dures were only recently studied and dynamic policies
derived (Browne and Yechiali [1988a], [1989a]) for sys-
tems where either all channels are of the Exhaustive
type, or all channels follow the Gated regime. Proba-
bilistic (yet static) service disciplines - the
Binomial-Gated (Levy [1989]) and the Binomial-
Exhaustive (Groenendijk, see Boxma [1989]) — were
proposed to help deal with the control of polling sys-
tems by assigning different service proportions to dis-
tinct channels. Other ‘fractional’ service policies are
the Bernoulli-Gated and the Bernoulli-Exhaustive in-
troduced in Browne & Yechiali {1989b].

In all of the above systems it is assumed that each
channel’s buffer size is unlimited. In some applica-
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tions buffers are of unit size (Browne & Yechiali

[1988b]). Such systems resemble the classical K-machines

repairman problems and are of considerable interest.
Recently, the Globally-Gated regime was proposed
and analyzed (Boxma, Levy & Yechiali [1990]), fol-
lowed by the Elevator-type polling mechanism (Alt-
man, Khamisy & Yechiali [1990]). These two new
regimes possess characteristics that allow for tractable
and efficient control of the systems.

In this paper we concentrate on deriving optimal dy-
namic control policies for efficient and ‘fair’ opera-
tion of polling systems. We consider ‘homogeneous’
systems with the same service discipline at all chan-
nels (although with different parameters) as well as
systems with a mized set of channels; systems where
buffer sizes are limited, as well as systems where buffer
capacities at the various queues are unlimited.

The dynamic control problem in all of the various con-
figurations is ‘which of the K queues to serve next’
when the server exits a particular channel (for static
optimization of polling systems, see Boxma, Levy &
Weststrate [1990], and Boxma [1991]). A common
measure of effectiveness is the weighted sum of ez-
pected waiting times of jobs in the system. In or-
der to minimize this measure one may try to for-
mulate a (semi) Markov Decision Process, calculate
the multi-dimensional one-step transition probabili-
ties as well as the one-step expected ‘cost’ (based on
derivations in Levy & Yechiali [1975) and in Yechiali
[1976]), and write down Bellman’s optimal equations.
This has been accomplished (see Browne & Yechiali
[1988a}, [1989a]), but it appears that there is no sim-
ple tractable solution to these equations. The idea
then is to consider a related measure of effectiveness
and to optimize systems’ performance over this cri-
terion. Such a criterion is the minimization of cy-
cle times. Implicitly, if cycle times are reduced, then
waiting times may also be reduced. Our objective will
therefore be to develop dynamic control policies that
minimize the ezpected duration of each cycle based on
the dynamic evolution of the system. We require that
each cycle will be composed of a Hamiltonian tour, in
which every channel is visited ezactly once — thus pro-
viding a degree of fairness between the channels — but
the order in which channels are visited may change
from one cycle to the other depending on the dynamic
changes in time. Surprisingly, it turns out that this
criterion leads to very simple index-type rules in a
form amenable to direct implementation.

In section 2 we describe the basic (cyclic) polling
scheme, and discuss the various service disciplines.
We present previous results on system’s control when
all channels follow the same service discipline: all

Gated or all Exhaustive. In section 3 we develop
the dynamic rule to minimize cycle times under the
Binomial-Gated service mechanism. Section 4 deals
with the Bernoulli-Gated service procedure, while
switching times are introduced in section 5. Sec-
tions 6 and 7 treat the Binomial-Exhaustive and the
Bernoulli-Exhaustive service regimes, respectively,
while in section 8 a general scheduling principle is
presented which allows the control of systems with a
mized set of channels. Systems with a unit-buffer at
each channel are studied and dynamically optimized
in section 9. The Globally-Gated policy is introduced
and optimized in sections 10 and 11. We show that
for this procedure, the long run minimal cost is in-
deed achieved by optimizing each cycle individually
and determining the Hamiltonian tour to be traversed
according to a simple scheduling rule used in mini-
mizing weighted sum of completion times in a K-job
single-processor scheduling problem. Section 12 is de-
voted to a (globally-gated) Elevator-type polling pol-
icy. It is revealed that this policy yields the same
mean wailing time in all channels. No other non-
symmetric scheme is known to exhibit such a ‘fairness’
phenomenon.

2. POLLING SYSTEMS, SERVICE REGIMES
AND DYNAMIC CONTROL

A polling system, or cyclic queue, is composed of K
queues, (channels) labelled ¢ = 1,...,K. Jobs ar-
rive at channel 7 in a Poisson stream of intensity A,
independently of the other channels. There is a sin-
gle server in the system which moves from channel
to channel in a ‘cyclic’ fashion, i.e., the server stays
at channel ¢ (1 = 1,...,K) for a length of time de-
termined by the queue discipline and then moves to
channel i + 1. Upon ‘completion’ of channel K, the
server reverts to channel 1 and so on, hence the name
‘cyclic’.

. Each job in channel i carries an independent random

service requirement distributed as V; having distribu-
tion ful‘lction Gi(-), and Laplace-Stieltjes Transform
(LST) V4(:), ¢ = 1,..., K. The queue discipline deter-
mines how many jobs are to be served in each chan-
nel. The disciplines most often studied are the Ez-
haustive, Gated and Limited service regimes. To il-
lustrate these regimes, assume the server arrives to
channel ¢ to find m; jobs (customers) waiting. Under
the Ezhaustive regime, the server must service chan-
nel ¢ until it is empty before he is allowed to move
on. This amount of time is distributed as the sum of
m; ordinary busy periods in an M/G;/1 queue. Under

. the Gated regime, the server gates off those customers



already present upon arrival to channel ¢, and serves
only them before moving on to channel i+ 1. As such,
the total service time in channel : is distributed as the
sum of m; ordinary service requirements. Under the
Limited service regimes, the server must serve either
1 job, at most k; jobs, or deplete the queue at channel
i by 1 (i.e., stay one busy period of M/G;/1 type).

In the Binomial-Gated, Binomial-Exhaustive,

Bernoulli-Gated or Bernoulli-Exhaustive regimes, chan-

nel ¢ is characterized by a parameter p; (0 < p; < 1),
which determines the ‘fraction’ of service given to this
channel. Specifically, let Ny(m;) be a Binomial ran-
dom variable with parameters m; and p;. Then, ac-
cording to the Binomial-Gated (BG) policy the server
resides in channel ¢ until he serves N;(m;) customers,
while according to the Binomial-Exhaustive (BE) pol-
icy he stays there for N;(m;) busy periods. That is,
under the BE policy, when the server exits channel
¢ he leaves behind him m; — Ny(m;) waiting jobs,
whereas under the BG policy he leaves behind him
m; ~ Ni(m;) + A; customers, where A; is the number
of new arrivals to channel ¢ during the visit time of the
server. Clearly, the Gated and Exhaustive regimes are
special cases of the BG and BE policies, respectively,
when p; = 1 for all 7.

The Bernoulli-Gated and Bernoulli-Exhaustive disci-
plines differ from their Binomial counter-parts in that
the decision whether to serve customers in channel
i or not, is probabilistically made before the server
‘switches into’ the channel. With probability p; he en-
ters the queue, and with probability 1 — p; he skips it.
When the decision is to enter and render service, then
according to the Bernoulli-Gated (BRG) regimes, ser-
vice is completed only to those m; customers present
at the moment of decision, whereas according to the
Bernoulli-Exhaustive (BRE) scheme, the server re-
sides at queue i for m; busy periods. (Note that in
an ‘ordinary’ Bernoulli service mechanism the server
‘flips a coin’ after each service completion, whereas in
our Bernoulli Gated and Exhaustive procedures he
flips a coin only once, before switching into the chan-
nel).

Typically, the server takes a non-negligible amount
of time to switch between channels. These switching
times are assumed random and complicate the analy-
sis. One important aspect of the distinction between
the Binomial regimes and the Bernoulli schemes be-
comes evident when non-negligible switching times
are involved. In the Bernoulli schemes those ‘over-
head’ costs are saved if the decision is not to enter
the channel at the current cycle.

Dynamic optimal control of cyclic polling systems where

service is either of the Gated-type everywhere, or of
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the Exhaustive-type at all channels was only recently
achieved (Browne & Yechiali [1988a}, {1989a]). Sup-
pose that at the beginning of a cycle the state of the
system is (ny,ng,...,nk), where n; is the number of
jobs waiting in channel i (1 < ¢ < K). Assume further
that switching times between channels are negligible.
The objective is to choose a path, or Hamiltonian
tour, through the queues so as to minimize the ex-
pected time of traversing this path. It was shown
for both service disciplines — the fully Gated and the
fully Exhaustive — that this measure of effectiveness
is minimized if the channels are ordered by increasing
values of the indez n;/);. This is a surprising result,
as the index n;/); does not include the service times
at the various channels. It is surprising as well that
the same index-rule holds for both service regimes (al-
though, obviously, the duration of a Gated-type cycle
that starts with (n1,n2,...,nk) differs from its Ex-
haustive counter-part starting with the same system-
state).

The dynamics of the control are such that at the
end of each cycle a new system-state is observed, say
(n1,n3,...,n%), and the server follows a new path
governed by a new order: increasing values of n}/);,
etc. This is an extremely simple rule which can be di-
rectly implemented. Moreover, suppose that, for one
reason or another, there are systems where the objec-
tive is to mazimize the duration of each cycle. Then,
the index-rule that determines the order of visits to
the channels is simply reversed: the server completes
a Hamiltonian tour determined by a decreasing order
of n;/A;. Extended versions of the above results for
a system with customer’s feedback are presented in
Browne [1990].

3. MINIMIZING CYCLE TIME UNDER THE
BINOMIAL-GATED POLICY

In this section we extend the previous results on fully
Gated and fully Exhaustive systems to the Binomial-
Gated (BG) service policy. We calculate the expected
duration of a cycle and determine the optimal control
that minimizes each new cycle’s duration.

Suppose, as before, that at time 0 the state of the
system is (ny,n2,...,nx), where n; is the number of
customers present in queue i. Suppose also that the
server visits the channels following the order (pol-
icy) mo = (1,2,...,K), and the service discipline is
Binomial-Gated. Suppose (for the time being) that
switching times are negligible. Let X; be the server’s
sojourn time in channel j if he finds there m; cus-
tomers upon entering the queue. Then, the LST of
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X is given by (see Browne & Yechiali [1989b]):
Xy(s) = [p;V3(8) + (1 = p)I™ S5-a (Nsp5(1 - ‘71(8))()1),

i-1

where Sj_1 = ), X; denotes the exit time of the
i=1

server from channel j - 1.

From Eq. (1) it readily follows that
E(X;) = n;p;E(V;) + b;p5E(Sj-1)  (2)

where b; = AjE(V;) is the average amount of work
flowing to channel j per unit time. By adding Z;_y =
E(Sj-1) to both sides of Eq. (2) we obtain a system
of difference equations

Z;-(1 +ijj)Zj;1 =n;p;E(V;), (Zo=0) (3)

whose solution is

J J
z; =Y pmEWV) [ (142:00)), G=1,2,...,K).
i=1

r=i41

' 4
Result (4) may be explained intuitively as follows:
piniE(V;) is the expected sojourn time of the server
in queue ¢ due to the original n; jobs present at time 0.
During that period of time one expects
Ais1ini E(V;) new arrivals to channel i+1, but only a
fraction p;4y of them will be served, requiring
Pit1bip1 pini E(V;) time. Thus, the total expected de-
lay in channels ¢ and ¢ 4+ 1 caused by the original »;
customers in queue ¢ will be pin; E(Vi)(1 + pig1bis1).
Proceeding in this manner it follows that the total
expected delay caused to the cycle by the n; initial

K
customers in channel ¢ is pini E(V;)[ II (1 + peb,)).
r=i+1

Therefore, the expected total cycle time, following
policy 7o, is the sum of the expected delays caused
by all initial customers present at the start of the cy-
cle

K K
Zg = C(mo) = ) pmiE(VR) ] (14 pebs)] . (5)

=1 r=i+1l

Define a; = pini E(V;), and o4 = pib;. a; is the ini-
tial expected processing time requirement at channel
i, called its core, while a; is the expected growth in
service requirement at channel ¢ for every unit time
delay in performing service to channel ¢. Thus,

K K
Clmo) =Y ail J] 1+ (6)

i=1 r=i+l

Similarly, if the server polling sequence is determined
by the policy = = (7(1),7(2),...,7(K)), then the mean
cycle length is

K K
Cm) =Y amyl [[ Q+ewm)). (0

i=1 r=i41

Applying an interchange argument it can be shown
(Browne & Yechiali [1990]) that Eq. (7) is minimized
if the channels are visited following a sequence deter-
mined by ordering the channels via increasing values
of a;/a;. We therefore conclude

Theorem 1. Suppose that at time 0 the state of the
system is (ny,n3,..,nx). Then, for the Binomial-
Gated policy, the cycle time is minimized if the server
visits the channels in an order determined by increas-
ing values of ni/ ;.

Proof: a;fa;= piniE(V3)/(pibi) = ni/Xi. Q.E.D.

Remark It is interesting to note that the optimal
policy is independent of the p;’s and E(V;)’s, and it is
the same as the optimal policy for the regular Gated
regime (see section 2 above). A further insight into
these surprising results will be gained in section 8,
where we derive a general optimization principle for
a wide class of scheduling problems.

4, CYCLE TIME UNDER THE BERNOULLI-
GATED SCHEME

Consider now the Bernoulli-Gated service discipline,
If m; customers are present at channel j when the
server reaches the station, then his sojourn time there
is

my
Y. Vi, with probability p;
X i= k=1

0, otherwise

where Vj, are all distributed as V;; and are indepen-
dent. Therefore, conditioning on the number of (Pois-
son) arrivals during the time S;_;, one can show
(Browne & Yechiali [1989b]) that the LST of X is
given by:

i(s) =23 [74()] ™ 81 (o1 = Fs(o) + (1= py),

(8)
from which it readily follows that

E(X;) = piniE(V;) + pib;E(Sj=1) . (9)



Writing, as in Eq. (3), Z;—(1+p;b5)Zj-1 = pin;E(Vj),
we get that Eqs. (4) and (5) hold in this case as well,
with the same core a; = pin;E(V;) and growth rate
o;. That is, the same order of visits — by increasing
values of n¢/); — minimizes the cycle time under the
Bernoulli-Gated regime.

5. SWITCHING TIMES

The above analyses need be only slightly modified to
account for switching times. Assume that a direct
switch from station ¢ to station j takes time 8; + Tj,
where #; is the time to switch out of queue ¢ and T
is the time to switch into channel j (T; and §; are
independent of each other and of X, T; and 6; for
all j # ¢). Let Y; denote the total server occupation
time with channel j during one cycle, so that now the

]
exit time from channel j is §; = ), ¥; with mean
i=1

Z; = E(S;). Assuming that the customers are gated
only after the server switches into a channel, then, for
the Binomial-Gated,
NJ(';‘:)
Y;=Ti+ ), Vau+6;,
k=1

where mj = nj + Aj(Sj~1 + Tj), and A;(T) denotes
the number of Poisson arrivals to channel j during a
time interval of length T.

It follows that

Y;(s) = 85(s)lpsVi(s) + (1 - p3)I™-
- 8- (Xipi(1 = V() Ty(s + Ajps(1 - ‘7:'(8)))(,10

and

E(Y;) = pin;E(V;) + pib;E(Sj-1)+

F (4o E(T) + EGy . D

Upon identifying p;n‘E(Ve) + (1 + p.'b,’)E(Td + E(e;)
as the ‘core’, ai, and psb; as the ‘growth rate’, a;, we
can write, for the Hamiltonian tour 7o = {1,2,,..., K},

K
Zx = Y [pinsE(Vi) + (1 + pibi) E(T:) + E(6:)}

i=1

{ i1 (1+2:5)]

r=itl

(12)

From our previous principles we obtain
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Theorem 2. The order of visits that minimizes cycle
time in a Binomial-Gated policy with switching times
is determined by an increasing order of

pini E(V3) + (1 + pibi) E(T3) + E(65)
pib;

(13)

Now, for the Bernoulli-Gated with switching times
and routing policy 7g, suppose that the coin is flipped
after leaving channel j—1, and before entering station
j. Then,

‘/jk +'0,1'1

nj+A4;(5;-1+Ty)
it
k=1

Y;= with probability p;

0, otherwise ,

Assuming, as before, that the customers are gated
only after the server switches into a channel, then
(see Browne & Yechiali [1989b]),

¥i(s) = ;s [05()Vi()™ Ti(s + 251 = Vi(s)))-
S =- Vi) +(1-p5)  (19)
E(Y;) = pi[E(6;) + n;E(V;)+
+ (1 + b)) E(T;) + b;E(S;1)) (15)

Thus,

Zj— (14 pjbj)Zj— =
= pi[n;E(V;) + (1 4 b;)E(T;) + E(65)] ,

which results in arranging the channels in increasing
order of

(16)

b;
It is interesting to note that the policy dictated by
Eq. (17) is identical to the optimal policy derived for
the pure Gated regime. Note also that the (small)
difference between result (13) and policy (17) is due
to the fact that in the derivation of Eq. (13) the
server switches with probability 1 to channel j and
only then the value of the random variable N;(m;) is
realized, whereas in the derivation of Eq. (17) the coin
is flipped before the server switches into the channel.
Thus, while the growth rate p;b; is identical for the
Binomial-Gated and the Bernoulli-Gated regimes, the
cores are different. For the former the core is a; =
E(Ty) +pi[n E(V;) + biE(T")]-I- E(o.'), whereas for the
latter the core is p;[ E(T;)+n: E(V;)+b,E(T:)+ E(6;)).
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6. THE BINOMIAL-EXHAUSTIVE POLICY

Consider now the Binomial-Exhaustive regime where
the server, if he finds m; customers in queue i, stays
there until the queue length is depleted by Ny(mq)
customers (i.e., for Ny(m;) busy periods), where Ny(m;)
is Binomially distributed with parameters m; and p;.
This is the Binomial-generalization of the Exhaustive
class of disciplines.

Suppose first that there are no switching times. Then,
using the same notation as for the Binomial-Gated
case, we derive

~ mi -~ s
Kis1m) = Yo Bo(T) pa - o

m=0

= [p;Bi(s) + (1 — ps)I™ = R]™(s)

where Bj is the length of a regular busy period in
an M/G;/1 queue, and Bj(s) is its LST with mean
E(B;) = E(V;)/(1-b;). Under policy 7o the number
of customers present in channel j when the server
enters the channel is m; = nj + Aj(S;-1). Hence,

Ri(s] S3-1) = R (s) - exp{-2sp5(1 — Bj(8))S5-1}

from which we derive
Xi(8) = psBi(s) + (1 = ™ Sjma (Agp5(1 = 5;’(83))

\_ npiE(Vy) | pibiE(Si-1)
E(X")- l—bj + 1-b; ’

(19)

We can now identify pjn;E(V;)/(1-b;) as the ‘core’
of channel j, and pjb;/(1 — b;) as its ‘growth rate’.
Correspondingly, it is immediate that the -expected
cycle length has the evaluation

L (nmEWN [ T peb
Zx = (nspi ) (1 + 0y ) ,
g 1-b r=1:,1" 1 1-b,
(20)
and that the optimal policy is to, once again, order
the channels in an increasing order of n;/As, which is

identical to the optimal policy for the Binomial-Gated
and again independent of p; and E(V;).

When switching times are incurred, utilizing previous
notation, we can readily modify the above by observ-
ing that Y;, the server’s occupation time with channel
j, can be written as

Ni(my)
Yi=Ti+ Y, Bux+0;
k=0

where mj = nj + A;j(Sj-1 + T;), and Bj are dis-
tributed like B;. Hence,
Y(s | Tj, Siz1) = 85(s) R}’ (s) exp{~sT;}-

- exp{-Aj(Sj-1 + T)ps(1 - Bi(s))}

so that

Yi(s) = 5{(8)[1’555(8) +(1 - pd™-
: {:‘-1(%?3(1 - By(s))) (21)
-Tj(s + Aspi(1 - Bj(9)))

and

E(Y;) = pin i E(V;)/(1 - bj)+
+[pjbi/(1 = b))E(Sj-1)+ (22)
+[1+ pbi/ (1 — b))E(T;) + E(6;) -

Similar to the previous derivations, this leads to a
mean cycle time

K
Zx = E{[PiniE(Vt’) + (1 = bs + pib) E(Ti)+

=1
K
+ (1 - b)E(8:))/(1 - b:)} { H ("11+ —pl:f')] '
reitl (23)

We conclude

Theorem 8. The optimal sequence of visits by the
server is determined by arranging the queues in an
increasing order of

pini E(V2) + (1 = ba + pibi) E(Ty) + (1 — bi) E(6:)
pib;

7. THE BERNOULLI-EXHAUSTIVE
SCHEME

Under this schere, if the server enters channel j and
finds m; customers, he resides there for m; busy pe-
riods. As before, the decision whether to enter or
not is governed by a Bernoulli trial with probability
of success pj. As mj = nj + A(S;-1), then, without
switching times, we have

my
S, Bjx , with probability p;
X;={ k=1

0, otherwise ,



so that
Xi(9) = pi(By(s)™ 831 (M1 - Bi(a) + (1 - 1?2)45
This leads to

E(X;) = pj{n;E(B;) + A E(Bj)E(S5-1)] =

2

= 725 (nsE(V) + biE(Ss1), (25)
and

7. - (14 Pib) = 2ansE(VS)

I 1-b; 1-b; ’
Identifying

_ pinE(V)) __ psb

=5 and a’—l—bj’

the optimal order of visits is determined by increasing
values of ai/a; = nif i, ezactly as in the case for the
Binomial-Exhaustive regime without switching times.

If we take into account switching times, we write
A;(Si-14+T
v {T,-+E;.";I i(Si-1+ :)th+0j’
,‘ ==

with probability p;
0, otherwise

so that
Fy(s) = ps [Fi()BANMTy(o + 251 - Byta)))
i1 - B +(1-pp)  (20)

and

E(V;)
1- bj

BYp) = by [B0) + niT ot

b; N ]
+(1+ i‘:—b;)E(T:) + 1= bjE(Sj-x) .

(27)
Setting
o = p: n;E(V;) + E(T;) + (1 - b;)E(6;)
i=Pj 1~ bj L]
and
= P
R ey P

the optimal sequence is determined by the index

n;E(V;) + E(T;) + (1 — b;) E(6;)
b;

a

ol 43y

|

which is identical to the case with (fully) Exhaustive
regime.
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8. UNIFICATION VIA A GENERAL PRIN-
CIPLE AND APPLICATION TO MIXED
SETS OF CHANNELS

Consider K tasks that must be sequentially performed
in a non-preemptive manner by a single processor.
All tasks are available at time 0 (as is the proces-
sor). Task i carries a random initial processing re-
quirement of expected size a;, called its core, but
if processing is delayed until ¢, the ezpected require-
ment has grown to a; + a;t (i.e., a; is the expected
growth per unit time delay in performing task i) i =
1,...,K. Browne and Yechiali {1990} showed that
the dynamics of this process is such that if the tasks
are performed following the policy = = (7(1),7(2),
...,7(K)), then the total time to process all K tasks
has expectation

X K
C(T) =Y ans) H 1+ axm) »
i=1 ridl

which is minimized when following the permutation
based on increasing values of the critical quantity
a;/a;, the ratio of each task’s core to its growth rate.

Our representation of the cycle times for the above
four service disciplines in terms of cores (@) and growth
rates (a;) allows us to use this principle and immedi-
ately solve for cases with Mized channels,
where the service discipline is not common for all
channels, but rather, some channels require a pure
Exhaustive regime, others — a pure Gated mode, and
others — one form or other of ‘fractional-type’ disci-
pline. In addition, some channels may require switch-
in or switch-out times or both. The above general
scheduling principle leads directly to

Theorem 4. The mean cycle time is minimized if the
channels are arranged by increasing values of a;/a;,
where, if a channel is Binomial-Exhaustive, then

ai = [pins E(V3) + (1 = bs + pebi) E(T3)+
+ (1 - b:)E(6:))/(1 - bs)
a; = pibif(1 - b)
whereas if it is Binomial-Gated,
a; = ping E(V;) + (1 + pibi) E(T) + E(6:)
a; = pib; .
If a channel is Bernoulli-Gated, then
a; = pilni E(Vi) + (1 + bo) B(T:) + E(6:))
a; = pibi ,
whereas, if it is Bernoulli-Exhaustive,
a; = pi[ni E(Vi) + E(T) + (1 - b:) E(6:)}/(1 - b3)
o = pibi/(1 = bs) .
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9. SYSTEMS WITH A UNIT-BUFFER AT
EACH CHANNEL

Suppose that each channel can store at most one re-
quest at a time and all arrivals to a channel that find
the ‘buffer’ full (occupied) are lost to the system for
ever. An occupied channel reopens only upon the
completion of the occupier’s service request. Equiv-
alently, we may consider a system that takes an ex-
ponentially distributed amount of time to generate
a new service request at each queue after the ser-
vice to the previous job has been completed. As
such, it is similar to the K machines repairman prob-
lem whose optimal dynamic service schedule is be-
ing sought. If interarrival and service times at all
channels are exponential and identical among chan-
nels (a so called ‘symmetric’ system), then the prob-
lem can be formulated as a simple continuous-time
Markov chain and the system-state stationary prob-
abilities are easily calculated. However, only recently
have Takine, Takahashi & Hasegawa [1988] provided
a probabilistic analysis of an asymmetric system with
non-exponential service times. Here our goal is to de-
rive the dynamic rule to control the server’s route if
he is allowed to choose his path, or schedule, across
the channels at the beginning of each new cycle so as
to optimize a measure of system performance. We as-
sume the server has full system state information, i.e.,
‘knows which channels are occupied at every decision
epoch. Admittedly this assumption might nullify the
application to local area networks (see Takagi [1986])
unless we assume further that token passing delays
(switching times) are insignificant relative to packet
transmission (service) times. Browne and Yechiali
[1988b] derived optimal dynamic policies for the semi-
symmetric case (identical arrival rates with arbitrary
and distinct service times) which can be used to pri-
oritize the channels and could thus be used in con-
junction with general polling tables, as discussed in
Baker and Rubin [1987].

In Browne and Yechiali’s model the following cost
structure is imposed on the system: a holding cost at
rate $h; per unit time a type i job is held in queue, and
a penalty cost consisting of a payment of $g; per type
job lost to the system, ¢ = 1,...,K. The penalty cost
could denote the entrance fee to a secondary transmis-
sion network that accepts the overflows of the primary
system.

To ease exposition and illustrate some basic ideas, we
will first analyze the system with zero switching times
6:;=T;=0 vi).

Let ¢i(a,t) denote the total cost incurred in channel
i in the (time) interval (a, t] without channel i having

been served in the said interval.
Let Q:(a) denote the state of channel i at time g, i.e.,

1 if buffer ¢ is occupied at a
Qi(a) =

0 if buffer ¢ is vacant at @ .
As

E(ci(a,t) | Qi(a) = 1) = [hi + Migi)(t —a)  (28)

and
E(ci(a,t) | Qi(a) = 0) =
t
= / )“.e-—x.-(c—a)[h‘_ + Agsl(t - 2)dz
— e—Xi(t-a)
= [hi + Aigi] ((f -a)- 1——6—,\'———) , (29)
we have

E(ci(a,) | Qi(a)) =
1- e-z\‘(t—a)

= the+ dagd (- ) - 25— Qu(@)) -

Consider a special instant where the system starts at
time @ = 0 with all buffers full, i.e., Q(0) = (1,1,...,1)
= 1. (We restrict our attention to the class of Non-
Idling as well as Nonpreemptive policies.) By the
assumptions above, the cycle time, C, is obviously
K
C = ¥ V;, which is invariant with respect to policy.
i=1
Consider now policy mp = (1,2,...,K). Under m
i
channel i will be occupied until time Y, V;, where-
=1
upon its buffer frees up at its service completion, so

that @;( 3 V;) = 0. We can therefore use equations
=1

j=

(28) and (29) directly (with A; = A Vi) to evaluate
the expected total cost incurred by channel i under
To as

E(ci(0,C) | Q(0) = L,m0) =

=E {(h.- + ,\g.-)iVj + (hi + Agi):

j=1

' [(C - ZVJ) L e"‘CI\‘EL.Vs)] }

=1

= (hi + Ag) [E(C) - %] +

¢ (hetde) il %

j=i+1



Therefore, the total expected cost incurred by the sys-
tem following tour 7 is

K
E[Zc.-(o,c*) 1 Q(0) = ;,m,] =

=1

- (5@~ -) S(hit g+ (30)

=1

+E (hg + z\g.) H V,(A)

=1 =i+l

As obviously only the second term in equation (30) is
affected by policy, it is that term we need to minimize.
By applying an interchange argument, Browne and
Yechiali {1988b] showed:

Theorem 5. The tour of minimal expected cost is
prescribed by the policy #* which orders the channels
in decreasing values of the index

aDit Agi (31)
1-Vi(2)

Remarks
If A — 0 then the index (31) reduces directly to the

classical ‘cu rule’ which orders channels by decreasing -

values of the ratio: [cost rate/expected service time].
This follows since

lim A hi+Agi _ M

NoT1-V(0)  E(V)

However, for A > 0, while h; + Ag; can be considered
the effective cost rate per unit time for a serviced ar-
rival (with no other costs being incurred), 1 - Vi()) is
the probability of at least one arrival during a type ¢
service. As such, r* is sensitive to all the moments of
V; (assuming G;(-) is determined by all its moments)
while the cu rule depends only on E(V;).

Switching Times

Suppose, as before, that the server needs an indepen-
dent random time T} to switch in, or set-up, channel
i prior to service, and an independent random time
#; to switch out of channel i post service there. We
further assume that the channel (or buffer) frees up
at termination of service. Then, applying similar type
of analysis, the following holds:

Theorem 8. When switching times are included, the
Hamiltonian tour of minimal expected cost is achieved
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by ordering the channels in decreasing values of the
index -
(hi + Agi)8i(2)
1= TiAWVi(A)0«(2)

(32)

10. GLOBALLY GATED REGIME

Boxma, Levy and Yechiali [1990] introduced a (cyclic)
Globally Gated (GG) service scheme which uses a
time-stamp mechanism for its operation: the server
moves cyclically among the queues, and uses the in-
stant of cycle-beginning as a reference point of time;
when it reaches a queue it serves there all (and only)
customers who were present at that queue at the cycle-
beginning. This strategy can be implemented by mark-
ing all customers with a time-stamp denoting their ar-
rival time. In its nature the GG policy resembles the
regular Gated policy. However, the GG policy leads
to a simpler mathematical model which in turn allows
for derivation of closed-form expressions for the mean
delay in the various queues. As a result, the opera-
tion of the polling system by the GG policy is easy to
control and optimize. As in earlier sections the sys-
tem consists of K infinite-buffer channels, the offered
load to queue i is b; = A;E(V;) and the total system
K

load-rate is p = Z b;. We assume that, when leaving

i=1
queue ¢ and before starting service at the next queue,
the server incurs a switchover, or ‘walking time’ pe-
riod, whose duratxon is a random varla.ble 0;. The

total ‘walking time’ in a cycle is 8 = Z 0;. (Clearly,

other ‘Global’ versions, such as Globa.lly Exhaustive,
can be easily imagined and analyzed.)

Boxma, Levy and Yechiali derived the LST of the
cycle time C and calculated its mean and second mo-
ment:

E(C) = E(8)/(1-p), (33)
which follows from the relation E(C) = E(6) +
(2, BEC),
B(C) = = [E(o=)+2E(a)pE(C)+
K (34)
+Z,\,-E(V,?)E(C)] .
j=1

They further showed that the mean waiting time for
an arbitrary customer at channel & (k = 1,2,...,K)
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is given by

k-1 k-1
E(Wy) = [1 + 2(2 b,-) + b,,] E(Cr)+ Z E(6;) ,

i=1 J=1
(35)
where E(CR) = f C2) is the mean residual time of a
cycle.

It readily follows from (33), (34) and (35) that
E(Wy) < E(W3) < -+ < E(Wk). In particular,

E(Wh1) — E(Wi) = (brs1 + bu) E(CR) + E() -
That is, if the server always performs a cycle by travers-
ing the channels in the same order, it is advantageous
to belong to a queue with a small index. In other
words, the closer a channel is positioned to the start-
ing point of the cycle — the better.

11. OPTIMAL ORDER OF VISITS UNDER
THE GLOBALLY GATED REGIME

I. Static Optimization deals with finding the re-
peated order of visits that minimizes the mean waiting
cost of an arbitrary customer in the system. Denoting
by ¢x the cost of a type-k job being delayed one unit of

time, the (static) objective is to find a repeated visit .

K
order that minimizes the expression 3, AucxE(Wy).
k=1
From (35),

K
3 MckE(Wi) =
k=1
K k-1
= E(Cr) Y Mncu (1 +oe+2), b,)+
k=1 i=1
K k-1
+3 Mew Y E95),
k=1 J=1

in which the only factor that depends on the order of
the queues is

K k-1
S ducw 3" {2E(Cr)b; + E(85)} -
k=1 i=1

Using an interchange argument one can readily show

that, in this case too, an indez rule for optimal or-

dering of the queues holds. Namely, the minimal
K

~ value for 3. AycxE(Wy) is obtained by arranging the
k=1

queues in an increasing order of the index

__ 2E(CR)b; + E(6;) _ b;E(C*)/E(C) + E(6;)

- Ajj - Ajcs '

Severa,l special cases of this result and variations of
the problem analyzed above are of interest:

(i) Special costs

Consider the special case in which ¢; = E(V}), namely
the waiting cost is proportional to the mean service
time. In this case the optimization objective becomes

K
Y by E(W), which is the term of the pseudocon-
k=1
servation law (see Boxma and Groenendijk [1987],
Boxma [1989],[1991]). Optimization now is equiva-
lent to the minimization of the mean amount of work
in the system. Here we have
E(6
uj = 25(Cr) + 2,

I

and thus the queues should be arranged in an increas-
ing order of E(8;)/b;.

(ii) Negligible Switching Times

Consider the case where E(f;) <« 2E(CR)b; for all
queues. Then, the queues should be arranged in an
increasing order of E(V;)/e;, which is, again, a cp-
type rule.

(iii) Fixed topology

In some applications the cyclic order of the queues
is predetermined and is not left to free choice. In
this case the optimal design of the system is achieved
by selecting the gating point (namely, choosing which
queue will be the first on thecycle). For these cases
there is no simple index rule but the optimization
problem can be easily solved by comparing the ex-
pressions achieved for the K possible cases.

I1. Dynamic Optimization is achieved as described
in previous sections. At the beginning of each cycle
the current queue lengths, n1,...,nx are evaluated
and the visit order of the nezt cycle is determined.
By the very nature of the Globally Gated scheme,
the visit order taken in one cycle does not affect the
future stochastic behavior of the system. Moreover,
the cycle-time duration C(ni,...,nk) is the same
for any Hamiltonian tour of the queues. Thus, if
we consider the costs incurred during a cycle by the
customers present at its initiation together with the
costs incurred by the new arrivals between two cycle-
beginnings, the long run minimal cost can be achieved
by optimizing each cycle individually.

The mean total waiting cost incurred during the com-
ing cycle is:

K A k-1 ng—~1

12 [rsE(Vs) + E@93)]) + E(Ve) 3 i +

j=1 i=1



.9
+d eaME[C(n,...,nx)] /2
k=1

where the first term is the contribution to total cost of
the customers present at the cycle-beginning, and the
second is due to the customers arriving during the cy-
cle starting with n;,na,...,nx (see Yechiali [1976]).
The only term that depends on the order of visits is

K k=1
2 [n;E(V;) + E(0;)]. It readily follows that

2. cn
k= =1
the optimal order for the néxt cycle is determined by
incrdasing values of the indices
n
. u. = HEW) + E(8;)
=
Cj )'LJ

which is, once more, a cu-type rule.

12. ELEVATOR-TYPE POLLING POLICY

An Elevator-type polling policy is the following: in-
stead of moving cyclically through the stations, the
server first serves stations in one direction, i.e. in
the order of 1,2,...,K (‘up’ direction) and then re-
verses its orientation and serves the channels in the
opposite direction (‘down’), i.e. going through sta-
tions K,K —~ 1,...,2,1. It then again changes direc-
tion, and keeps moving in this manner back and forth.
This type of service discipline is encountered in many
applications, e.g. it models a common scheme of ad-
dressing a hard disk for writing (or reading) infor-
mation on (or from) different tracks. It is important
to note that the Elevator scheme ‘saves’ the return
walking time from station K to station 1 (when com-
paring it to cyclic polling systems). This may be a
significant factor in decreasing the cycle duration and
expected waiting times, since in many systems this
return walking time is considerably large. In the case
of hard disks this return walking time represents the
movement of the head all the way back from the K'th
track to the first. We assume that it takes the same
(random) time to ‘walk’ from channel j to channel
j+ 1 as it takes to move ‘backwards’ from j +1 to j.

All the service disciplines that have been considered
in the literature with relation to cyclic movement (e.g.
the Gated, Exhaustive, Limited, Globally Gated) can
be implemented also with the Elevator approach. We
shall present here a globally gated version of the El-
evator service. We shall call the period during which
the server moves up an ‘up cycle’ and the period dur-
ing which the server moves down a ‘down cycle’. A
‘cycle’ will be either an up cycle ora down cycle.

215

Altman, Khamisy and Yechiali [1990] introduced the
following globally-gated version of the Elevator scheme.
Consider a moment when the server is ready to start
service at station 1 and the system state is (ny,ns,
...,nx). Then a ‘global’ gate is ‘closed’ and the
server starts its up cycle, moving from 1 to K, serving
in channel ¢ only those n; jobs that were present at
the beginning of this cycle. As soon as the last job of
the nx jobs at channel K is completed, a new ‘global’
gate is closed, the system state is (n{,nj,...,n)) and
the server starts its down cycle serving at i only the
n} marked customers. Then, a ‘global’ gate is closed
again, and the server starts its up cycle, etc.

Think now of a different interpretation of the (globally
gated) Elevator scheme. Assume that when complet-
ing the up movement there is an extra walking time of
zero duration from station K to station 1. When the
server now arrives at station 1, a gate is closed, the
server jumps back to station K in zero time and then
goes down to state 1, serving all customers marked
when the gate was closed. After serving station 1
the gate is again closed and the server goes up again,
serving all customers present at the moment the gate
was closed, then the server jumps again, etc.

Consider for the moment, the cyclic Globally Gated

discipline. As was indicated before, for each cycle

along any sample path, the cycle duration is unchanged
if we alter the order of the stations being served and/or
the order of the walking times. This follows from the

fact that the number of customers served in each sta-

tion is determined at the instant the gate is closed,

and therefore is not influenced by any change of or-

der of visits to the stations. In particular, the cycle

duration remains unchanged if every second cycle the
stations are served in the order K, K -1,...,2,1 with
the order of walking times inverted. It can be seen

that if the walking time from station K to station 1 is

zero, then this model coincides with the Elevator dis-

cipline. Hence the distribution of the cycle duration
for the Elevator scheme is equal to the distribution of
cycle duration for the case of cyclic Globally Gated
service discipline with zero walking time from station
K to station 1. As a result, equations (33) and (34)

hold in this case too, with the trivial modification that
0k =0.

Waiting Times

Consider now an arbitrary customer arriving at sta-
tion k. It has probability 0.5 to arrive during an up
cycle and probability 0.5 to arrive during a down cy-
cle. Thus

E[Wi] = 0.5(E[Wy | up] + E[Ws | down]) .  (36)
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To compute the expected waiting time of a customer
arriving during an up cycle, we may assume that all
previous cycles are up cycles, since the number of cus-
tomers in each station at the instant that the gate is
closed is not influenced by the type of previous cycles.
Hence, from (35),

k-1 k-1
E[Wy | up] = (1 +2 E bi + bk) E(Cr)+ E E(6;) .
i=1 i=1

(87)
Similarly we have

K K-t
E[W, | down] = (1+2 3y b.-+b;.)E(Ca)+E E(6;) .

t=k41 i=h
(38)
Combining equations (36),(37) and (38) we obtain,

fork=1,2,...,K,
E[Wy | Elevator] = (1+ p)E(CRr) + E(8)/2 . (39)

Result (39) reveals an interesting phenomenon: in
the (globally gated) Elevator regime ezpected waiting
times in all channels are the same. This is the only
known non-symmetric polling system that possesses
such a property. In such, the Elevator discipline is
the ‘“fairest’ of all other service procedures (see Boxma
[1991] for a discussion of ‘fairness’), and any order of
the channels yields expression (39).

13. CONCLUSION

We have presented and derived optimal dynamic con-
trol policies for various polling systems with a sin-
gle server and Poisson arrivals. Boxma [1991] ad-
dressed another aspect of the problem of optimization
in polling system, viz. “Determination of that polling
table in a (static) periodic polling model that mini-
mizes a certain weighted sum of the mean waiting
times”. Using both avenues in designing, operating
and control of polling systems will lead to more effi-
cient, better-managed and ‘fairer’ systems.
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