Probability in the Engineering and Informational Sciences, 7, 1993, 187-208. Printed in the U.S.A.

A GLOBALLY GATED POLLING
SYSTEM WITH SERVER
INTERRUPTIONS, AND
APPLICATIONS TO THE
REPAIRMAN PROBLEM

0. J. Boxma

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands; *
Faculty of Economics, Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

J. A. WESTSTRATE

Faculty of Economics, Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

U. YECHIALI

Department of Statistics, School of Mathematical Sciences
The Raymond and Beverly Sackler Faculty of Exact Sciences
Tel-Aviv University, Tel-Aviv 69978, Israel

A repair crew is responsible for the maintenance and operation of N installa-
tions. The crew has to perform a collection of preventive maintenance tasks at
the various installations. The installations may break down from time to time,
generating corrective maintenance requests which have priority over the preven-
tive maintenance tasks. We formulate and analyze this real-world problem as
a single-server multi-queue polling model with Globally Gated service disci-
pline and with server interruptions. We derive closed-form expressions for the
Laplace-Stieltjes Transform and the first moment of the waiting time distri-
butions of the preventive and corrective maintenance requests at the various
installations, and obtain simple and easily implementable static and dynamic
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rules for optimal operation of the system. We further show that, for the so-
called elevator-type polling scheme, mean waiting times of preventive mainte-
nance jobs at all installations are equal.

1. INTRODUCTION

The standard polling system is a single-server multiple-queue configuration in
which the server cyclically moves from queue to queue, providing some service
at each nonempty queue according to a local service discipline. A common local
service discipline is the gated service discipline; viz., when the server finds 7 cus-
tomers at a queue upon his arrival, he serves exactly those n customers before
moving to the next queue. Recently, Boxma, Levy, and Yechiali [4] introduced
a global service discipline for polling systems, the Globally Gated (GG) service
discipline. According to this discipline the server moves cyclically along the
queues, using the instant of cycle-beginning as a GG reference point of time:
when he reaches a queue he serves there only (and all) customers who were
present at that queue at the beginning of the cycle. This discipline can easily be
implemented by marking all customers with a time stamp denoting their arrival
instant. In its nature the GG discipline resembles the regular gated discipline,
the difference being that the gating mechanism is applied to all queues at the
same time. The GG discipline leads to a simpler mathematical analysis than
those for polling systems with regular gated service disciplines —or any other
known service discipline; closed-form expressions can be derived for the delay
distributions in the various queues. As a result, the operation of the polling sys-
tem by the GG discipline is easy to control and optimize. The GG discipline is
also very “fair” with respect to FCFS (first-come first-serve) considerations, in
the sense that all arrivals in one cycle are served in the next cycle.

In this paper we study a (cyclic) GG polling system in which the server is
subject to interruptions that occur according to a Poisson process (and may
form a queue of their own). If an interruption occurs when the server is serv-
ing a customer, several interruption-handling disciplines are possible. We con-
sider two such disciplines: (i) the preemptive resume discipline, in which the
server abandons its present job immediately upon interruption and resumes serv-
ing this job as soon as the interruption is over and no other interruptions are
present, and (ii) the nonpreemptive discipline in which the server finishes serv-
ing the present job before the interruption is handled. If the interruption occurs
while the server is switching from one station to another, the server reacts ac-
cording to the preemptive resume discipline. During an interruption the server
is not available for service at any of the stations.

We use this polling system with server interruptions to model and analyze
a maintenance process in which the repairman is occupied with both preventive
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maintenance requests (the customers) and corrective maintenance requests (the
interruptions, caused by breakdowns) generated by a group of various instal-
lations. Exploiting the fact that the mathematically pleasing properties of the
GG discipline are not lost in the case of Poisson interruptions, we derive closed-
form expressions for the Laplace-Stieltjes Transforms (LSTs) and first moments
of the waiting time distributions of both corrective and preventive maintenance
requests. Furthermore, we obtain easily implementable optimal rules for static
or dynamic control of the system.

The structure of the paper is as follows. In Section 2 we describe the poll-
ing model and the associated maintenance process. Section 3 is devoted to cycle
time analysis (length of a preventive maintenance tour), and Section 4 to the
analysis of queue length distributions at various polling epochs. In Section 5 we
derive the LSTs of the waiting time distributions of preventive maintenance
requests and of corrective maintenance requests under the preemptive resume
and the nonpreemptive interruption disciplines. Section 6 is devoted to the der-
ivation of optimal rules (both static and dynamic) for the order in which the
repairman visits the installations. It is further shown that in the case of the
so-called elevator-type polling scheme, mean waiting times of preventive main-
tenance jobs at all installations are equal.

The analysis in Sections 2-6 concerns the situation in which an idle server
keeps switching from queue to queue. Section 7 briefly indicates how one can
handle the situation in which the server stays idle at the first installation when-
ever a cycle terminates with an empty system. Section 8 contains some conclu-
sions and suggestions for further research.

2. THE MAINTENANCE PROCESS AND THE QUEUEING MODEL

2.1. The Maintenance Process

The maintenance process that we wish to model can be described as follows.
There is a number of installations that generate two types of maintenance
requests: preventive and corrective. A single repairman (or a crew) is assigned
to fulfill the maintenance requirements of all the installations. The preventive
maintenance requirements are described by (so-called) maintenance packages.
The repairman visits the installations in a cyclic order to perform preventive
maintenance as described by the maintenance packages. Naturally, it takes the
repairman some time to move from one installation to the next and to perform
administrative duties. At the beginning of each tour the repairman is assigned
all preventive maintenance requirements at the various installations and subse-
quently he will handle only these preventive maintenance requirements during
the coming tour. This enables us (see Section 6) to consider control policies in
which successive maintenance tours do not have the same visit order of the
installations. For each new tour the repairman can dynamically determine the
optimal visit order of the installations — with respect to the mean total waiting
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cost incurred during the coming cycle—based on the preventive maintenance
requirements at each installation at the beginning of the cycle.

The repairman will keep performing the preventive maintenance jobs and
will continue his “walk” along the installations unless there is a breakdown at
one of the installations. In such a case the breakdown interrupts the regular pre-
ventive maintenance tour, and the repairman must move to the broken instal-
lation to restore its operation, which has been stopped as a result of the critical
failure. If a breakdown occurs during a “walking-time” of the repairman be-
tween the installations, corrective maintenance gets priority with no delay. If a
breakdown occurs when the repairman is performing preventive maintenance,
then there are two priority policies: (i) corrective maintenance gets priority with
no delay (preemptive resume), or (ii) the repairman first finishes his present pre-
ventive maintenance job and only then travels to the broken installation. It is
assumed that the time to go to a broken installation and the travel times between
the broken installations during an interruption period are incorporated in the
repair time. When all installations restore operation, the repairman resumes his
preventive maintenance tour from the state at which it was interrupted.

2.2. The Queueing Model

We consider a model consisting of N infinite-buffer queues, Q;,...,Quy, and
a single server. Customers arrive at the various queues according to independent
Poisson processes. The arrival rate to Q; is A;. The service time distribution of
customers at Q; is B;(.), with first and second moments denoted by 8; and B3,
respectively, and with LST B;{.}. The offered load to Q; is p; = \;8;, so that
the total system load is p := 2%, p;. The server moves among the queues in a
strictly cyclic order; when leaving Q; and before entering the next queue the
server incurs a switchover period whose duration is a random variable S; with
distribution S;(.), first and second moment s; and s{*, respectively, and LST
S:{.}. All switchover periods are assumed to be mutually independent. The to-
tal switchover time in a cycle is S = %, S; with first two moments s and s,
and LST given by §{w} = IIY, Si{w}, Re w = 0.

In conjunction with the maintenance process, the server represents the re-
pairman, the queues represent the installations, the customers are the preven-
tive maintenance requests, and the switchover times are the travel times between
installations.

The service regime used by the server is the GG discipline, which is being
operated as follows: At the cycle-beginning, namely, when the server reaches
0., all customers present at Q,, .. ., Qy are marked. During the coming cycle
(i.e., the visits of queues Q;,...,Qy) the server serves all marked customers
(but no others). Customers who meanwhile arrive at the various queues will
have to wait until being marked at the next cycle-beginning and will be served
at the next cycle.
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The server is interrupted from time to time according to an independent
Poisson process with intensity u. The time duration of a single interruption is
a random variable R having distribution function R(.) with first and second
moment 7 and r®, respectively, and LST R{.}. These single interruptions cor-
respond to the occurrence of corrective maintenance requests (breakdowns).
Note that interruptions may occur sequentially, resulting in an interruption
period, P, distributed as a busy period in an M/G/1 queue with LST P{.}, and
with mean p and second moment p® given by (cf. Cohen [6, p. 251]):

.
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As usual in the polling literature, it is assumed that the server keeps switching
from one queue to another even when there are no customers present in the sys-
tem. This assumption may not be fully realistic for a repairman in a mainte-
nance system; such a repairman would probably return to his home base (say,
Q,) and wait there for new arrivals (maintenance requests) to occur. However,
one can argue that due to the usually high load of maintenance systems, the
probability that the repairman finds an empty system at a cycle-beginning is
small, so that the results for the present system give useful insight into the be-
havior of a system in which the repairman waits idling when there is no work.
The case in which the server waits idling at Q, when the system is empty is
briefly considered in Section 7.

Since at every cycle the server serves all the work that arrived during the pre-
vious cycle, the necessary and sufficient condition for ergodicity is p + pr < 1;
this can be proved in the same way as the ergodicity condition for the ordinary
GG polling system is proved in Boxma et al. [4].

All arrival, service time, and switching processes and the interruption pro-
cess are independent stochastic processes. We assume that the system is in an
equilibrium state.

3. THE CYCLE TIME (LENGTH OF A MAINTENANCE TOUR)

For the polling model with interruptions that was described in Section 2, we now
derive the LST and first two moments of the cycle time of the server; in the next
sections, the cycle time distribution will play a crucial role in the analysis of
queue lengths and waiting times. First define the following:

Y, := length of time during which the server is serving customers from Q,
during one cycle;

V; := Y, + the total time the server is busy with interruption periods orig-
inating during Y.
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As a preparation for the cycle time analysis we derive the LST of V,.

Vilw) 1= E{e “V)
= >} E{e™*Y¢|m interruptions during Y}

X Pr{m interruptions during Y,}

oo m - nH"
2 (Broime L 4 priy, <1
=0 m!
= Yilo + u(l - Plo})}, 3.1
with A(.} denoting the LST of a random variable A.
Let X,,...,Xy denote the queue lengths at the start of an arbitrary cycle

(where a cycle is defined as the time between two successive visits of the server
to Q). Denoting by C the length of a cycle, and using the reasoning leading to
Eq. (3.1),

E{eC|X,,...,. Xy} = §{w + u(l - Plw}) H}B o+ u(l = Plop)®,

Rew=0. 3.2)

In its turn the length of a cycle determines the joint queue length distribution
at the beginning of the next cycle:
N
E{lei o Z/’éN]C = t} =exp[—2)\,(l —Zf)t], IZ," = 1, i= 1,. . .,N.
i=1
3.3)
Unconditioning we find for |z;| < 1,i=1,...,N,
- N
E{z{ - z¥") =C{Z>\,-(1 —z,-)}, (3.9
i=1
where
Clw} =E{e €}, Rew=0.
From Eqgs. (3.2) and (3.4)

N
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Now, for Rew = 0, let
¢(w) = w + p(l — P{w}),
N _ 3.6)
8(w) := 2N (1 — Bi{d(w)}).
i=1

Equation (3.5) can then be written as C{w} = S{¢(w)}C{6(w)}. Define re-
cursively

8Nw) = w,
3.7
8 (w) 1= 8(8" " N (w)), n=12,....
Applying Eq. (3.5) iteratively we obtain for every M = 1,2,...
M-1
Clw} = C{6"™ ()} TI S{6(5"(w))].
m=0
As in Boxma et al. [4] it can be shown that
lim 6 (w) =0
M-—oo
and that the following limit exists:
M ~
lim T S{o(8" D(w))}.
M- gy
Hence,
Clw} = I] S{#(6"(w))}, Rew=0. (3.8)
m=0

Differentiating Eq. (3.5) once and twice yields
EC=p(1 + up)EC + (1 + pp)s,

N
EC? = pup®EC + (1 + up)z[z A,B}Z’]EC
Jj=1

+ p2(1 + up)2EC? + 2p(1 + up)®sEC + upPs + (1 + up)3s?.

Substituting Egs. (2.1) and (2.2) in the preceding expressions and reordering
terms we obtain the following closed-form expressions for the first two moments
of the cycle time: .

s

EC=

= — 3.9)
1—p—ur

(in particular, if p = 0 then EC = s/(1 — p) as in Boxma et al. [4]) and
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1 N
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Introducing C, and C,, the past and residual time, respectively, of a cycle, we
can write for Rew, = 0, Re w, = 0 (cf. Cohen [6, p. 113])

[pEC + s]. 3.10)

. 1 1 = ~
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[e 1=%¢ e [Cler) — Clwpl] (3.11)
It follows in particular that the LST and the mean value of C, and C, are
- - 1 - Clo)
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In maintenance terms one can view the cycle time as the time of a complete tour
of the repairman along all the installations. Thus, Egs. (3.8), (3.9), and (3.10),
respectively, reflect the LST, the mean, and the second moment of the time
it takes for the repairman to do the required preventive maintenance at each
installation during one cycle and restore the breakdowns occurring during this
period.

4. QUEUE LENGTHS OF PREVENTIVE MAINTENANCE REQUESTS

In Eq. (3.4) we have expressed the generating function of the joint queue length
distribution at cycle-beginnings (the instants at which the server polls Q,) in
terms of the LST of the cycle time distribution. In the polling literature, the
most studied queue length related quantity is the generating function of the joint
queue length distribution at epochs that the server polls some queue Q;. The
GG discipline allows us to obtain a much more explicit expression for this gen-
erating function than in any other known discipline. To derive such an expres-
sion we first introduce some notation. Y;; denotes the number of customers at
Q; at the instant that the server visits Q;, i,/ = 1,...,N. A;[T] denotes the
number of Poisson arrivals at Q; during a period of length 7, and V;(n) de-
notes the total service time of » customers at Q;. Restricting ourselves for the
moment to the case in which there are no interruptions (x = 0) we can write
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Hence, using Eq. (3.4), for |z;| < 1,...,|zn] =1,

i—1 N
ElzYizYe ... zon1 =TI S; ( IR MG —z,,))C"
J=1

n=1

i—1 - N N
x[ )xj(l—Bj(Zx,,(l—z,,)»+2>\j(l—zj)],
= n=1 J=i

J=1
4.2)

with €(.), the LST of the cycle time distribution, being given in Eq. (3.8).

If interruptions (either preemptive or nonpreemptive) may occur, it easily
follows (cf. Egs. (3.1) and (3.6)) that Eq. (4.2) remains valid when in its right-
hand side S;(w) is replaced by S;(¢(w)) and B;(w) is replaced by B;(¢(w))
(with w = 35, N,,(1 — z,,)). Note that i = 1 yields the generating function of
the joint distribution of X,,...,Xy (cf. Eq. (3.4)).

From Eq. (4.2), in the case with server interruptions, we find

i—1 i—1
EYpn = Nu(l + up) 255 + )\,,,EC[(I +up) Dy p;+ I(m = i)]. 4.3)
Jj=1 Jj=1
We also derive the covariance of Y,, and Y,, from Eq. (4.2). In view of the
complexity of the expression we first give the result for the case without inter-

ruptions:

i-1

i—1
coV(Yim, Yin) = Am Ay {var{ > Sk] + EC 3 MBE + var(C)
k=1 k=1

i—1 i—1

k=1 k=1
4.4)

I(.) denoting an indicator function. For i =1, as Y}, = X,, and Y, = X,,, we
find cov(X,,,X,) = A\, var(C).

For the case with server interruptions, using Eq. (4.2) with the modifica-
tions of its right-hand side as already described, we derive
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i-1 i—1
coV(Yim, Yin) = AmAa(l + pp)? [var{ > Sk] + EC Y, )ka,ﬁz)]
k=1 k=1
i—1
+ A\, var(C) [(1 + up) Z o+ I(m= l')]
k=1

i—-1
X [(1 +up) e+ I(n= i)}
k=1
i i—1

1
+ N A ? [EC S+ 2] sk] >0, “4.5)
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where (see Egs. (2.1) and (2.2)) 1 + pp = 1/(1 — pr) and p® =r®/(1 —pr)’.
Very similar to Eq. (4.1) we can derive the joint distribution of the queue

lengths Y, .. ., Yan successively found by the server in a cycle, when arriving
at Q,,...,Qu. In the case of no interruptions (u = 0) we have
E[Zl\’nzzYzz e ZIYINNtXI’ . ’XN]

— E[Z])‘IZZXZ+A2[VI (x1)+SI]Z;(3+A3[V1 (X1)+8,+ V2 (X2)+82]

e z})\%N“‘AN[VI(xl)'*'SI'*‘"'+VN—1(XN~I)+SN—1] |X1, . ,XN]
N—-1 N N-1 N
= HB'}‘J'( 2 Ml—m)ﬂﬁj( )y xn<1—zn))z3"zz"2~-zk‘,~.
J=1 n=j+1 Jj=1 n=j+1
(4.6)
Hence, using Eq. (3.4), for |z;| = 1,... Jznl = 1,
N—-1 N
Elz¥izd= - 2™ = ]I S}-( IRE —zn)>
J=1 n=j+1

X C{ZN (1 _ZJ'BJ( > MQ —Zn)>>}- 4.7
=

n=j+1

If interruptions may occur, Eq. (4.7) remains valid when in the right-hand side
S;(w) is replaced by S;(¢(w)) and B;(w) is replaced by B;(¢(w)).

From Eq. (4.7) cov(Ymum» Ynn) can be obtained. We give the formula in the
case without interruptions; the case with interruptions leads to a similar formula:

m—1 m—1 n—1
coV(Yom> Yon) = )\,,,)\,,[var{ >, Sk} + var(C)[ > pr+ l] [Z ok + 1]
k=1 k=1 k=1
m—1
+ EC[Bm + 2 xkﬁ,ﬁz)” >0, m=n (4.3
k=1

5. WAITING TIMES OF PREVENTIVE AND CORRECTIVE
MAINTENANCE REQUESTS

The waiting time of a customer (preventive maintenance request) is defined as
the time between his arrival at a queue and the time instant at which his service
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starts (for the first time). Consider an arbitrary customer K at Qy in the under-
lying polling system. His waiting time W,, as already defined, is composed of

(i) a residual cycle time C,,

(ii) the service times of all customers who arrive at Q,, ..., Q. during
the cycle in which K arrives,

(iii) the switchover times of the server from Q; to Q,,...,Q_; to Oy,

(iv) the service times of all customers who arrive at Q, during the past
part, C,, of the cycle in which K arrives, and

(v) the time during which the server is interrupted within the time periods
described in numbers (ii)-(iv).

Note that the waiting time of a preventive maintenance request —as already
defined, excluding interruption periods because of corrective maintenance —is
independent of the interruption-handling policy being employed; that is, it is
(probabilistically) the same under the preemptive resume and the nonpreemp-
tive service disciplines.

We now calculate the distribution of W,, k =1,...,N. Using the preced-
ing five-term decomposition of the waiting time of an arbitrary customer at
Oy (k=1,...,N) and the reasoning leading to Eq. (3.1) we can write for
Rew=0

k
E{e~Wx) H ¢(w)}E{eXp[ ZN[I—EW(w)}]Cp]

i=1 i=1

xcxp[ i} L (w)}]+w]cn

Using Eq. (3.11) it follows that for Re w=0

k—1
Wiy} — g —_
Efe™7¢] il=|1 Sile(w)} 2=

k k—1
é{ R —B,{qs(w)n] - C*i 2 NI = Bi{ ()] + w]
Jj=1 J=1

@ = M(1 = B {o(w)})
5.1

It should be noted that the LSTs of the waiting and sojourn time distributions
at @, have the same simple relationship to the generating function of the queue
length distribution in Q; at customer departure epochs from Q, as in the ordi-
nary M/G/1 queue. Thus, Eq. (5.1) immediately yields not only the generating
function of the queue length distribution for Q, at customer departure epochs,
but also at customer arrival epochs (by a standard up-and-down-crossing argu-
ment) and at arbitrary epochs (by the PASTA property).
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Differentiating Eq. (5.1) with respect to w and evaluating the resulting ex-
pression at » = 0 we obtain the following expression for the mean waiting time
of an arbitrary customer at Qy, k =1,2,...,N:

1 k-1 1 k-1 '
EW,=EC,|1 2 ; s .
O R

Jj=1

with EC, given by Eq. (3.12). There are no essential difficulties in deriving
explicit expressions for higher moments of the waiting time distributions.

Remark 5.1: If the polling model consists of a single queue without switchover
times, then EW, coincides with the mean waiting time of low-priority custom-
ers in an M/G/1 queue with two priority levels and nonpreemptive priority (cf.
Cohen [6, Section 111.3.8]).

It is obvious from Eq. (5.2) that EW; < EW, < --- < EWy. In par-
ticular,

EW, . —EW, = [(pr+1 + Pi)EC, + 5¢]. 5.3)

1 —ur

Using Egs. (5.2) and (3.12) we obtain the pseudoconservation law for this
model:

< o 1 u (2) 103
EW, = ;B + )
/E]pk k 1—[.”‘[2(1—,0—#7') [::ZI iBi ur ]

s@

ps 1 N k—1
+ =+ + . 5.4
2s l—ur—p] l_l"rkglpkallsj 69

Formula (5.4) could have also been obtained without explicitly determining the
individual mean waiting times, by using the standard derivation of pseudocon-
servation laws in polling models with switchover times (see Boxma [3] and, in
particular, Boxma et al. [4] for the GG case, with p = 0).

5.1. The Waiting Time of a Corrective Maintenance Request

The waiting time of a corrective maintenance request is defined as the time span
between the occurrence of a breakdown of an installation and the arrival of the
repairman. The determination of the waiting time of a corrective maintenance
request is dependent on whether the repairman applies a preemptive resume dis-
cipline or he follows a nonpreemptive procedure. We shall determine the LST
and the first moment of the waiting time distribution of a corrective mainte-
nance request for both disciplines. Recall that if the server is switching we as-
sume that the corrective maintenance request gets priority with no delay. The
breakdowns occur according to a Poisson process as described in Section 2.
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Define the following:

W? = waiting time of a corrective maintenance request under the pre-
emptive resume discipline, and

W”2  := waiting time of a corrective maintenance request under the non-
preemptive discipline.

5.2. The Preemptive Resume Discipline

If the repairman reacts immediately to a breakdown, the waiting time of cor-
rective maintenance requests can be described as the waiting time in an M/G/1
queue with arrival intensity u and service times distributed as R. We can write
(cf. Cohen [6, Section 11.4.5])

pr®

EW., = ———— 5
corr 2(1 _ “r) (5 )

and

w

—oWEy = (] — _
E(emor) = (1 = pr) g

Rew = 0. 5.6)

5.3. The Nonpreemptive Discipline

Recall that under the nonpreemptive discipline, if a breakdown occurs some-
where in the system when the repairman is performing a preventive maintenance
job, he will first finish the preventive maintenance job and only then travel to
the broken installation. The repairman will resume operating on preventive tasks
only when there are no other corrective maintenance jobs. When the system is
in a period where the repairman is at the ith installation or deals with correc-
tive maintenance jobs generated while he was attached to Q;, then a corrective
maintenance job’s waiting time is identical to the waiting time of a customer in
an M/G/1 queue with (multiple) vacations (cf. Levy and Yechiali [10], Doshi
[71) where the arrival rate is u, service times are distributed as R, and vacation
durations have distribution B;(.).

When the system is in a period where the repairman is walking or is occu-
pied with corrective jobs connected to the walking times, then a corrective main-
tenance request’s waiting time is the same as that of a customer in a regular
M/G/1 queue with arrival rate u and service times distributed as R. This is true
following the assumption that corrective maintenance jobs have preemptive pri-
ority over walking times.

From Levy and Yechiali [10] we obtain the following expressions for the
first moment and LST of the waiting time distribution in an M/G/1 vacation
queue in which the arrival rate is denoted by u; the first and second moment of
the service time distribution are denoted by r and r@®, respectively, the first



200 0. J. Boxma, J. A. Weststrate, and U. Yechiali

and second moment of the distribution of the vacation period are denoted by
B and 8@, respectively, and the LST of the distribution of the vacation period
is denoted as B{.}:

(2) B(Z)
vaacation = __[,L_I‘___ — .
M/G/1 2(1 _Mr) 26 > (5 7)
vacation - g
E[e""’wM’G“ } = E{e—wWM/Gn}l_{_OL)l, Rew =0, (5.9

Bw

where E{exp[ —wWy,c11} is the LST of the waiting time distribution in the
underlying M/G/1 queue with no vacations.

Conditioning on the occurrence of the preceding periods we can write the
following:

EW™ = (EW? I(repairman is walking or is dealing with corrective
maintenance generated during a walk period)}

N
+ >, E{W2,, 1(repairman is at the ith installation or is dealing
i=1 with corrective maintenance generated while he
was serving at the ith installation)},

with I(A) being the indicator function of the event A.
It is easy to see that

;= Pr{repairman is at the ith installation or is dealing with corrective main-
tenance generated while he was serving at the i thinstallation} = p;/ (1 — ur),
i=12,...,N,

Pr{repairman is walking or is busy with corrective maintenance generated
during a walking period} = 1 — X, 0; = (1 — pr — p)/(1 — pr).

Hence we obtain

EWP = IL—pr—op “r(Z) + % Pi ﬂr(Z) + @2—)
o 1—pur 200 —pr) S 1—-pr{20—pr) 26
N
pr® + 3 )\iBi(z)
_ i=1 , (5.9)

2(1 — ur)

Indeed, since walking times do not defer corrective maintenance jobs, the wait-
ing time of a corrective job is the same as that of a highest priority class job in
an M/G/1 queue with N + 1 classes and nonpreemptive service discipline (see
Kella and Yechiali [9]). The other classes are formed by the preventive mainte-
nance jobs in queues Qy, ..., QOn-
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The LST of W?2, is obtained using the same argument as in Eq. (5. 9) and
applying Eq. (5.6):

E{ “‘*’wcarr] =

A (1-pre 1-Bij{w}
+ Z‘E 1 —pr w—p(l — R{w)) Biw

N
(1 —pr—po+ 21 Ni(1 = Bi{w))
o — 2l —Rla] . (5.10)
Note that switchover times do not appear in Egs. (5.9) and (5.10). This is due
to the fact that the interruption-handling mechanism during a switchover period
is preemptive.
Another way to obtain Eq. (5.10) is to use the concept of B;-delay cycle
(cf. Kella and Yechiali [9]) in an M/G/1 queue with arrival rate u, service times
distributed as R, and a delay B; with distribution B;(.); that is, at the begin-
ning of each busy period there is a delay of length B; before actual service to
customers can be started. We have

E [ e '—“’wzgrr

system is within a B;-delay cycle}

= U=plo 15} (5.11)
w— p(l = R{w}) Biw

Equation (5.10) is readily obtained by using Egs. (5.6) and (5.11) and by observ-
ing the following: the probability that the system is within a B;-delay cycle
equals o; = p;/(1 — ur), and the probability that the repairman is walking or
busy with corrective maintenance requests generated during the walking period

equals 1 — p/(1 — ur).
The pseudoconservation law for the mean waiting times (including those of
corrective maintenance requests) is obtained by combining Eqs. (5.4) and (5.9):

, ur+op )
WEWZE  + 3 phEW, = —————— Z N + pr®
k=1 2(1 — pr—p)

)
N A
4P [~+_e__]
l_ur 2s 1__“r._p

Z Pk Z Sj. (5.12)

TI- wr
Remark 5.2: Define for k =1,...,N:
W2 := the time during which an arbitrary Q, customer is in the system

without receiving service, under the preemptive resume interrup-
tion-handling discipline, and
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W}? := the time during which an arbitrary Q, customer is in the system
without receiving service, under the nonpreemptive interruption-
handling discipline.

Clearly EW/ = EW,, but

EW? = EW, + E{time during which the service of a customer
at Q, is interrupted}

.
=Ewk+3kup=Ewk+5klfW, k=1,...,N.  (5.13)

Combining these results with Eqgs. (5.5) and (5.9), it follows that

N N
[urE Wi, + 2 ok EWY ] [urE WE,, + X ok EWE
k=1 k=1

N l£2)
[0l o))

The right-hand side of Eq. (5.14) does not involve any switchover times, because
the server behaves the same under both disciplines when corrective maintenance
occurs during a switchover period. Note that the right-hand side of Eq. (5.14)
becomes zero if the service times at all queues are negative exponentially distrib-
 uted. Indeed, as can be seen from Theorem 6.2 of Gelenbe and Mitrani [8], the
weighted sum of mean waiting times of a/l types of customers satisfies a con-
servation law in this particular case. Equation (5.14) is an interesting deviation
from the theory of conservation laws; for a case without conservation it gives
a simple expression for the difference between the weighted sums of mean wait-
ing times. Equations (5.14) and (5.12) together yield an expression for a weighted
sum of the mean waiting times in the case of a preemptive resume priority.

The expression in the right-hand side of Eq. (5.14) can be explained in the
following way. Observe that the total mean amount of work of waiting requests
(corrective plus preventive) is the same under the preemptive and nonpreemp-
tive disciplines. In the nonpreemptive (resp. preemptive) case the mean amount
of work of all waiting requests can be expressed as the mean number of wait-
ing requests times their mean (resp. mean residual) service times. Using Little’s
formula, in the nonpreemptive case the mean amount of work of all waiting re-
quests equals

N
P"rEwcorr + Z pkEWZp~
k=1

In the preemptive case, though, a fraction p,up = ppur/(1 — ur) of the time
Q contains an interrupted customer. This interrupted customer has mean re-
sidual service time B >/28, instead of 8,. Summation over k of the resulting
difference yields the right-hand side of Eq. (5.14).
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6. OPTIMAL VISIT ORDERS

Our objective in this section is to derive rules for the optimal operation of the
polling (maintenance) system as already described. Let ¢; represent the cost of
a customer (i.e., preventive maintenance job) being delayed one unit of time in
Q;. Thus, the mean waiting cost of a customer at Q; is ¢, EW,.

We are interested in minimizing the waiting cost of an arbitrary customer
in the model: 3, (\,/\)c, EW, with X := 32", \,,. Such a minimization will
determine the static order in which the server visits the various queues every cy-
cle. However, a policy in which the order of visits may change from one cycle
to the next— following the dynamic evolution of the system —is also of interest
and will be discussed in Section 6.2.

6.1. Static Optimization
From Eq. (5.2) it follows that

1 k—1
Z)\kaEwk—EC Z )\kck[l + —ar [2 ij+pk]]
j=t

k=1
N

k—1
Z kCr Z Sj, (6.1)
1 — W g=1 j=1

in which the only term that depends on the order of the queues is

1 k—1

2 Mece 3 [2EC,p; + ;1.
1 —pr Jj=1

Using a standard interchange argument one can easily show that the optimal or-
dering of the queues is obtained by arranging them in an increasing order of

u; = [2EC,p; + $;1/Nj¢;. 6.2)

6.2. Dynamic Optimization

In applications in which the queue lengths can be evaluated at the cycle-
beginnings (as in the maintenance problem of this paper), the GG policy can
be used to dynamically control and optimize the system (see Browne and
Yechiali [5]). If we consider the costs incurred during a cycle by the custom-
ers present at its initiation fogether with the cost incurred by the new arrivals
between two cycle-beginnings, the long-run minimal cost can be achieved by op-
timizing each cycle individually. This is true because the length of a cycle is
independent of the order in which the queues are visited. The mean total wait-
ing cost incurred during the coming cycle is

l Xp—1
[chsz(Xﬁj+sJ)+chﬁk > J]

l—l" Jj=1

b4

+ D aME(C(X,. .., XN)?}/2, 6.3)
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with X the number of customers present at Q; at a cycle-beginning, and with
C(X},...,Xy) the length of such a cycle.

It can be shown that the optimal order for the next cycle is determined by
increasing values of the indices

u; = [/Yij‘*’Sj]/Cij. (6.4)

Observe that Eqs. (6.3) and (6.4) correct misprints in Section 4.1.3 of Boxma
et al. {4]. It is interesting to note that the presence of interruptions does not
change the optimal order of visits. When s; — 0, the index rule approaches the
well-known cu rule.

6.3. The Elevator-Type Polling Scheme

A static visit order that can be employed is the so-called elevator polling (see Alt-
man, Khamisy, and Yechiali [1]), in which the server first visits the installations
in the order 1,2,...,N — 1, N (“up,” or clockwise direction), then reverses its
direction, visiting the installations in the order N,N — 1,...,2,1 (“down,” or
counter-clockwise direction), then changes its direction again, and so on. An im-
mediate advantage of such a visit scheme is that it saves the switchover time S
from Qy to Q.

Under the GG service regime the marking of customers takes place each
time the server changes direction and starts a new cycle, whether it is a down
or an up cycle. If we assume that the switchover time, S;, to move from Q; to
QO:.1, has the same distribution as the switchover time in the opposite direction
from Q;,, to Q,, then all up and down cycles have the same distribution as C
(with the modification that Sy = 0). As a result, the combination of elevator
polling with the GG regime yields a “fair” system in which the mean waiting
times of customers (preventive maintenance jobs) at all installations are the
same —even though the traffic parameters at the various installations may dif-
fer. To see this, observe that the actual waiting time of an arriving customer at
QO depends on whether, upon that customer’s arrival, the server is in its up or
down direction. However, as all cycles are probabilistically the same, the prob-
ability of “catching” an up or a down cycle is 0.5. We can therefore write

EW, = 0.5E[W,|cycle N> 1] + 0.5E[W,|cycle | - N]. 6.5
Similar to the arguments leading to Eq. (5.2) we have

k—1 1 k—1
(Zij+pk)]+l_ s;.

Jj=1 KF j=1

E[W|cycle N - 1] =EC,[1 +
1~ pur

(6.6)
Changing direction and indices, it readily follows that

1 N 1 N—1
E|W,lcyclel - N =EC,[1 + (2 p;+p )] + s

6.7)
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Combining Egs. (6.5)-(6.7) results in

p 1 N—1
EW, —EC,[l + T W] + 20 =) A s ©.%)
It follows that mean waiting times are the same in each installation, just as in
the case without interruptions that was studied by Altman et al. [1].

Equation (6.8) can be easily understood by observing that an average mean
waiting time consists of a mean residual cycle time (before the start of the cy-
cle in which the arriving customer is served), half the mean total switchover time
(including interruptions), and the mean amount of work (including interrup-
tions) done in the cycle in which the arriving customer is served —but before his
own service. Using a balancing argument and the symmetry of the up and down
cycles, we can write this last term as 0.5(EC, + EC,)p/(1 — ur).

As in Altman et al. [1], one can study the measure of variation, |A,|, in
the waiting times incurred at Qy, where

A, = E[W,|cycle N> 1] — E[W,|cycle1 - N].

From Eqgs. (6.6) and (6.7) it can easily be derived that A, = X%/ a; —
SNie1a; — /(1 — pr), where a; = (2p,EC, + 5;)/(1 — pr). It turns out
that A, <0, Ay > 0 and that A is increasing in k. Thus, one is interested in ar-
ranging the installations so as to minimize the largest value of |A,|. Such a
goal is achieved when installation 1 has the largest value of all loads p;, and in-
stallation N the second largest load (or vice versa).

7. THE CASE OF THE DORMANT SERVER

So far it has been assumed that the server keeps switching from one queue to
another even when there are no customers present in the system. In the present
section we briefly consider the case in which the server remains idle in Q; when
Q:,...,0Qn are all empty at the end of a cycle. We refer to the forthcoming re-
port of Borst [2] for a detailed exposition of this problem, and for other poll-
ing problems with a nonmoving idle server, in the case without interruptions.

Suppose that all queues are idle at the end of the nth cycle; this event has
probability f;°exp[ —At] d Pr{C, < t} = C,(A), with A := XX, \; and C, de-
noting the length of the nth cycle. We say that an idle period starts at the end
of such a cycle. A new cycle can only start after a customer has arrived at one
of the N queues. There are two possibilities: (i) a customer arrives at one of the
N queues while the server is idle, waiting at Q, (probability z, to be determined
below), or (ii) one or more customers arrive at Q,, . .., Q) while the server is
in an interruption period, performing corrective maintenance (probability 1 —
z). In the latter case the n + 1st cycle only starts when the interruption period
is completed. In either case the n + 1Ist cycle consists of (possibly extended)
switchover periods and of (possibly extended) services of the customer(s) present
at the beginning of this cycle. Note that with ¢ = u/(u + A) = Pr{in an idle pe-
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riod, an interruption occurs before an arrival at one of the queues} and with
B()\) being the probability of no arrivals during an interruption period

l-qg

T=aP(@)’ oD

z= kZ_]O (PN (1 —q) =

Now we can write

Cpi1 (@) =S(0(w) [C,(8(w)) — C,(A)]
N
= ~ N & ~ ~
+ S(o(w)C,(A) [Z > A Bi(¢(w)) + (1 —2) [(P(6(w)) — P(A)}].
i=1
(7.2)
The first term in the right-hand side of Eq. (7.2) concerns the case in which the
nth cycle contains at least one arrival at Q,...,Qy, whereas the last term
concerns the case of no such arrival. Introducing
6 ~ -
F(w) :=1- z<1 - —(Tw)) — (1 = 2){P(8(w)) — P(A)},

and taking the limit for n — oo, writing C(w) = lim,_... C,(w) (note that p +
ur < 1), we can rewrite Eq. (7.2) into

C(w) = 8(¢(w) [C(8(w)) — C(A)F(w)]. (1.3)
We solve Eq. (7.3) iteratively, similar to Eq. (3.5). M iteration steps lead to

M
C(w) = IT S(o(6 () (M (w) — C(A)
m=0

M m
X 25 F(6™(w)) hH S5 (w))). (71.4)
m=0 =0

It can be shown that the sums and product in Eq. (7.4) converge and that
CM+D () —» €(0) = 1 for p + ur < 1; hence,

C(w) = TI S(¢(8(w))) — C(A) 3 F(8“(w)) TT S((8M(w)). (1.5)
m=0 m=0 h=0

Substitution of w = A in Eq. (7.5) leads to the determination of €(A) and,
hence, to that of C(w):

II S(¢(8U™(A))
m=0

CA) = (7.6)

1+ i F(8U(A)) ﬁ S(e(8"(A))
m=0 h=0

Cycle time moments can again be easily determined, and LSTs (cq. moments)
of the waiting time distributions can be expressed in the LST (cq. moments) of
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the cycle time distribution in a similar way as was done in Section §; cf. also
Borst [2]. As an example we obtain the mean cycle time, by differentiating both
sides of Eq. (7.3) w.r.t. w and substituting w = 0:

EC= —°

=1 [1=C)PA)Y( —2)]
—ur—op

_r
1 —ur—p

~ z

CA) | = 1 - . 7.7
(A) A + 1= “r( z)] a.7

Here the interruption period’s LST P(A) is determined as the unique zero of

x=R(A+ p(1 —x)) on (0,1) (cf. Cohen [6, p. 250]).

8. CONCLUSIONS

We have studied a repairman-type problem modelled as a Globally Gated poll-
ing system with server interruptions while providing a detailed analysis of cycle
times, queue lengths, and waiting times. The polling model is used as a vehicle
to analyze and optimize a real maintenance process in which a single repairman
is handling two types of maintenance, viz., preventive and corrective, generated
by various installations. We have derived the LST and first moment of the wait-
ing time distributions of preventive and corrective maintenance jobs for the two
cases where corrective maintenance gets priority according to the preemptive re-
sume discipline or according to the nonpreemptive discipline. We have also
derived rules for the static, as well as dynamic, optimal operation of such a
maintenance system.

From a mathematical point of view, the GG service discipline is much sim-
pler than any other service discipline in polling systems studied in the literature.
It appears to be amenable to a very detailed analysis, thus yielding much insight
into the queueing behavior of systems that operate under this or a similar dis-
cipline. The GG discipline can be viewed as a reasonably realistic service disci-
pline for modeling maintenance processes with a traveling repair crew. We
mention the following topics for additional research that might further enhance
the applicability of the model for maintenance situations:

(i) the corrective maintenance process depends on the amount of preven-
tive maintenance in the system,

(ii) the kth installation generates its own stream of corrective maintenance
requests with intensity u, and

(iii) other priority disciplines with respect to corrective maintenance are in
effect.
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