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ACCELERATING PROCEDURES OF THE VALUE ITERATION 
ALGORITHM FOR DISCOUNTED MARKOV DECISION PROCESSES, 
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URI YECHIALI 
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Accelerating procedures for solving discounted Markov decision processes problems are developed based on a one-step 
lookahead analysis of the value iteration algorithm. We apply the criteria of minimum difference and minimum variance 
to obtain good adaptive relaxation factors that speed up the convergence of the algorithm. Several problems (including 
Howard's automobile replacement) are tested and a preliminary numerical evaluation reveals considerable reductions in 
computation time when compared to existing value iteration schemes. 

The purpose of this paper is to derive and analyze 
accelerating procedures for convergence of the 

value iteration algorithm (VIA) used when solving 
discounted Markov decision processes (MDP). (For a 
survey of MDP applications see White 1985.) 

Various value iteration schemes have been devel- 
oped in the literature, aimed at reducing the compu- 
tational effort required for solving such problems. 
The main schemes are (see Thomas, Harley and 
Lavecombe 1983): 

Pre-Jacobi (PJ) (see Blackwell 1965): 

Vn M = Min {Ci (a) +/ 8 ,Pij(a) Vn - 1(j) i EI. 
aCAi jeI (1) 

Jacobi (J) (see Porteus and Totten 1978): 

Vn(i) - mn Ci(a) + /3 , Pii(a)Vn-1(j)] 

[1-83Pji(a)]} iE I. (2) 

Pre-Gauss-Seidel (PGS) (see Porteus 1975): 

i-l 

Vn (i) = min Ci (a) + /3 Pij (a) Vn (j) 
aCAi j= 1 

I| 

+ fEPij(a)Vn- (j) i El. (3) 
j=i 

Gauss-Seidel (GS) (see Kushner and Kleinman 1971): 

Vn(i) = rni{[Ci (a) + f E Pi; (a) Vn (j) 

+: E Pij (a)Vn - 1(j) 
j=i+l 

[1 - 1Pii (a)]} i El, (4) 

where, 

VO(i), i E I is an arbitrary chosen cost function; 
Vn(i) is the minimal total expected 

aiscounted cost when starting at state 
i, moving n periods and paying a 
terminal cost VO(j) if the process ends 
up at state j; 

Ai denotes the set of possible actions 
admissible in state i; 

Ci(a) is the immediate (one-step) expected 
payment when selecting action a E Ai 
while in state i; 

Pij(a) is the one-step transition probability 
from state i to state j when selecting 
action a E Ai; 

I is a finite set of states with cardinality 
III; and 

,8 is the discount factor E (0, 1). 

Subject classifications: Dynamic programming/optimal control: discounted Markov decision processes, value iteration algorithm. 
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All four schemes are directed at calculating the 
(optimal) values {V(i)}, i E I, that satisfy the opti- 
mality conditions: 

V(i) = min Ci (a) + X 1 Pij (a) V(j) i EI. (5) 
aEAi jEI 

The actions satisfying (5) comprise the optimal sta- 
tionary policy. 

Each value iteration procedure prescribed by 
(1)-(4) stops at the first iteration n when estimators 
V(j) are achieved which are within a predetermined 
tolerance error E of V(j). 

Letting 6n (i Vn(j) - Vn) n(j), and defining 

mn = min{'6(n)}, Mn = maxi{n(j)}, 

one can calculate bounds on the required V(j)'s. 
As the implied transition matrix in the form of (5) 

might not have equal row sums for all the schemes, 
one should use the general form suggested by Porteus 
(1975) to find the V(j) bounds as: 

Vn () + n /3'(n) m V(j) Vn (j) 

13"it(n) 
+ Mn jEI, (6) 1 /3"1(n)n 

where 

0\p'(fl) if M~ n O 
EH( )fllp"(n) otherwise 

and 

,,j t n) 
p "(n) if Mn > ? 

pn)otherwise. 

The values p'(n) and p"(n) represent the minimum 
and maximum row sums, respectively, derived from 
the transition matrix associated with the policy ob- 
tained at each iteration n. For the PJ scheme, one can 
use p'(n) p"(n) /3 = :'(n) = P"(n) for all n ? 1. 

To ensure IJ(i) - V(j)|I E for allj E I we use 
the stopping criterion: 

"(n) M /Mn (n) mn < 2E (7) 

so that, when the algorithm stops at iteration n, the 
values V(j), j E I, are calculated by 

17(] = Vn(]) + - [1n3"n 
2 [ / - (n) 

+ 1 '() (8) 

Procedures for solving undiscounted Markov or 
semi-Markov decision processes use the method of an 
adaptive relaxation factor (ARF) to speed up the con- 
vergence of the VIA. 

The idea is to replace the values Vn(j), obtained at 
iteration n, by the values Vn(j), formed as a linear 
combination of Vn(j) and Vn-l(j): Vn(j) = 
w V, (j) + (1 - w) Vn - 1 (j). The parameter w, whose 
value is determined anew at each iteration, is known 
as the ARF. Popyack, Brown and White (1979) sug- 
gested a "dynamic relaxation factor" depending on 
Mn and mn. In Herzberg and Yechiali (1991) we in- 
troduced two new criteria for selecting the ARF, w, 
when solving undiscounted MDPs. The criteria are 
termed minimum ratio and minimum variance. By 
using these criteria a good ARF is calculated in each 
iteration, so that the total number of iterations re- 
quired for convergence becomes smaller, and the to- 
tal computational effort is reduced, even though each 
iteration requires the extra work of determining the 
ARF. For the discounted MDP, Kushner and 
Kleinman and Porteus and Totten tested the effect of 
using a constant overrelaxation factor for various 
discounted VIAs. Porteus and Totten also pointed out 
that the order of calculation of the Vn(j) values might 
affect the convergence of the VIA when using the PGS 
or GS scheme. 

Another means of reducing computational efforts is 
to use the concept of action elimination. The idea is 
to exclude from the computations those actions that 
cannot be part of the optimal policy. (See MacQueen 
1967, Porteus 1975, Hastings and Van-Nunen 1977, 
and Puterman and Shin 1982). Usually, action elimi- 
nation does not affect the number of iterations per- 
formed until reaching the stopping criterion. 
Additional ideas regarding improved iterative compu- 
tation are presented in Porteus (1980). 

This paper extends our ideas from Herzberg and 
Yechiali, developed originally for the undiscounted 
MDPs, and apply them to the discounted processes. 
We use the method presented in Herzberg and 
Yechiali and introduce additional improvement so 
that the total time required for convergence is re- 
duced (in the problems tested) by up to 76%. The 
main idea, based on a one-step lookahead analysis, is 
to replace V,(j) by a modified value Wn(j) = 
Vn(j) + w,fg(j), where g(j) is a function of the 
differences 6n(])'s and the one-step transition 
probabilities. 

Following a one-step lookahead analysis (presented 
in Section 1), we modify the discounted value itera- 
tion schemes defined by (1)-(4). It is interesting 
that the same type of analysis applies to all four 
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procedures PJ, J, PGS, and GS. In Section 2 we use 
the criterion of minimum difference to develop a 
method for calculating a good ARF. In Section 3 we 
apply the minimum variance method to obtain a good 
relaxation factor. In Section 4 we present numerical 
results for several problems tested, and discuss var- 
ious computational aspects. 

I. MODIFIED VALUE ITERATION SCHEMES 

Suppose that after calculating the values Vn(i), i E I, 
at the nth iteration of the VIA, we apply the concept 
of relaxation and consider the values Vn(i), i E I, 
where 

Vn(i) -wV,(i) + (1 - W)Vn-1(i) 

=Vn-1(i)+W8n(i) iFEI. (9) 

Here w is the ARF such that, for w = 1, Vn(i) 
Vn(i) . 

We now look one step ahead and examine an esti- 
mator of the future value of Vn+1(i). This estimator, 
denoted Wn(i), will replace Vn(i) in the (n + 1)st 
iteration. Such an estimator has the prospect of being 
close to the next calculated value, V, 1 (i), thus caus- 
ing the VIA to converge faster. 

Denote by R1 the selected action for state i deter- 
mined by the VIA at iteration n. Then, for the PJ 
scheme, 

Wnl'(i) = Ci(Ri) + f3 2 PEj(Rj)J7n(j) 
jcI 

= Ci (Ri) + p > Pii (Ri )Vn 1(j) 
jE-I 

+ 3w E Pij(Ri)3n(j) 

That is, 

Wnp7(i) = Vn(i) + f3wg/ (i), (10) 

where, 

nPJ(i) = E Pij (Ri j) 6n ( j) (11) 
jEI 

Now, an estimator of n+1(i) would be 

a n + 1 (i ) 
- 

Wnpj(i ) -n(i ) - 

Substituting expressions (9), (10), and (11) we obtain 

6n+1(i) = 3n(i) + w[1gnP(i) - 6n(i)] (12) 

Clearly, for w - 1, X1(i) = pgPJ(j). 
For the Jacobi VIA scheme, 

WJ(i)-[ Ci (Ri ) + P( 2 Pi; (RRi )V)ln (j) 

[1- 8Pjj(Ri)]. 

Using relation (9) we derive, 

Wj(i) = Vn(i) + f3wgj(i), (13) 

where, 

gnJ(i) = Pey (Rj)16n (1[1 -3Pji(Rs )]. (14) 
Pei 

Also, it readily follows that 8+1(i) is given by (12), 
where g7J(i) is replaced by gJ(i) 

Considering next the PGS procedure, one can show 
(by induction) that if Vn(i) are replaced by Vn(i), then 

WPGS(i) = V (i) + pwgPGS(i), (15) 

where, 

i-i V 1 
gPGS(i)=-p ZPly(Rj)gPGS(j)+>Pjj(R)6nW(i)* 

j=1 j=i 
(16) 

Again e3IGS(i) is derived from (12) by usinggpGs(i). 
Finally, performing similar operations on the GS 

scheme, it follows that (10) (as well as (13) and (15)) 
holds for WGS(i), withg:s(i) replacinggP>(i), where 

gnS(i)= .|3 Pjj(Rj)gGS(j) 
j=1 

tI" 
+.zPjj(Rj )8nW ()1-3Pjj (Ri )] (17) 

and n (i) is once again given by (12) by substituting 
gf S(i) instead of gP9(i). 

To summarize: For all four schemes we have: 

Wn (i) = Vn (i) + 13wgn (i) 

and (18) 

6nt1 (i) = Sn(i) + W[3g9n(i) an(')] 

where gn(i) is calculated by (11), (14), (16), or (17) for 
the PJ, J, PGS, or GS procedure, respectively. 

As stated in the Introduction, the main new idea in 
our modified VIA is to replace V,(i) by the estimator 
Wn(i) = Vn(i) + f3wgn(i). In addition, we extend our 
methods of selecting a good ARF, w, so that the 
overall modified VIA will result in a considerably 
improved procedure. 

2. MINIMUM DIFFERENCE CRITERION 

Equation 7 would serve as our stopping condition for 
the modified VIA. If this condition has not been sat- 
isfied by iteration n, it seems plausible for the 
(n + 1)st iteration to find an ARF that will minimize 
the difference 

D(w) r= 1 (w) - rT2 (w), (19) 
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where 7r1(w) = maxi{'+ 1(i)}, and 772(w) = 

min {8+1(i)}. This is so, because 7r-(w) and ir2(w) 
are the estimators of Mn+ 1 and mm +1, respectively. 

Now, using (18), we have 

71 (w) = max{ 6(i) + wan(i)} (20) 

72(W) = min{8n(i) + wan(i)}, 

where, 

an(i) = 3g9n(i) - 8n(i). (21) 

Clearly, 7i1(0) Mn, 7w2(0) = mn, and D(O) = 

Mn - m 

Observe also that iil(w) (7T2(w)) is a piecewise 
linear convex (concave) function, being the max (min) 
of a set of linear functions. Therefore, D(w) is also 
piecewise linear, and hence, it is sufficient to examine 
only the endpoints of its segments when searching for 
w * that minimizes D(w). This implies that w * is 
found on one of the breakpoints, either of w1(w) or of 
7r2(w). Figure 1 depicts the case where w * is attained 
at a breakpoint of 7r2(w). 

For practical considerations we use the fact that the 
search over the segments on w2(w) is a "mirror re- 
flection" of the search over the segments on 7-1(w) 
(see Herzberg and Yechiali), so by multiplying both 
values of 5n(i) and an(i), i C I, by (-1) the search 
procedure over 7-2(w) is identical to that over 7r,(w). 
A systematic procedure for finding w* is as follows: 

STEP 0. Set w* = 0, 8 = Mn. Let h be the state 
for which An(h) = Mn. If h is not unique select the 
state with the highest value of a?(). Set a = an(h). 

STEP 1. Find w1 = minj an(j)>a{(8- -n(j))I(an(j) 
- a)} = (8 - Sn(k))/(an(k) - a) > 0. 

STEP 2. Find y = an(r) where minj{ n(j) + 
W1an(M j= Sn(r) + wlan(r)- 

Mn rI (M 

mn- 

0 w* w 

Figure 1. w* is attained at a breakpoint of 7r2(w). 

STEP 3. If a < y and a!(k) > y, set w* equal to 
w* + w1 and stop. If afn(k) < -y go to Step 4 (continue 
the search). If a > y go to Step 5 (move to 7r2(w)). 

STEP 4. Update Sn(j) = 3,(j) + w1an(j), j E I 
and w * = w + w1 . Set 8 = 8,(k), a = a,n(k) and 
go to Step 1. 

STEP5. Update Sn(j) = -, (j), aCn(j) = (j), 
j E I. Find 8 = Maxj,={8n(])} = n(u); set a = 

an(u), and go to Step 1. 

3. MINIMUM VARIANCE CRITERION 

In Herzberg and Yechiali we introduced the minimum 
variance criterion for selecting the ARF. By this cri- 
terion we select the value w * that minimizes the 
variance of the terms n+J(i), i E I. This criterion 
takes into consideration the entire set of 8n + l(i) 's and 
tries to keep them close together so that Mn + - 

mn+1 will be small. 
Consider the vectors 6n = {1n(i), i E I} and an = 

{an (i), j { I}. Then the vector An+l(w) = Sn + wa,n 
has components {an(i) + wa (i)}. Clearly, 

Var[An+1 (W)] 

= Var[8n] + w2Var[an] + 2wCov[8n, an]. 

(22) 

Setting the derivative of Var[An+l(w)] to zero, one 
gets 

= -COv[Sn an] (23) 
Var[atn] (3 

Since d2dw2{ Var[An+1(w)]} = 2Var[an ] > 0, the 
optimal value w * minimizes the variance of An + 1. In 
fact, w* represents the value of the regression coef- 
ficient in the linear regression of 8n on (- an), and is 
easy to calculate using (26): 

| [ E ~~~~6 n (i)] a: n (i) 

- [n 
i 

aa(i)] 
w* 

[i]2 
n() 

(24) 

Usually COv[8n, a,n] 0, and, consequently, 
w* ? O. This happens as a,n(i) = 83gn(i) - Sn(i), and 
5,(i) increasing (decreasing) usually results in a,n(i) 
decreasing (increasing). 
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4. COMPUTATIONAL CONSIDERATIONS AND 
NUMERICAL RESULTS 

The effort per iteration of the various value itera- 
tion schemes, for a fully-dense case of state-to- 
state transition probability matrix, is of the 
orderA III2 (where A is the average number of admis- 
sible actions per state). Real-dimensional MDP 
problems are usually sparse with an average of 
N ?< III possible one-step transitions, so that the 
effort per iteration is of the order NA II. The 
proposed procedures, which are aimed at reducing 
the number of iterations, try to achieve this goal at 
the expense of increasing the effort per iteration, re- 
sulting from calculating the terms gi(i), i E I and the 
ARF w *. 

The computational effort for calculating the value 
gn(i) is of the order NIII. The computational effort for 
calculating an ARF depends on the criteria selected. 
When using the minimum variance criterion the order 
is of 4 III (see (24)), while it is usually between 4 II and 
12jII when selecting the minimum difference crite- 
rion. The additional computation per iteration of the 
proposed procedures is therefore in the range 
(N + 4)1II - (N + 12)II . This is paid-off because 
reducing the number of iterations by 1 saves an effort 
of the order NA III. Thus, the method is particularly 
attractive for cases where A is large and 
NA II > (N + 4)jII. 

It is worth noting that values of the ARF, calcu- 
lated anew for each iteration by the proposed 
criteria, can be either less than or greater than 1, and 
at certain iterations may even reach the range 2-3. 
As a result, the relationship between bounds of 
consecutive iterations cannot be defined fully. How- 
ever, the concept of action elimination can still be 
applied, e.g., using McQueen's test after each value 
iteration phase. 

Several problems dealing with optimal resource al- 
location in telecommunication networks and 
Howard's well-known automobile replacement prob- 
lem (HARP), numbered as problem 5, were tested. 
The results are summarized in Table I. 

Each problem was solved three times for every 
procedure (PJ, J, PGS or GS): First by using 
the classical VIA; then by using the minimum differ- 
ence criterion for the corresponding VIA; and finally, 
by applying the minimum variance method. The 
same set of calculations were performed for two 
values of the discount factor: /8 = 0.8 and /8 = 0.9. 
For the stopping criterion we use a tolerance error 
E = 10-3 (see (7)). 

For each problem five entries have been defined: 

i. The number of iterations (NOI) when using the 
classical scheme (denoted ST NOI). 

ii. NOI when using the minimum difference (MD) 
criterion (denoted: MD NOI). 

iii. Percentage of CPU time-savings when using 
MD (denoted: MD %TS). 

iv. NOI when applying the minimum variance 
(MV) procedure (denoted: MV NOI). 

v. Percentage of CPU time-savings when using 
MV (denoted: MV %TS). 

From the table we see that improved results 
are achieved for problems where A is large (see 
problem 6). The performance of the proposed 
procedures for the cases where /8 = 0.9 is usually 
better than for the cases where ,3 = 0.8. This is so, 
because the coefficients a,(i) are restrained for 
small values of f8 (see (20) and (21)), while for 
high values of , the functions 7rl(w) and ir2(w) 
are more sensitive to changes in the values of w. 
Therefore, the effectiveness of our procedures, 
when selecting the ARF w*, is increased for high 
values of 13. 

5. CONCLUSION 

We have introduced new methods for selecting 
the ARF in value iteration algorithms used for 
solving discounted MDP problems. By applying a 
one-step lookahead analysis, we further modified 
the VIA schemes by replacing Vn(i) with an esti- 
mator Wn(i) = Vn(i) + f3wg&(i). These methods 
result in computational time-savings of up to 76% 
(for the problems tested). In the majority of cases 
the minimum difference criterion appears to be 
slightly better than the minimum variance method. 
The methods are attractive and the use of look- 
ahead analysis seems to be promising. In particular, 
this approach may be useful for cases where the num- 
ber of decisions considered per state is large and for 
cases where the discount factor is close to 1, for 
which convergence of the VIA is usually slow (see 
Scherer and White 1988). It seems that this approach 
and the new ARF criteria developed may enhance 
convergence of successive approximation procedures 
in general and therefore have the potential to be in- 
corporated in the modified policy iteration algorithm 
developed by Puterman and Shin (1978) for dis- 
counted MDPs, for which a successive substitution 
technique has been used instead of solving sets of 
linear equations. 
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Table I 
Number of Iterations (NOI) When Using the Standard (ST) VIA Procedure, the Minimum Difference 

(MD) Criterion and the Minimum Variance (MV) Rule (Denoted ST NOI, MD NOI and MV NOI, 
Respectively), and Percentage of CPU Time Savings With Respect to the Standard Procedure 

(Denoted MD %TS and MV %TS) When Applying the MD and MV Criteria 

PJ J PGS GS 
Case Scheme =0.8 /3 0.9 =0.8 =0.9 =0.8 3=0.9 3= 0.8 /=0.9 

Prob. No. 1 ST NOI 27 44 37 81 27 53 23 44 
A= 2 MD NOI 10 18 10 18 9 16 8 16 
III = 8 MD %TS 24.9 19.8 42.6 56.2 28.7 38.3 28.0 26.5 
N= 2 MVNOI 13 18 12 34 9 17 10 15 

MV %TS 3.7 15.1 35.3 18.4 29.3 34.0 17.4 32.1 

Prob. No. 2 ST NOI 28 43 38 80 28 57 24 45 
A= 4 MD NOI 11 16 13 14 10 16 10 16 
III = 10 MD %TS 34.7 39.4 48.4 71.3 44.4 54.6 36.5 46.3 
N= 2 MV NOI 14 20 15 23 10 16 10 14 

MV %TS 25.0 29.6 30.3 62.9 44.2 57.5 39.6 52.2 

Prob. No. 3 ST NOI 28 45 38 81 29 59 26 48 
A= 8 MD NOI 11 18 12 19 10 16 10 15 
III = 12 MD %TS 44.7 47.0 57.0 68.1 55.1 62.4 46.8 57.3 
N= 3 MV NOI 15 22 18 27 10 17 10 17 

MV %TS 31.6 38.3 41.8 59.3 56.4 63.5 50.5 54.5 

Prob. No. 4 ST NOI 31 45 39 79 32 65 28 48 
A= 16 MD NOI 14 19 15 25 11 20 11 17 
|I| = 15 MD %TS 47.4 50.3 57.1 64.2 59.2 64.4 53.0 59.0 
N= 3 MV NOI 16 19 20 37 12 21 12 19 

MV %TS 40.3 53.8 40.7 45.8 56.0 62.1 50.6 54.3 

Prob. No. 5 ST NOI 36 69 37 68 50 107 49 105 
(HARP) MD NOI 20 35 19 36 23 47 22 47 
A = 41 MD %TS 38.5 41.7 43.7 39.8 48.5 50.9 50.0 50.0 
III = 40 MV NOI 19 36 21 37 23 48 22 48 
N = 2 MV %TS 42.9 44.4 46.3 42.8 50.8 54.8 52.1 51.0 

Prob. No. 6 ST NOI 33 59 37 83 29 57 29 54 
A = 90 MD NOI 15 22 12 19 11 15 12 16 
III = 250 MD %TS 52.1 60.8 69.1 76.1 60.3 72.4 57.0 68.9 
N= 8 MV NOI 17 30 19 40 11 17 11 19 

MV %TS 47.2 48.0 47.6 50.9 61.3 69.6 61.1 64.0 

Prob. No. 7 ST NOI 32 67 31 67 29 58 29 58 
A = 10 MD NOI 11 20 10 20 9 14 9 14 
|I = 950 MD %TS 54.6 60.5 58.1 61.6 59.8 68.2 59.8 69.3 
N= 8 MVNOI 16 33 16 33 10 18 10 18 

MV %TS 41.2 41.4 35.2 41.3 59.6 63.3 58.5 62.9 
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