
One-Attribute Sequential Assignment Match Processes in Discrete Time
Author(s): Israel David and Uri Yechiali
Source: Operations Research, Vol. 43, No. 5 (Sep. - Oct., 1995), pp. 879-884
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/172041
Accessed: 28/06/2009 05:21

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=informs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Operations Research.

http://www.jstor.org

http://www.jstor.org/stable/172041?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs


ONE-ATTRIBUTE SEQUENTIAL ASSIGNMENT MATCH PROCESSES IN 
DISCRETE TIME 
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Tel Aviv University, Tel Aviv, Israel 

(Received February 1990; revisions received February 1991, June 1992; accepted August 1993) 

We consider a sequential matching problem where M offers arrive in a random stream and are to be sequentially assigned to N 
waiting candidates. Each candidate, as well as each offer, is characterized by a random attribute drawn from a known discrete- 
valued probability distribution function. An assignment of an offer to a candidate yields a (nominal) reward R > 0 if they match, 
and a smaller reward r S R if they do not. Future rewards are discounted at a rate 0 S a S 1. We study several cases with 
various assumptions on the problem parameters and on the assignment regime and derive optimal policies that maximize the total 
(discounted) reward. The model is related to the problem of donor-recipient assignment in live organ transplants, studied in an 
earlier work. 

W e use the term sequential assignment match pro- 
cesses (SAMP) to describe models where, typi- 

cally, N "candidates" are waiting to be matched with M 
random "offers" arriving sequentially in time. Assign- 
ments are made one at a time, and once an offer is as- 
signed (or rejected) it is unavailable for future 
assignments. Each candidate, as well as each arriving 
offer, is characterized by a fixed-length vector of random 
attributes X = (XI, X2, .., X,). These vectors are 
drawn from a known, discrete-valued, joint probability 
distribution function. An attribute may be thought of as 
human blood-type, sex, preference in music, certain en- 
zyme or antigen possession, and so on, each having sev- 
eral possible outcomes. The candidates' attributes are 
known in advance, while each offer's attributes are re- 
vealed only upon arrival. When an offer is assigned to a 
candidate the two vectors are matched, and the higher 
the compatibility the bigger the reward realized by this 
assignment. "Compatibility" here is measured by count- 
ing matching attributes. In this way, under any reason- 
able criterion, there are at most p + 1 possible match 
levels, where p is the attributes' vector length. The ob- 
jective is to find assignment policies that maximize total 
expected reward, both for discounted and undiscounted 
cases. 

The motivation for SAMP lies in the useful, yet diffi- 
cult, problem of optimal donor-recipient assignment in 
live-organ transplants. The decision whether to trans- 
plant an organ (e.g., a kidney) that becomes available 
depends on the degree of histocompatibility between the 
donor ("offer") and the recipient ("candidate"). One rel- 
evant criterion is the compatibility in the so-called HL-A 
antigen system. Basically, one counts the number of 

antigens of the donor that are not possessed by the recip- 
ient: There is an A-match when all donor antigens are 
possessed by the recipient, a B-match when only one 
antigen of the donor is not matched by the recipient, and 
so forth. With each match level a value is associated, 
such as the odds for a successful operation. This value is 
the "reward" of assigning a given offer to a waiting can- 
didate. An important aspect of the problem is that live 
organs must be assigned within a short time after arrival 
or else become unusable. Further description of the 
problem may be found in David and Yechiali (1985), 
where the concentration was on the single candidate 
case. In that study an appropriate time-dependent stop- 
ping problem was defined, and optimal assignment poli- 
cies were derived under several assumptions on: the 
arrival process and on the decay properties of the life- 
time distribution of the candidate. To bring the analysis 
closer to reality it is desirable to treat the case of many 
candidates competing for the randomly arriving offers. 
Thus, each time a graft becomes available, the problem 
is to select the candidate (if at all) to which a transplant is 
performed. 

The present work deals accordingly with a multicandi- 
date problem, with some prescribed number of candi- 
dates. It is assumed that p, the attribute vector length, 
equals 1. Thus, each assignment of an offer to a candi- 
date yields simply a reward R if they match, or a smaller 
reward r S R if they do not. The case p = 1 is relevant 
to problems that resemble matchmaking, such as techno- 
logical choice, or the typical "match-mismatch" sequen- 
tial assignment processes in biology (DNA replication). 
In the transplant application it refers to considering only 
one antigen possession. Previously we studied a version 
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of the problem in infinite horizon and with simultaneous 
arrival of candidates and offers (David and Yechiali 
1990). 

SAMP relates to the well known sequential stochastic 
assignment problem introduced by Derman, Lieberman 
and Ross (1972) (DLR). It is essentially the reward struc- 
ture that makes the difference between our model and 
that of DLR. In the latter type of problem, each offer 
and candidate carries a numerical value, and the reward 
from assigning an offer with value x to a candidate with 
value y is a continuous, often multiplicative, function 
r(x, y). Naturally, the optimal policies for SAMP admit 
a different form from those obtained for DLR-like 
models. 

Section 1 starts with a general case where the number 
of offers exceeds the number of candidates (i.e., M > 
N), and each candidate must be assigned an offer. There 
is a constant discount rate, tantamount to a fixed-rate 
decay of the lifetime distribution of the entire process. 
The main theorem states that in the case of distinct can- 
didates, the individually optimal (myopic) policy, in 
which candidates with rarer attributes are given higher 
priority, is also socially optimal. Rejecting an offer for 
any candidate in a group is optimal if and only if it is 
optimal to reject it in the case of a single candidate (cf. 
Righter 1987 for an analogous property in context of a 
DLR-like sequential assignment problem). Section 2 dis- 
cusses special cases and further properties, and in 
Section 3 we relax the constraint that each candidate 
should be assigned an offer. In the latter case, the opti- 
mal assignment policies are all of a control-limit type. 
Summary tables of the various results are presented. 

1. THE GENERAL CASE M > N WITH 
DISCOUNTING 

Our model deals with a one-dimensional, typically non- 
numerical variable X that represents a certain attribute 
with Q S oc possible outcomes. Let {P(X = xi)}9 l be 
the probability distribution of the attributes for the whole 
population, candidates, and offers. 

The reward from assigning an offer with a realization 

Xi to a candidate with a realization xi is a bivariate sym- 
metric function: 

R(X, Xj) =IR if xi xj (a match) 
R(x, 1) Jr if xi xj (a mismatch), 

where R and r are nonnegative reals, R ? r. Offers 
arrive sequentially, and each offer's value is observed 
upon arrival. The offers are independent of each other, 
and are assigned (or rejected) one at a time. We assume 
that M ? N, future rewards are discounted at a fixed 
rate 0 S a o 1, and each candidate must be assigned an 
offer. 

Denote by VNM(fl, f2, fN) the maximal ex- 
pected discounted total reward when there are N at- 
tribute realizations a 1, a2, ... ., aN of N waiting 

candidates (all taken from the distribution of X). M is the 
number of offers, and f,, ... , fN are the respective 
frequencies P(X = a1), ... , P(X = aN) of the N real- 
izations. Without loss of generality assume f, $ f2 
S * fN, such that candidate number 1 possesses the 
rarest attribute among all N candidates. The symbol f 
will stand for the probability that a random offer will 
mismatch all of the waiting candidates (if the candidates 
are distinct, f = 1 - >N fi) For a single candidate 
with realization ai, the expected reward attained when a 
random arriving offer is assigned to it is V1,1(fi) = 

E[R(ai, X)] = fiR + (1 - fi)r = (i. Using the notation 
(f) for (fl, * , fS N+I) and (f-i) for (fl, ,i-1, 

fi+ I v *... , fN+ I), the optimality equations are: 

VN+ 1,MA I (f) XI 

R + a VN,M(f_i)J{Xl ai} (match) 

= max r + a max VN,M(f_k) (a mismatch) (1) 
1a VN+ I,M(f) (rejection) 

for M > N. A similar formula holds for the case M = N 
where only the maximum of the first two expressions 
applies. 

Now, any assignment policy wr gives rise to a trans- 
formation from the set of all possible offer-streams x - 

(xi, x2, ..., XM) to the set of M! permutations of (1, 
2, ... , M). However, not all such transformations are 
legitimate policies. If 7-r(x)i denotes the candidate se- 
lected in round i (possibly a dummy candidate signifying 
rejection), then we must have wr(x)i = wr(y)i if Xk = Yk 
for all 1 S k s i. Arguing that as far as the given 
candidate attributes a I, . . ., aN are concerned, all other 
possible attributes realized by the offers can be treated as 
one, we see that there are only a finite number of rele- 
vant (nonrandomized) policies. 

To find the optimal assignment policy we need the 
following lemma. 

Lemma 1. It is optimal to assign a match whenever 
possible. 

Proof. Assume that at a certain stage the arriving offer 
can be matched with one of the candidates. If instead, in 
a given policy, this option is not exercised, there is an 
immediate loss of either (R - r) (the offer is assigned to 
a nonmatching candidate) or R (rejection). While this 
may allow for an additional future match of one of the 
currently nonmatched candidates, the present value of 
the future gain is at best a(R - r). The net gain is thus 
nonpositive with probability one. 

Lemma 1 implies that for any 1 < i, j < N + 1, 

(R - r) + a (VN,M(f i) - VN,M(f-;)) ? 0 

(a match with ai is better than any mismatch with a,), 
and 

R + aX(VN,M(L-i) -VN+I,MI(f)) ? 0 
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(a match with a1 is better than rejection). Also, the opti- 
mality equations (1) reduce to 

VN+ M+1(f)X1 -= as} = R + aVN,M(f-i) 

and 

VN+ I*M+ I (f)J{Xl ?ai for all i} 

r + a max VN,M(Lf (i) 
=max, ' (2) 

a VN+I,M(f)- 

The question is whether to reject a mismatch or to assign 
it to one of the candidates. In the case of a single candi- 
date (N = 1, M > 1) it is easy to see that the optimal 
stopping rule is myopic and independent of time, namely 
one stops if and only if stopping is better than waiting for 
the next offer and then stopping. Thus, ai rejects a mis- 
match if ao( > r (in which case we call ai persistent) and 
accepts a mismatch if ao( < r (nonpersistent). In the first 
case, 

Vl,M (fl) f R + (1-fI )-f 1aR + 

1 - aM-1( _f)M-I 

1 - a(1 -fl) 

+ (1 -fi )M-1a A1-1 

In the second case, Vl,M(f ) = (,. Both expressions are 
monotone in f,, and they are equal when f, satisfies 
a(} = r, namely f, - (1 - a)/a r/(R r) -p. 

Lemma 2. ForM N+ 1and any a,...N 

VN+I,M(f) -< VI,M(fl ) + VN,M(f2, * * * , fN+I ) 

Proof. Let vr* denote an optimal policy for the problem 
with M offers and candidate attribute vector (a , ... 

aN+1). For the same problem, let w' denote the policy 
which assigns a I whenever r* does, and rejects it other- 
wise. Similarly, let r" denote the policy which assigns 
one of the candidates in {a2, . . . , aN+ } whenever vr* 

does, and rejects it otherwise. Thus: 

VN+I,M(f) = VI7IM(fl) + VX,M(f2, fN+l ) 

% V1,M(fl) + VN,M(f2, f*N+I) 

The following two theorems will be proved simulta- 
neously by induction on M. 

Theorem 1. (Monotonicity). Let N < M. Let f = 

(ft, ... , fN), f = (f1, ... , fN). Suppose that fi < fi 
and fk= f= kfork ? i. Then VN,M(f) < VN,M(f). 

Note that monotonicity of VN,M(') in each argument im- 
plies that max, VN,M(f-i) = VN7M(f-I ) when f1 2 
1< f N+ I 

Theorem 2. (Optimal policy). If N <M and al, .. ., 

are distinct, then the optimal policy is to assign a match 
when possible, and to reject a mismatch or assign it to 
a1, depending on whether a41 ? r or af, < r. 

Proof of Theorems 1 and 2. The first part of Theorem 2 is 
Lemma 1. For M = 1 Theorem 1 is immediate, and for 
M = 2 so is Theorem 2 (a single candidate case). As- 
sume then that Theorem 1 holds for M - 1 (for any N S 

M - 1) and Theorem 2 holds for M (for any N < M). 
We first prove Theorem 1 for M. Let N < M and f1 ? 

p. Then aol ? r. So by Theorem 2 

N 

VNM(f) = E A[R + a(VN-1M-1 (f-k)] 
k=1 

+ fa VN,M I (f) 

N 

= fk [R + a(VN-I,M- 1(f. k) - VN,MI(f))] 
k=1 

+ aVN,M-I(f). 

(The number of candidates determines the dimension of 
f; now it is N). Differentiate the right-hand side with 
respect to fi. We get 

E ($fk )[R + a(VN_1,mM- (f-k) - VN,M-I(f))] k=l Iafi 

+ E fk 
a 

of iVN- 1M- I(f -k ) ofVN,M - i (f)) 

+ - aVN,M-I (f) = [R + a(VN-1M-I(f-i) 

VN,M-I(f))] + k fk a[$ VN.1M-I (f-k)] 

+ fa[fi VN,M- I(f) - 

The first brackets in the right-hand side are nonnegative 
by Lemma 1. The second brackets are zero for i = k and 
nonnegative for i X k, by the induction hypothesis (The- 
orem 1). By the same hypothesis the last brackets are 
also nonnegative. This shows monotonicity in fi. Now if 
N = M rejection is not permitted and if f I < SD rejection 
is not optimal (Theorem 2). In both cases we get 

N 

VN,M(f) = E fk(R + a(VN-1,M- 1(f_k)) 
k=1 

+f(r + aVN-I,M-1(Li-)) 
N 

= 2 fk[(R - r) + aVNI,M-1 (f-k) 
k=l 

- VN-1,MI (f 1))I 

+ aVN-I,M-I(f1,) + r. 

Differentiate and use similar arguments to show again the 
monotonicity of VN M( ) in each fi. Now we will prove 
Theorem 2 for M + 1. The case N = 1 was discussed 
separately. Let the number of candidates be N + 1, N < 

M. Equation 2 now transforms to 

VN+I,M+l (f) |{Xl? /a for all i} 

= max{r + aVN,M(L_ ), abVN+1,M(f)}. 
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Write the right-hand side as max {I, II}. By Lemma 2 we 
have 

a (VN+1,M(f) - VN,M(fl)) - aVi,M(fi ) = 1, 

and thus a'4 < r gives I > II. We complete the proof by 
showing that 46l ? r =X II ? I. Proving VN+I M(f) - 

VN M(f I) ? (1 is enough because multiplying by a and 
using a?l ? r implies II > I. For distinct candidates, 

wih= 1 - Nf with =1X,=1li 

N+1 

VN+ 1,M (f) = f f(R + VN,M- I (f-i)) 

+fVN+l,M(f)J{Xl ?eai for all i}) 
N+1 
> fi(R + a VN,MA 1 (f-i)) 

+ f(r + a VN,M- l (f - l)), (3) 

where the inequality follows from (1). Also, 

N+1 

VN,M(f-l ) = >2 fi(R + aVNv-,M_1 (f-lIIi)) 
i=2 

+ (f +fl)aVN,M-1(f-l), (4) 

(f + f, is the probability of a mismatch in the -1 case. 
In such a case, we reject by hypothesis because (2 ? (, 
and thus candidate 2 is persistent). Combine (3) and (4) 
to get 

VN+ 1M (f) - VN,M (f - I) 

N+1 > fi(R + a VN,M-1 (fL_)) +fr 
i=1 

N+1 
- fi(R+aVN-lM Im (f-l,-i))-flaVN,M-l(f-l) 
i=2 

N+1 

=f,R+fr+ 2,fi[at(VN,m-l (f-i~)-VN-I,M-1 (f-l,-i))]- 
i=2 

However, by the induction hypothesis (II > I) the 
brackets are at least r, so that 

VN+1 M(f)- VN,M(f 1 ) 

N+1 

f1R+fr+ E fir=f,R+(1-fl)r=1. 
i=2 

To summarize, the candidate with the rarest attribute 
is offered an offer that does not match any candidate, and 
(in the distinct candidate case) that candidate's decision 
is myopic. The combination of individually optimal (my- 
opic) policies, in which candidates with rarer attributes 
are given higher priority, is socially optimal. 

2. SPECIAL CASES AND FURTHER COMMENTS 

2.1. The Case M = N 

If M - N (no rejections), Lemma 1 and Theorem 1 
imply the optimality of the following policy for any az, r, 
and R, and any candidates a 1, . , aN. 

Intuitive Policy. If an ofer matches one or more of the 
candidates, it is assigned to one of them. Otherwise it is 
assigned to a candidate with the rarest attribute. 

The intuitive policy implies some simpler recursion 
formulas for the continuous reward functions VN: 

VI(f I)= I, 

N 

VN(f) - E fk(R + aVN-I (f-k)) 
k=I 

+f(r + a VN-l (fLl )) 

N 
= E fk,[R -r + aVN1I(f-k) - aVNI(fLl )] 

k=I 

+ aVNI(fLl) + r, 

where we assume for convenience that candidates are 
distinct. 

Stochastic Optimality. The intuitive policy is also sto- 
chastic optimal. We outline the proof. First, write the 
optimality equations for the problem of stochastically 
maximizing the number of successes, where a success 
means a well-matched pair (i.e., assuming R = 1, r = 
0). Denote by V,,,k the maximum probability of at least k 
successes out of n candidates, and we have (where, for 
simplicity, we assume distinct candidates and no dis- 
counting), 

Vn,k (f) - fi Vn,k (f)I{Xl = ai} + 1 - 21fi Vn,k(f)l 
i=l1= 

{Xl ?ai for all i}, 

where 

V`n,k(f)|{X -=ai} 

- max{Vn-X,k-1(f-i), max Vn- ,k(f-j)} 

V,1 k(f){XI ?ai for all i} 

= max Vn-(I5f-i)), 

with Vn_k = O for all k > n, V,,,( 
= 1 for all n 3 0. 

Now, let V,,,k be the probability of at least k successes 
out of n when applying the intuitive policy. Then, 

tl ~~~~~~~~n 
V f)- E Vn-Ik-I(f -i + 1 E fi)Vn_l,k(f_l) 

(6) 

with V",,- 1 for n > 0, and Vl,k - 0 for k > n. 
Furthermore, by induction (David and Yechiali 1989), 
the constants V,1,k defined recursively in (6) satisfy 

Vt_I,k_I(f-i) V_I,,k(f-j) for all 1 S i, j l n, 

V_l,k(f-l) > V-lk(fj) for all1 j1 n, 
where f1 < f2 A *. ft. Thus, the V1",kIs satisfy (5) 
and the intuitive policy stochastically maximizes the 
number of successes. Now, for any R and r, if Yv. is the 
(random) number of successes under a given policy 7r, 
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and U. is the (random) reward incurred by w7, then U7T 
= (R - r)Y., + Nr, which is linearly increasing in Y. 
Stochastic optimality of the intuitive policy thus 
follows. 

2.2. Special Cases With M > N 

If M > N and a = 1 or r = 0, it is clear that the 
following policy is optimal. 

M-Intuitive Policy. As long as the number of remaining 
offers exceeds that of the remaining candidates, assign 
only a match. As soon as M = N, follow the intuitive 
policy. 

We now rephrase Theorem 2 in the following form. 

Theorem 2. (Alternative formulation). Suppose that at 
some stage there are N distinct candidates with frequen- 
cies f I *. * * ftN, and Mfuture arivals (M ? N). Let 
the discount factor be 0 6 a o 1, and the rewards R ? 

r > 0. Let ep = (1 - a)/a r/(R r) (a constant 
independent of M or N). If it, 0 < it 6 N, is such that 
? = f < f I -< fr 2 < fi % P< fi;l + I f N7 

then the optimal rule is to cpply an intuitive policy to 
candidates a1, a,, ..., a and an M-intuitive policy 
to the other candidates. 

The cases r = 0, or a = 1, where the optimal policy is 
M-intuitive, now follow as special cases with (p = 0. We 
refer to the policy stated in Theorem 2 as the combined- 
singles (CS) policy. 

The Issue of Distinct Candidates. Theorem 2 (with a < 1 
and r > 0) requires the candidates to be distinct, while 
this requirement is not ilecessary in the other cases men- 
tioned. Can the restriction be dropped in Theorem 2 as 
well? The answer is negative. 

Example. LetN=2,M=3, a I-a2, and f,=f2=f. 

A straightforward computation shows that if ep < f, but 
(af/(l + af ))f < (, then al or a2, although persistent 
as singles, must be assigned a mismatch and thus the CS 
policy is not optimal. 

Informally, the presence of another identical candi- 
date, to whom a future matching offer would be assigned, 
"interferes" with the future prospects of a given persis- 
tent candidate. It therefore might be better at some stage 
to assign it a mismatch. 

3. THE CASE WHERE NOT ALL CANDIDATES 
MUST BE ASSIGNED 

The assumption in classical sequential assignment 
problems that each candidate should be assigned an 
offer is natural when dealing with "Cjobs" and "work- 
ers." HIowever, relaxing that constraint may only im- 
prove total expected reward. Furthermore, in 

applications such as the transplant assignment, candi- 
dates may "leave the system" (die), so that assign- 
ment to all candidates is not guaranteed anyway. 
Therefore, in this section we no longer assume that 
every candidate should be assigned an offer, and we 
also allow for the case where M < N. 

To avoid repetition, we state that Lemma 1 and the 
monotonicity of VN(f) still hold. Thus, upon a mismatch, 
we focus on the candidate with the smallest frequency 
fl, for possible assignment. Monotonicity then calls for a 
control-limit policy, with a control ep on fl. We therefore 
consider the following rule. 

yp-Intuitive Policy. For any N, M and a, let f, - f2 
< * - v fN. If an offer matches one of the candidates 
assign it. If not, assign it to a I provided fl < ep, or else 
reject it. (ep is to be calculated, typically a function of the 
fi s.-) 

Remarks. The intuitive policy is the ep-intuitive policy 
(epI) with ep = 1. The M-intuitive policy is 'pI with 'p = 0. 
The combined-singles policy is 'pl with 'p = (1 - a)/a - 

r/(R - r), independent of the fti's. 

It is left to calculate the control for the various cases. 
We assume that the candidates are distinct. 

3.1. The Case M> N 

Proposition 1. ForM > N, 'p = (1 - a)/a r, where r = 

r/(R - r). 

Arguing informally, let us consider a mismatch. Then, 
if a is nonpersistent (i.e., f1 < 'p) the presence of 
other candidates cannot turn him persistent. On the other 
hand, if a I is persistent, then in the previous model, with 
possibly forced assignments in the future, the offer 
should be rejected (Theorem 2). It is all the more so 
when assignments are not forced, as in the present case. 
The formal proof follows by induction, as in Theorem 2. 
(Note that for N = 1 the two models coincide.) 

3.2. The Case M S N 

The case M = 1 is trivial. For M = 2 we have the 
following proposition. 

Proposition 2. For M = 2 and any N > 2, (p = P/a, 
independent of the fi's. 

Proof. On a mismatch we compare I: r + aVN_I M=I 

(f2, fN), and II: aVN,M= I (f). But naturally 

VN,I( f) - (fl ) R + ( N - > i)r 
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Table I 
Optimal Policies for the Case Where All Candidates Should Be Assigned 

Candidates Discount Factor Second Prize 
Case M Versus N a,..., aN a r Optimal Policy 

1 M = N Any a = 1 Any I 
2 M= N Any Any Any I 
3 M > N Any a=1 Any MI 

(or M = co) 
4 Any Any r = O MI 
5 Distinct Any r > 0 CS 
6 Not distinct Any r > 0 yOI 

I = Intuitive; MI = M-Intuitive; CS = Combined Singles; q1 = qp-Intuitive. 

Table II 
Optimal Policies When Candidates May Be Left Unassigned 

Case M Versus N Candidates Discount Factor Optimal Policy Remarks 
1 M > N In all cases 

(Cases 3-6 same as Table I 
of Table I) 

2 M = N Any a = 1 qOI Compare with Table I 
3 M =N Any Any qOI 
4 M < N Any Any qpI 

5 N ? M = 2 Distinct Any pOI R rr 

6 N ? M = 3 Distinct Any qpI Formulas for 'p are given 
in Proposition 3 

Subtracting II from I we get 

r + a[( fi )R + (1- if,) (r J)R ) ( if- r)] 

- r(1 + af1) - afiR. 

Equating this to zero and letting f = rl(R - r) we get the 
stated result. 

Note that for M - N = 2 the intuitive-policy is no 
longer optimal. 

Proposition 3. For M = 3, N 3 3, let 

N N 

F+=+ a fi, F- =1 - a I fi. 
i=2 i=2 

Then 

{ r (F+ - a) if f2+ (1- aF-) 

(, af2F 
-eF + F + otherwise. kaF+ F+ 

The result for this case emerges, similar to Proposition 
2, by comparing terms and direct computation. 

It is evident that the calculations of the controls be- 
come more difficult with larger values of M. 

Tables I and II summarize the results for the optimal 
policies under the various assumptions. 
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