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Abstract

We consider a closed queueing network with a fixed number of customers, where a single
server moves cyclically between N stations, rending service in each station according to
some given discipline (Gated, Exhaustive, or the Globally Gated regime). When service of
a customer (message) ends in station j, it is routed to station k with probability Pj;. We
derive explicit expressions for the probability generating function and the moments of the
number of customers at the various queues at polling instants, and calculate the mean cycle
duration and throughput for each service discipline. We then obtain the first moments of
the queues’ length at an arbitrary point in time. A few examples are given to illustrate
the analysis. Finally, we address the problem of optimal dynamic control of the order of

stations to be served.

Keywords: Polling systems, Routing, Closed network.

1 Introduction

In polling systems that have been studied in the literature (e.g. [1, 3, 4, 6, 7, 8, 9]), one usually

asserts independent Poisson arrivals. However, there are situations where arrivals strongly
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depend on the departure process. One encounters such systems when an attempt is made to
model and analyze interactive communications via Local Area Networks whose operation is
based on token ring protocols. In such cases, a message is sent from a station only after it
receives a message from another station. Each station can transmit only when it receives the

token (typically a predetermined sequence of bits).

This leads us to consider, investigate and analyze closed polling systems, where a fixed

number of M customers are routed among N stations, with no exogenous arrivals or outside
departures. A single server moves cyclically between the queues, serving during each visit to
a queue some customers, whose number is determined by the service discipline. We focus on
the Gated, Exhaustive and Globally Gated regimes. Unlike many systems analyzed in the
literature, an (endogenous) arrival occurs only when a service is completed in some queue, and
the served customer is routed to another queue. The routing is governed by some transition

probability matrix P.

An open polling system has been recently studied in [6] where each station receives an
independent stream of exogenous Poisson arrivals, and a customer, after being served in some

queue, is either routed to another queue or leaves the network. There seem to be several basic
differences between the two models; in [6] the total arrival intensity into each queue is only
a function of the exogenous arrival rates and the routing matrix P, whereas in our model the
arrival densities depend on P, as well as on the mean service times and walking times. In
addition, in our model the server’s utilization depends also on the walking times, which is not
the case in the open system. Finally, in the model studied here, the number of customers in

the system is always the same and fixed, whereas in the open network this number fluctuates.

We derive explicit expressions for the probability generating function (PGF) and the
moments of the number of customers at polling instants, and calculate the mean cycle duration,
throughput and utilization for each service discipline. We then obtain the first moments of the

queues’ length at an arbitrary instant. A few examples are given to illustrate the analysis.

It is remarkable that, for a closed system, explicit expressions can be obtained for the
PGF and second moments of the number of customers in the system. This is in contrast to the
situation in open polling systems, where usually only implicit equations are obtained for the
corresponding PGF, and where second moments are expressed as an (implicit) solution of a set

of linear equations.

After introducing the model in Section 2, we analyze in Section 3 the Gated discipline.



In Section 4 we study a mixed regime where some queues are served exhaustively, while the
others are served according to the Gated discipline. A special pleasant feature of the closed
polling system is that by a simple transformation of the transition probability matrix P, the

mixed regime can be obtained as a special case of the Gated discipline.

Finally, we analyze in Section 5 the Globally Gated regime, and then address the problem

of optimal dynamic control of the order of stations to be served.

2 The model

A closed-network queueing system consists of N stations (queues), M customers (jobs, programs,
files, packets, etc.) and a single server who moves through the channels, typically in a cyclic
order (say 1,2,3,...,N-1,N,1,2,...). Upon completion of a visit at channel 7, the server incurs

a random switch-over time, D;, having mean d;, second moment dz(?) and Laplace-Stieltjes

Transform (LST) d}(e). We shall denote d = Y, d; the total expected switch-over time
in a cycle. The server resides in each queue according to the service discipline (e.g. Gated,
Exhaustive, Globally-Gated), and the service times of individual customers at queue ¢ (i =
1,2,...,N) are i.i.d. random variables (RVs) all distributed as a RV B;, having mean b;, second
moment bz(~2), and (LST) b(e). Upon completion of service at queue 7, a customer is routed
(instantaneously) to queue j with probability P;; (Zjvzl P;j = 1 for every i), and joins the
queue there. We assume, for simplicity, that the matrix P = {P;;} is irreducible, but allow P

to be periodic, which implies that a steady state distribution need not necessarily exist. The

stationary probabilities will be understood as the Cezaro limit of the finite time probabilities.
Thus, the stationary distribution of a Markov Chain whose transition probabilities are P is

given by the limit of 7130 _, ]55, as t goes to infinity.

3 The Gated Discipline

In this Section we analyze the Gated service discipline by which, in every visit to a queue, the
server serves only the customers present at the polling instant. New arrivals to the queue while

being attended by the server will wait for the next visit.

Let Xz-j be the number of customers under the stationary regime at queue j when queue



i is polled (instant where the server enters queue i), and let X; = (X}, X2,..., X¥). We have

J
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where A{ = AZ(XZ) is the number of customers (out of X?) that are routed from queue i to

queue j during the server’s visit in queue i. The Ag have a multinomial distribution:
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where E;VZI mj = X! . Let 4; = (A}, AZ,..., AV).
The probability generating function

Let Gi(z) = Gi(z1,22,...,28) = E[ N =12, ] be the probability generating function

(PGF) of the number of customers at the various queues at polling instants of queue 7. Then
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The last equality follows since
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i=1



The first moments

Let fzJ = E(XZ) Then by differentiating (4) with respect to z; and evaluating at z =1,
we derive
Y+ P froe
i _ 8Gi11(2) B i i [ #J 5)
+1 — i - )
z=1 P,L']’fiZ 1= _7
Result (5) simply states that the expected number of customers at queue j (j # 1), when queue
¢ + 1 is polled, equals the expected number of customers at j when queue ¢ was polled, plus

the expected number of customers routed from 2 to j during the visit of the server at queue 2

(Q;). For i = j, the term f} disappears in the expression for f; 11, as all f! customers are being

served during the visit of queue 3.

Summation (over j) of equations (5) yields

N N N N
j=1 j=1 j=1

7=1
JFi

Together with the condition

N .
S fl =M, i=1,2,..,N
j=1

a solution for f{ can be derived as follows. Using (5) we rewrite (for i = 1):

f3 = Puff
2
2 = f+Pafi=Pufi +Pufi=> Puff
k=1
(7)
N-1
v = fNoi+Pyoaify 1= Pufk
k=1

N
fio= fh+Puaff =Y Puff
k=1



In a similar manner,
N
fLL:Zszfliba t=1,2,...,N (8)
k=1

Equation (8) indicates that when the server enters queue 7, he finds there all those customers

that were routed to that queue since the server’s last polling instant. In matrix notation, with

f=(fi, f2, ..., f¥), equation (8) can be rewritten as

f=fP, or f(I-P)=0.

Consider now the stationary probability vector ® = (71, m3....,7x) of the transition matrix P.
7 is given as the unique solution of * = 7P, Ejvzl m; = 1. That is, f admits a multiplicative

solution of =,
f=er  (fi=cm). (9)

For a complete knowledge of the fZ’, it is just left to calculate c. From (5),

' = Punfy
) N
fl = D Pyff Jj=N-1,N-2..,2 (10)
k=j

N
flo= Y Pufi
k=1

Summing over j in (10), interchanging the order of summation and substituting f,{” = cmp,

yields:
N N N N k N k
M= =3NS P,;f= &Y Pj=cd m> Py
j=1 j=1k=j k=1 j=1 k=1 j=1
From which,
M
c (11)

~ N k
> k=1 Tk Ej:1 Prj



It follows from (9),(10) and (11) that

N
> k=t Pramy
k=1Tk Zj:l kj

fl=

Similarly, we write, fort =1,2,...,N,

1

_ ket PRIk

=y k
Poh=1Tk 2j=1 Lkj

1 M (1=1,2,..,N) (12)

where we use a cyclic summation implying that, if ¢ < [, then Ez;ll ap = Ei}[:l ar + Ei;ll ay, for

any real numbers aq,...,ay.

The expected cycle time E[C] is readily given by

N ) N N
E[C] =) biff+Y di=c)y mbi+d. (13)
=1 =1 =1

Finally, we denote by A the throughput of the system, which is the rate at which customers are

served (or rerouted). It is given by

AGated — EIZCV:]_ f]iC _ c
ElC]  ElO)

This follows from the fact that the expected number of customers served during a cycle is
Y Sk
Below are two examples where f and E[C] are calculated.

Example 1: Suppose P; ;11 = 1 fori < N and Py; = 1. That is, all customers in a given queue
are routed (after being served) to the next queue. This results in m; = 1/N, i =1,2,..., N (note
that since the Markov Chain induced by P is periodic, 7 is not equal to the limiting distribution
of the Markov Chain, since such a limit distribution does not exist). Substituting in (11) yields

M M
=MN.

TN 1)k ~ T o0+L.0 T =

Thus, ff = cm; = M. That is, eventually all M customers will accumulate in one queue and
then be routed from one queue to the next. Now,

N

E[C]=MN <Z Nb’) +d= i(sz-) +d,
=1

=1



since in each queue the server serves all M customers. The throughput for this example is

AG’ated _ MN
1 - N .

Example 2: Suppose P;; = 1/N for every 7,j. That is, customers are routed uniformly out of

each queue, so that (here too) m; =1/N,i¢=1,2,...; N (this time P is aperiodic, and therefore

7 equals to the limiting distribution). Now,

Thus, ¢ = 22 M, and

i=1,2,.., N. (14)

Using (13), we get

N
E[C] = ;—Jfl (Z b) + d.

To illustrate result (14), consider first the case N = 1. Then clearly, f{ = M. For

M = 2, fzZ = %M, i = 1,2. Indeed, when the server polls queue 1 he finds there (on the

average) 2M/3 customers. At that instant f = M/3. When the server leaves queue 1 and

moves to queue 2, the expected number of customers he finds there is

M 1/2 2
2 2 1

=fi+P =—+_-|-M)=-M.
=i 12f1 3 2(3 ) 3

For N =3, P; =1/3,and f! = % = M/2. Thus, if f{ = M/2 then fZ = M/3 and f} = M/6.

Indeed, from (10) we get

1M 1M M
2 2 3
fi h2fy + P3af3 372 + 379 3
1M M
3 3
= P = - = —
fi fi=35 =%
As for the throughput, we have
MN
AGeted = < A§*ed (for N > 2)

M2£1bi+w



Explicit Expression for G;(z)

We now derive explicit expressions for G;(z). Suppose that there is a single customer
in the system (i.e. M = 1). For such a case, let #;(7) denote the steady state probability that
the single customer resides in channel [ when channel ¢ is polled. Then, by setting M =1 in
equation (12) we have

(1) = NE?:I Pkkmk
D k=1Tk 2j=1Fj

This follows because, when M =1, f! = E(X!) = #;(i) = P{X] = 1,X{ =0 for j #l}. Thus,

(2

for M =1, Gi(2) = X2, (i) ;.

We now make use of the following observation by Resing [5]. Consider the state of
the original system (arbitrary M) at a polling instant of channel i. Then the location of
each individual customer is independent of the location of the other M — 1 customers, and its

distribution can be obtained by considering the system with M = 1. Using the above it readily
follows that for an arbitrary M, the PGF is given by

N M
Gi(z) = (Z ffj(i)zy‘) (15)
7=1

Remark: 7;(z) can be obtained directly by using the following approach. For each i =
1,2,...,N consider an N x N probability transition matrix P(i) constructed from the unit
matrix I by replacing its ith row by (P;1, P2, ..., Pin), the ith row of the original routing ma-
trix P. Let P(i) = P(i)P(i + 1)....P(N)P(1)...P(i — 1). P;(i), the (k,j)th element of the
matrix P(z), has the following interpretation: If a customer is found in channel & when channel

¢ is polled, then, with probability ij (7), it will be found in channel j at the next time that

channel 7 is polled. Now, the probability vector #(7) is the solution of the set of equations

A

#6) = 2@ P), Ly = 1.
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Second Moments

Let

. det 02Gi(2)
(0 k) = ——F%—
fi(G, k) 52,0

Then, for j = k, fi(j,k) = fi(j,j) = E[X! (X! —1)]. Otherwize, f;(j, k) = E[X!X}]. From
(15) it follows that
fi(g, k) = M (M — 1)7; (i) (1)

Number of customers at an arbitrary moment

Let F*(z) be the PGF of the number of customers at different queues at an arbitrary
moment (in the stationary regime). As in Sidi et. al. [6] (eq. (3.10)) F*(z) can be expressed as

N
1 4
F*(z) = — E [fib:F*(z| service period i) + d; F*(z| switch-over period i)]| . (16)
=1

E[C]
In order to obtain F*(z) we introduce the PGFs of the following quantities in stationary regime.
Denote the number of customers at an arbitrary switch-over instant, service beginning instant
and service completion instant at queue i by Fj(z), V;(z) and V;(z) respectively. Following

Eisenberg [4] and Sidi et. al. [6], we have

Gi(2) + fiVi(z) = Fi(2) + f{Vi(2) (17)
) N
Vi(z) = Vi(2) Z Pijz/zi (18)
j=1
Gi(z) = Fi_1(2) (19)

(18) follows from the fact that at the end of a service there is one customer less in the queue
being served, but one more in the queue to which this customer was routed (see also Sidi et.

al. [6] eq. (3.6)). We obtain
F*(z| switch-over period i) = G;11(2) (20)

F*(§| service period i) = V;(z) = [GHI(Z\%) — G@(g)]zz/fl
Yj=1 Pijzj — zi
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(where the first equality in (21) follows since there are no arrivals to any queue during a service

period). Substituting in (16) we get

e 1 [&S, Gl -Gi2)] |, , .,

The moments of the queues’ length at an arbitrary moment can now be obtained by differenti-

ating F*(z).
Sojourn times, throughputs to each queue and the system’s utilization

Let T; be the expected sojourn time of an arbitrary customer at queue ¢ (total time from
arrival to departure). Let L; be the expected length of queue ¢ at an arbitrary moment at the
stationary regime (it is obtained by differentiating (22)). Let \; be the throughput to queue
i, i.e. the rate at which customers arrive to that queue (from other queues). By Little’s Law,
we have E[T;] = E[L;]/)\;. It thus remains to obtain \;. The latter equals the expected total

number of customers arriving to queue ¢ during a cycle divided by the expected cycle duration,

ie.
)\Gated — Elzcvzl fII:PkZ — Czi}[:l ﬂ-kPk‘i — cm; — 7_(__AGated
‘ E[C] E[C] E[C] '
Hence
F|L;|F
sz - PILIEC]
CT;

By Little’s law, the expected sojourn time of an arbitrary customer at an arbitrary queue is

N k
E[T) = Aé\ied = ME(C] = E[C] ZWZPM

Cc

The utilization of the system is given by

N

C
pGated _ Z )\iGa,tede_ —

M
’Lbl — AGated sz
BlO) 2" 2

1 i=1

M=

i

where p is the proportion of time that the server is busy. Using (13), we have, as can be

expected from general balance arguments (see [1]),

d

1— Gated "

BlC) =1
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4 Mixture of Gated and Exhaustive regimes

We analyze in this section the case where some queues are served exhaustively, while the others
are served according to the Gated discipline. A special pleasant feature of the closed polling
system is that most of the performance measures for this mixed regime can be obtained as a
special case of the Gated regime, by a simple transformation of the transition probabilities P.
Indeed, assume that there is a set of stations E which are served according to the Exhaustive

service, whereas the other stations are served according to the Gated discipline. Consider the

following new matrix P of transition probabilities:

T4 j#ii€E

Pj=40 j=1,1€F
P i¢E

(This holds for N > 1 and Pj; < 1. When N = 1 and the single station is served exhaustively,
then trivially, X{ = M.) It follows that the PGF and the distribution of the cycle duration of

the mixed discipline polling system are the same as the PGF and the distribution of the cycle

duration when the Gated policy is used in all queues with transition probabilities P.

As an illustration, consider Example 2 from Section 3, and assume now that all stations

are served exhaustively. Then,

Hence,

m,=1/N,i=1,...,N, c oM, fi="0.

legvzl N1 E]kzl ij

For N =2, fi = M,i=1,2. (A queue is left only when it is empty, whereupon all customers
are waiting in the other queue). For N = 3, ff = 2M/3, fZ = M/3 and f} = 0. It is easily
seen that for N > 2 we get the same values f{, j=1,..., N —1 when the Exhaustive policy is

used, as we would get if there were only N — 1 stations and the Gated policy were used in all

queues.
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5 The Globally-Gated Regime

The (cyclic) Globally Gated (GG) service regime, recently introduced by Boxma, Levy and
Yechiali [3], possesses two attractive properties. (i) it brings the polling system closer to the
(fair) First Come First Served discipline (as opposed to the regular Gated or Exhaustive disci-
plines), and (ii) it enables one to obtain closed form results for cycle time, moments of waiting
times and other performance measures. Under this service policy, all gates are closed (globally)
at the moment the server polls queue 1, and during the coming cycle only those customers

“captured” (present) at @), at the start of the cycle, will be served at @;.
The probability generating function

Let G"(z) be the PGF of the state of the system (number of customers) X;(n) =

) L(n)]

N (i ()
[I="""

J
15=1

. Xi(n)
i

where the last equality follows from the same arguments as (3). Hence we get

(X{(n), X2(n),..., X (n)) at the start of the nth cycle. Then

N J N N I(Xi(n
G elXy () = B|T[2907x [T 2=

::12

Xi(n)

Il
=
=
R
=
N
Y
e
B
~

)

(n)]

L - N
= E "
fl= (11

N
G" (2 (Z Pz, Z Pojzj, ... Z PNj2j> .
j=1
In a stationary regime G(z) = G™(z) = G"T!(z) (and if a limiting distribution exists, then
G(z) = lim,_,» G"(2)). Hence, we have
G(2) = G(s(2)) (23)
where s(2) = (s1(2), 52(2), - s(2)) with s;(2) = Ti Py

Next we express the LST of the cycle duration in terms of G(e). We have

(e xi
{w Y <Ek=11 Bjk+Dj> }
E[e""c‘Xll,X%,...,XfV = E|e ’ x1 x2, .. xN
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|
\|::jz

[b*(w) H dj(w)

where, for every j =1,2,..., N, Bj; are i.i.d. and are distributed like B;. Thus
(w)=F [e_‘”c] = F {E' [e_“’c‘ Xl}} (24)

N
= G(bj(w),b3(w), ..., by (@) [ & (w)
j=1

First moments

By differentiating (23) we get

i 0G(s(2)) 0s4(2)
fi= Z 0sj(z) 0z

Jj=1

N .
=> AP (25)
z=1 j=1
so that, f, = f, P. Together with E,{Ll fF = M, the solution for fiis fi = cggmi, i =
1,2,...,N, with c¢qg = M. Thus,

fi= Mm,. (26)
The mean cycle time is given by
N ) N
E[C]=) fibi+d=M) mb;+d (27)
1=1 1=1

(the first equality can be obtained by differentiating (24)). It should be noted that in the GG
case, ff is the expected number of customers present at ); when the server polls this queue,

but only fi of which are served in the current cycle. We have,

i—1 i—1
:f{+Zf1kPki:Ml7Ti+Z7rkPki]. (28)

k=1 k=1
Next, we express the throughput of the system. As the expected number of customers
served during a cycle is Eiyzl fF = M, we readily have,

ElCl] MY | mbp+d




15

For Example 1 of Section 3 (P; ;+1 = 1), as well as for Example 2 (P, ; =1/N), m; = 1/N,
and thus,

M N
f{zﬁa E[C]ZZ
i=1

=| &

b; + d.

However, for Example 1, by using (28), fi = M/N+P,_1;(M/N)=2M/N and N, fi=2M,
whereas for Example 2, f} = M/N + (M/N)([i —1]/N) = M(N +i—1)/N?, and ¥, fi =
(M/N)([3N — 1]/2). The difference is that in Example 1 all customers at a given queue are

routed to the next queue where they will be served in the next cycle, whereas in Example 2,

customers are routed evenly to all queues.

In general, comparing throughputs, it follows that the throughput under the Gated
discipline, AG%¢?  is larger than that under the Globally-Gated discipline, A®¢. Indeed, from

Eq. (11) and (13),

AGated — ¢ — M ‘ > M = AGG.
E[C] ¥l mi[Mb, 4+ d X5_q Pij] — Thlq mi[Mby, + d]

Explicit Expression for G(z)

Consider our closed system in steady state at the start of a cycle. Then following Resing’s
observation [5], the locations of the M different customers are independent and identically

distributed, and their distributions are independent of M. Thus, suppose M = 1. Then

™ = P(X{ =1,X{ =0 for all i # j), and

N .

N [ xi
G(2)|y=1 = ZE[HZ]'I

XF=1;Xi=0, forall i # k} P(XF=1;Xi=0, forall i #k)

Then for arbitrary M,
M

N
G(2) = [Z zm] (29)
k=1

It is now easy to check that (29) satisfies equation (23). Also, result (26) can be readily derived
by differentiating (29).
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Second Moments

By differentiating (29) twice, we obtain
f1(3, k) = B(X{X{) = M(M = L)mjm, (30)

To express the second moment of the cycle time we use (24) and (29) and write

N M N
(w) = [Z b}:(w)wk] H d; (w) (31)
k=1 j=1
(from which equation (27) can readily be verified). By differentiating (31) twice we obtain

2k
E[C?] = 3§w(2w) _Zde{b +Zzb bifr(4, k +Ef{b Zd( )+Zd Z dp.
w=0 j=1k=1 Jj=1 k=1

k#j

Number of customers at an arbitrary moment

Let F*(2), F;(z), V;(z) and V;(z) be as in Section 3. (16) is used again to evaluate F*(z).
We obtain exactly the same expression for F*(z) as for the Gated discipline, i.e. Eq. (22). In
fact Eq. (18), (19), (20) and (22) remain unchanged, whereas in (16), (17) and (21) f! should
be replaced by f{ The moments of the queues’ length at an arbitrary moment can now be

obtained by differentiating F*(z).
Sojourn times, throughputs to individual queues and the utilization

With the same notation as in Section 3 we have

GG = S f1 Pei - M 334 7k Pri _ M,
Z E[C] E[C] E[C]

B[Li] _ E[L]E[C]

E[TL] B )\GG M’}T‘i

Finally, by Little’s law, the expected sojourn time of an arbitrary customer is

M  ME[C]

E|T] = <A

= E[C]
The utilization is given by

Mm;b

N
GZZEA’G%_Z e _AGGZ””
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which can also be derived from (27). Again, similarly to the Gated case,

d

BlCl= o5

Dynamic Optimization Under the GG Regime

We investigate a dynamic optimization problem, where the objective is to minimize the

long-run expected weighted holding costs in the different queues. We relax the constraint of
a _fixed cylic movement of the server and allow it to select a new Hamiltonian tour at the
beginning of each new cycle. Under such Hamiltonian polling scheme, switching times between
any pair of stations depend on both stations and not only on the station which is left by the
server. We consider a star configuration [2] where it takes S; units of time (ES; = s;) to switch
into station j and D; units of time (ED; = d;) to switch out of the station. A key feature to
this dynamic optimization problem is the fact that under the Globally Gated regime, both the
Hamiltonian tour duration and the number of customers at the various queues at the end of a

cycle (tour) are independent of the order of visits of the various queues. Both quantities are

in fact functions of the state of the system X; = (X}, XZ,...,X{') at the start of a cycle. It
thus follows that minimizing expected total weighted holding costs incurred during each cycle
individually, minimizes the long-run expected weighted cost. We assume that each customer
pays a holding cost of ¢; per time unit when in queue 7. The total expected cost Z during a cycle
(starting with X ;) is composed of two components: (i) the total (weighted) costs incurred by
all M customers in each and every queue before they are served and routed, and (ii) the total
weighted costs incurred by all customers after their routing. Thus, following a Hamiltonian

tour that visits the channels in the order 1,2, ..., N, we have

N k—1 ’ Xy
BlZ|1X)] = > en | XELD (sj+ X{bj+dj)+spp+ Y, mby (32)
k=1 j=1 m=1
N |'N X{ k-1 ' '|
+ Z [ZPIciCi Z E|lC|X,] - Z(3j+X{bj+dj)+3k — mby, J
k=1 [i=1 m=1 j=1

The first term of (32) results from the fact that in queue k, all X§ customers first wait for the
server to arrive and switch in, which occurs at time t = ;”;% (sj +X{b]- +d;) + s, and then the

mth customer (out of X§) waits an expected mby, units of time until he is routed (upon his ser-

vice completion) to some other station. As for the second term of (32), observe that a customer
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of queue k is routed to queue ¢ with probability Py;, and then the above mth customer resides in
queue 7 for the remaining of the cycle, namely for F[C|X ;] — [E;”;% (sj + X{bj +d;) + sk} —mby,

units of time (in expectation), incurring cost at a rate ¢;. Thus,

ElZ|X,] =

M-

N k—1
X{”(Ck — Z Pkici) Z(Sj + X{bj + d]') (33)
i=1 j=1

o~
Il
—

+
M=

Xk N Xk
|:Ck > mbp+ Y Pric; { > (BlC|X4]) - mbk)}]

m=1 2=1 m=1

o~
I

1

N N
+ > XEsp (Ck - ZPkici>
k=1 i=1

Now, as only the first term in (33) depends on the order of visits, the expected total cost per

cycle is minimized by the visit order that minimizes the expression

N k-1 N
Z Xlkék Z(SJ + X{b]' + d]’), where ¢ = ¢ — Z Pr;c;. (34)
k=1 j=1 i—1

If we partition the N queues into three sets: {+} o {k : ¢ > 0}, {0} o {k : é, = 0} and

{-} def {k : é < 0}, (clearly {+} U {0} U{-} = {1,2,..., N}), then the optimal visit order is
given by a cu-type rule as follows: arrange all queues belonging to the {+} set in an increasing
order of the index (s; + X{bj + dj)/(X{éj). Then arrange the queues comprising the {0} set in
any arbitrary order, and finally arrange the remaining queues (belonging to the {—} set) also
in an increasing order of (s; + X{bj + dj)/(X{éj). The optimal Hamiltonian tour is to first
visit the queues of {+} set (in the order specified above), then to visit the {0}-queues (in any
order), and finally to visit the queues comprising the set {—} following the above index rule.
The proof of the above follows by an extension of a standard interchange argument, usually
applied to the {+} set only (see e.g. Boxma, Levy and Yechiali [3]) to the current case where
all three sets {+},{0} and {—} may be non empty.
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