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A Queuing-Type Birth-and-Death Process Defined on 
a Continuous-Time Markov Chain 

Uri Yechiali 

Tel-Aviv University, Tel Aviv, Israel 

(Received April 12, 1971) 

This paper considers an n-phase generalization of the typical MIM/1 queuing 
model, where the queuing-type birth-and-death process is defined on a con- 
tinuous-time n-state Markov chain. It shows that many models analyzed in 
the literature can be considered special cases of this framework. The paper 
focuses on the steady-state regime, and observes that, in general, closed-form 
results for the limiting probabilities are difficult to obtain, if at all possible. 
Hence, numerical methods should be employed. For an interesting special 
case, explicit results are obtained that are analogous to the classical solutions 
for the simple M/M/1 queue. 

CONSIDER A 'phase-process' that is an n-state irreducible, aperiodic Markov 
chain with probability transition matrix IIqiljI, i, j= 1, 2, *, n, and qii=O for 

all i. Consider also a birth-and-death process defined on the states 0, 1, 2, 3, * *. 
Let X(t) and Y(t), respectively, denote the phase of the Markov chain and the 
state of the birth-and-death process at time t. Let Y(t) and X(t) be related such 
that whenever X(t) =i, i= 1, 2, *, ** n, and Y(t) =m, m=0, 1, 2, 3, * *, the birth- 
and-death rates are Xim and Aim, respectively. Moreover, assume that the phase 
process is a continuous-time Markov chain, where the sojourn time in phase i is an 
exponentially distributed random variable with mean 1/vi. We thus have a birth- 
and-death process on the nonnegative integers with rates depending on both the 
states Y(t) and an extraneous phase process that is a continuous-time Markov 
chain. 

In the context of queuing theory, we may think of Y(t) as the number of cus- 
tomers in the system at time t, where the system is said to be in state Eim at time 
t if X(t) = i and Y(t) = m. The arrival process is a heterogeneous Poisson process 
with arrival rate that assumes the value Xim . O whenever the system is in state 
ESM. The service process is of an exponential type with rate of service ,Aim _ 0 
whenever X(t) =i, Y(t) = m ;O, and with Auio=O for all i. 

Define the limiting probabilities of the system as follows: 

Pim=limt+oo P[X(t) =i, Y(t) =ml. (i= 1, 2, * * *, n; m=O, 1, 2, ) (1) 

As is well known,t11 these limits always exist and are either all positive (steady-state 
case) or all vanish. In the sequel we will focus our interest on the steady-state 
regime. 

Balance Equations 

Writing Kolmogorov's forward differential equations,"' and passing to the 
limit as t goes to infinity, we obtain the steady-state balance equations of the system: 
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(X io qjj) Ptnio = ilPil+ ZJ-o O jq 
n 

qpjo (i= 12, , n) (2a) 

qij) Pir= Xi, r-lpi, -l+?.i, +lpi,m+lrn2i 

+ (Xamjm ? :j-li O jqjipjem. (i= 1, 2, ..,n; m>0) 

Define n7ij=n77iqij for i, j= 1, 2, ** , n, and let Xim=O for m<0. On recalling that, 
for every i, ,uo = 0 and qii = 0, equation (2) may be rewritten as 

(Xi?m+Gui?m+ 7ii) Pim = Xi,im-lPi,im-l+/i,rm+lpm+l +? Aj 77jiipjm) 3 
- ~~~(i- 1, 2, *,n; m_0)() 

By examining the set of equations (3), it is readily seen that, once the n probabilities 
pio (i = 1, 2, ***, n) are known, all probabilities pim may be calculated recursively. 
However, as will be apparent in Section II, it is difficult, if at all possible, to obtain 
explicit solutions for the probabilities pio. Moreover, the pio's can not be found by 
using equation (3) alone. In order to obtain these probabilities we will have to use 
techniques employing generating functions. In a special interesting case, though, 
we will be able to derive some closed-form results that will resemble the well known 
results for the classical M/I/1 queuing model. These results will be developed in 
Section III. 

The Probabilities pi. 

Summation of (3) over m yields 

77iPi- = j=1 Vjipj., (4) 

where pi. = mO pim is the (marginal) probability of the phase process being in 
phase i (i= 1, 2, * * , n). Clearly, result (4) could have been obtained directly by 
considering, independently, the phase process X(t) by itself. 

In contrast to our apparent inability to derive closed-form solutions for the 
probabilities pim, results for the phase probabilities pi. can be obtained explicitly. 
We recallt11 that, for the irreducible aperiodic finite Markov chain qij the limiting 
probabilities { 11I, j = 1, 2, * *, nJ are all positive and uniquely satisfy 

D-1 Ej=1 Hj= iqijn (j= 1 2,* n) (5) 

Since Z2~im pi. = 1, the unique solution of (4) is 

pt- = [llt/n]/[~k- (Hk/nk)]. (i= i, 2, * *, n) (6) 
Clearly, pi. is independent of the arrival and service rates. 

Equation (6) may be interpreted as follows: Given that the system is in phase 
i, the mean sojourn time is 1/X4'. Hence, the 'average' cycle length of the phase 
process is Ek1 (Hk/nk), while the fraction of time the system spends in phase i is 
pi. = (Ii/71o)/Zk=1 (k/k) X 

A Necessary and Sufficient Condition 

Starting with m = 0 and summing each of equations (3) over i we obtain the 
recurrence relations 

.0-1 \494 = .4-1 U4 .11fo 11. (m = 0. 1. 2. , (7) 
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By summing (7) over all m, we arrive at 
m oo j Ximpim= zmroo i=n Em=O i=1 Wau =1 m El =1 po4mpom. (8) 

We now restrict ourselves to the consideration of an n-phase generalization of 
the M/M/1 queuing process. That is, for i= 1, 2, ** , n we let Xim=Xi for all 
m U him = 4i for m> 0, and pio =0. Equation (3) is now transformed into 

(Xi+?+? 7i) pimr = Xipim-i+?ipir++ ? Z fjipJrn 

(i=1,2, .,n;mO) (3') 

where pi.n=O for m<0. On defining a= t-1 pip. and X= i=1 Api., we can 
rewrite equation (8) as 

,4A Et-=1 luipto. (9) 

Since the steady-state regime exists if and only if piO>0 the necessary and sufficient 
condition for its existence is pi-X>0. That is, for the equilibrium condition, the 
average service capacity of the system must exceed the average arrival rate. 

I. RELATED MODELS 

A SIMILAR SYSTEM with n=2, and Xim= Xi, Iim= 1i (hio =0) for i= 1, 2 and m=0, 
1, 2, . was considered by YECHIALI AND NAOR. 41 In that study the system was 
viewed as an M/M/1 queuing process defined on a continuous-time Markov chain 

with qij = 01 0' and mean sojourn times 1/ri. MITRANI AND AVI-ITZHAKE2I 

studied an M/M/n queuing system with service interruptions. In their case, Y(t), 
the phase of the process, was defined as the number of operating servers. It is easy 
to transform the present general case into their case. To do this a 'zero' phase is 
added to JIqijJI such that the Markov chain consists of n+ 1 phases {0, 1, 2, * * , n1. 
We then let Xim = X for all i and m; hom = 0 for all m; pim =my, if i m; and gL = i,=, 
if i ? m. In their notation the breakdown rate of an operative server was i, whereas 
the repair rate was 7. Thus, after letting 7i=it (n-i) X and 

(i4/n1, if J=i-1, 
qij= (n-i)nq/ni, if J=i+?1, 

0O, otherwise, 
the transformation is complete. 

A closely related model was treated by NEUTS,[31 who studied an MI/G/1 queu- 
ing process defined on an extraneous continuous-time Markov chain (=the phase 
process). The assumptions he made are that Xim= X for all (im), and that the 
service-time realizations are drawn from an arbitrary distribution function Hi( ) 
whenever the process is in phase i. In addition, his model differs from the present 
one and the one discussed in reference 4 by assuming that the service-time distribu- 
tion of a customer depends only on the phase state at the beginning of his service, 
whereas here the rate of service of an individual customer may fluctuate with the 
changes in phase. 

The models analyzed in references 4- and 2 were shown to be generalizations of 
many special cases studied previously in the literature. The present study is thus 
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a further generalization of the theory. In addition, references 2, 3, and 4 contain 
discussions on the pragmatic aspects of the model together with indications of areas 
of applications. These studies also contain extensive lists of references. 

II. GENERATING FUNCTIONS AND ZERO PROBABILITIES 

LET THE PARTIAL generating functions Gi(z), Izi _ 1, i= 1, 2, * * *, n, be defined by 
G (z) = Em-0 zmpim. Multiplying each equation of (3') by zm (m=0, 1, 2, * ) 

and summing over all m, we obtain a set of n linear equations involving Gi(z): 

[Xiz ( 1-z) + pi (z - 1) + t7iz]Gi (z)-:_ E x qiizGi(z) = Iipio(2-1). (10) 

Following the notation and method introduced in reference 2, we let 

fz ) = XiZ ( 1- Z) -Y ( 1-Z) + 7z (i= 12, ,n) 

fi(Z) -121Z -131Z * * i -1.Z 

A(z) - -712z f2(z) -7732Z ... -7n2Z 

-71inZ -72nZ - 773nZ ... fn.. 

Gi(z) ,Ul1plO 

g(z)= 2z b= 20. 

-Gn (Z) /npnp J 
In matrix form equation (10) is now written as 

A(z) g(z) = (z-1) b. (11) 

For all values of z where A (z) is nonsingular we have 

JA(z)JGi(z) =JA(z)I(z-1), (i=1, 2, ,n) (12) 

where IAI stands for the determinant of a matrix A, and the matrix Ai(z) is obtained 
by replacing the ith column of A(z) with b. 

In equation (12), Gi(z) is expressed in terms of the elements yitpio of b. Our 
problem is now to find the values of the n unknown 'zero' probabilities. Since 
IA(z) I is a polynomial of degree 2n, and IA(1) I =0, we may define a new polynomial 
Q(z) of degree 2n-1 by IA(z) j= (z-1)Q(z). We thus have 

Q(z)Gi(z) = jAi(z) j. (i= 1, 2, * , n) (13) 

We recall that equation (9) gives us one linear relation in the n unknowns pio. 
In addition, from equation (13) it follows that IAi(z) I = 0 whenever Q(z) = 0. 
This fact can be used to gain the additional n- 1 linear relations (in the n unknown 
probabilities) in the following way. 
THEOREM. The polynomial Q(z) (or, alternatively, IA(z) I) has exactly n-1 distinct 
real roots in the interval (0, 1). 

The proof is a very elaborate adaptation of the proof given in reference 2 (pp. 
632-634) and therefore will be omitted. We just indicate that, in principle, it is an 
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inductive proof employing a sequence of polynomials Qk(z), k= 1, 2, ***, n, which 
are the determinants of the main-diagonal minors of A(z) starting from the lower 
right-hand corner of the matrix. 

If we denote the n-1 distinct roots of Q(z) in (0, 1) by zj, j= 1, 2*, n-i, 
equation (13) becomes 

lAi(zj)I=0. (j=1, 2,*, n-1; i=1, 2, ** *, n) (14) 

However, from (13) we observe that, for each zj and any pair 1 <i, k<n, jAi(zj)1/ 
lAk(zj)I=Gi(zj)/Gk(zj)=constant. Thus, for each zj we have n homogeneous 
linear equations that differ from each other only by a constant multiplier; that is, 
(14) yields only one independent equation for each zj for j= 1, 2, * * *, n-1. 

It is evident now how difficult, if at all possible, it is to obtain explicit expres- 
sions for the roots zj, j= 1, 2, * * *, n-1. Even for the case n= 2, it was pointed out 
in reference 4 that, in general, no closed-form relations are available for the proba- 
bilities pio, and, except for numerical results, no analytic comparison to the elegant 
results of the classical M/M/1 queue can be made. In one special case, however, 
such results are obtainable, and a comparison can be made. We analyze this case 
in the following section. 

III. THE CASE Xi/pyj= FOR ALL i 

WE LET Xi/,gi= 0 for all i= 1, 2, .. I, n. As was shown in reference 4, this is the 
only case where we can derive results that are similar to the ones of the M/M/1 
queue. It follows immediately that Xil i= 0 for all i implies A/,u= 0. Moreover, 
it was argued and shown in reference 4 that in this case (and in this case only) we 
have 

pim=pi.p.m, (i=1, 2 n; m>0) (15) 

where P.m = S pin denotes the (marginal) probability of having m customers 
in the system, m=0, 1, 2, 

Equation (15) implies 

Pio/Pi- = P-o. (i= 1, 2, ,n) (16) 

Let the busy fraction p of the service station be represented by 

P = 1 - Ei-1 Pio. (17) 
Substituting (16) in (17), we obtain 

P= 1-P.o. (18) 

On combining (16) and (18), and utilizing (9) we arrive at 

X/,= A/{ I /iy[pio/(l1 p) ]3 = (1-p) A 

from which it follows that 
/A 0 (19) 

We can now show the following result. 
THEOREM. If, for all i, Xi//,ui= 0 (which implies that 0=p=X/ju), then (i) for 0< 1, 

pim=pi.(l-p)pm, (i=1, 2, * *, n; m0) (20) 

and (ii) for 0> 1, pim = ? for all m. 
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Proof. Part (ii) is a consequence of the condition ,u-X >0. For (i) the proof 
will be by induction. By (16) the theorem is valid for m=0. Assuming that it 
holds up to m> 0 (which implies that pirn = pi,rn-lp), and using (3'), we derive 

pirn+ = Pirn(p+ 1+ llinji)-pi,r-IP - Zj= prj("ijibi) 

= PirP+ (1/,.i) (pim?7i- 3 jm ji) 

But pirnmpi= J-1pj i This follows since, by using equation (6), we have 

pim'Ii =pi- (-p) p'n 2(I 1-P) P 1ri1[ Elk-1 (lrkl/7Ak) ], 

and the use of equation (5) gives 

Zj 7 'qjmpm jm= j Xiqi( r k/=i)/[Zk1 (rk1/fk) ] 

= (1-p)p lri/[Z:k- (lrk/i7)]. 

Hence, pimr+=pimp=pi.(1-p)pmml, which completes the proof. 
The partial generating functions are now derived explicitly as 

Gi (z) = pi ( 1-p) Em- (zp)m= pi. (1 p) / (1 Pz) p-( )/( 
i1, 2,* n) 

from which the average number of customers L, in the system is 

L =/(8-A)A (21) 

Alternatively, result (21) may be obtained directly from equation (20): 

L- '_1 'M=0 mpiM =Em-O m ( 1 _ p) pm = p/ (1 1-p) . 

To summarize, the n-phase generalization of the (steady-state) M/M/1 queue 
will not yield, in general, closed-form solutions. Except for one interesting case 
where Xi/pi= 0 for all i and simple results are obtained, numerical methods should 
be employed to solve any specific case. As was argued in reference 3, a library of 
computer routines may prove useful in such circumstances. 
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