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Abstract

We introduce and analyze a general look-ahead approach for Value Iteration Algorithms used in solving Lroth

discounted and undiscounted Markov decision processes. This approach, based on the value-oriented concept
interwoven with multiple adaptive relaxation factors, leads to accelcrating proccdures rvhich perform better than the
separate use of either the concept of vaiue oriented or of relaxation. Evaluation and computational considerations of
this method are discussed, practical guidelines for implementation are suggested and the suitability of enhancing the
rnethod by incorporating Phase 0, Action Elimination procedures and Parallel Proccssing is indicated. Thc method
was successfully applied to several real problems. We present somc numerical results which support the superiority
of the developed approach, particularly for undiscounted cases, over other Value Iteration valiants.

Keywords: Markov processes; Value iteration; Modified policy iteration; Adaptive relaxation factor; l-ook-ahead
analysis

l. Introduction

The successive substitution technique for solving Markov Decision Processes (MDPs) appears to be
the best computational rnethod for solving large Markov decision models, by avoiding either dealing with
huge Linear Programming models or repeatedly solving large sets of linear equations (see Tijms [23]).

The classical way of using the above technique is the standard Value iteration Algorithnr (VIA),
applied to both discounted and undiscounted MDPs. For discounted cases it relies on a basic recursive
equation of the form

v,,(i): pT,{.t * FD,P,"i. v,,-,(i)}, i e I ( 1)
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(this direction was mentioned as a future study by Puterman and Shin [19]); to present the merged
approach in a uniform way fbr both discounted and undiscounted VIAs; (iii) To suggest practical
guidelines for the effective use of this method.

The merged procedure may therefore be classified rvithin the area of Fathoming and Relaxation
Criteria, being used in speeding-up Dynamic Programming algorithms (see Morin and Marsten [10]). ffre
ner,v criteria for selecting appropriate ARFs, developed in [3,4] and based on a one-step look-ahead, fits
very well rvith the concept of value oriented. Merging value oriented and relaxation will be done by
developing a general procedure that looks ahead K value-oriented steps (called briefly K-step look-ahead)
incorporated with multiple ARFs for discounted and undiscounted MDPs. The approach has the
potential of performing better than separately using either value oriented or relaxation. This task seems
significant, in particular for undiscounted MDPs, for three main reasons: (i) The effectiveness of the new
ARF criteria is usually better for higher DFs (see [4]); (ii) the convergence of VIAs is usually slow for
discounted MDPs with DFs close to one (see Scherer and White t?t11 - the convergence rate of these
cases and of undiscounted MDPs is similar; (iii) to the best of our knowledge, no practical considerations
have been published for undiscounted MDPs when using the value-oriented concept.

The structure of the paper is as follows: In Section 2 we formulate the K-step look-ahead approach
for the main versions of discounted and undiscounted VIAs. Appendix A details a complete derivation of
that formulation tbr the PJ case. In Section 3 we evaluate the merged approach, discuss various
computational aspects and suggest some practical improved guidelines for selecting the parameter K and
for utilizing effectively the concept of relaxation. Appendix B is added to present the theoretical
background which supports the developed approach. We conclude by presenting a few numerical results
which demonstrate the effectiveness of the merged approach when compared to other variants of VIAs
tested.

2. The K-step look-ahead formulation

The main idea of merging relaxation and value oriented is the following: After the completion of the
n-th iteration we try to look ahead K value-oriented steps incorporated with relaxation considerations
and estimate the future values of V,,*K(i), i e I. We denote these estimators by y'".,,(i ) and will use them
in the various VIA schemes for the (n + 1)st iteration instead of the known values V,,(i), ieI.

We now apply the merged approach to various VIA schemes.

2.L Discounted VIA schemes

For discounted MDPs we consider the four main VIA schemes, starting with the PJ case. By using Eq.
(1) for K value-oriented steps without relaxation, one can derive the anticipated values l2*.,,{i),i c/, as

follows:

K
t*,n: v, + L pu Ir,,( n)]o(

k: I

rvhere IP,,(R)],i : P,f ,,Yi, j e I,
(-

R,e arg yX,\,inP\,,i

K
v,, - v,,_,) : v,, + L.polp,,(R)] 

06,,

(4)

V,,(i), V,,- t(i) and 6,(i),

(3)

ieI,

and V*,,,, Vn, Vn-, and 6r, are l/l column vectors with
i e I, respectively.

V.-r( j)I,

the components I?*,,,{i),
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Based on Eq. (3), one can derive a direct relation befween the vector^6,, and the vecto, do,u rvhich
represents the contribution of the k-th value-oriented step to the vector V*.,;

$*,,:puIP,,(R)]00,,, k:r,2,...,K. (5)

The intermediate estimatort 120,,,{i\,, k>1. ieI, obtained after the completion of the k-th value-ori-
ented step, can recursively be calculated in the following way:

tu,,,(D:to-,.,(i) +iu,,,( )=I)u-,,,,( i) + p. I4f,.4-,,,(r)
ie. l

k
:V,,(i)* I S,,,.,,(i), ieI, k:1,2,...,K,

ttt:1

where

tn,,,(i)=V^(i), ie I, anci i,,,(r)=6,,(i), ieI.
In order to obtain more effective estimatorsV*,,,{i) we apply the concept of Adaptive Relaxation (see,

for example [3], [4] and l23l). The common way of applying relaxation is to use a single relaxation factor
at each iteration. We propose to utilize this concept seuerul times within each iteration. Thus, in the
process of formulating VK.,G) we use K different Adaptive Relaxation Factors (ARFs) wt,,,
w2,nr, . . rw k,nr. . . rwK,,r,, one for each value-oriented^step.

In Appendix A rte r"cu.rively derive the values t0.,,{i) and d*.,,(i), k,:
the generalization of Eq. (6), namely

k
t0.,,(i) : tr- r,u( i) + w0.,,. gr,,(i) : v,,(i) + L *,,,.,,

ttt:l

where

Bn,,(i) : p. LP,f,.do_,,,,(j), ie I, k:I,2,...,K,
jel

60,,(i) : do-,,,,( i) + w0.,,. Is0,,,(t) - do-,,,(i)], i e I, k:1,2,..., K,

and t,,,,(i ) as well ur 6n,,,{i ) are defined by Eq. (7) (see Eqs. (A.14)-(A.17) in Appendix A).
It is readily seen that Eq. (6), which represents value oriented with no relaxation, is a special case of

Eq. (8), for which the valueS 1v,,,,,, = 1, nt >,- 1, and consequently 6,,,,,,( i): 8u,.,(i ) (see Eq. (10)). It should
be noted that generalizing Eqs. (3) and (5) is not that straightforward. Multiplying each of the summed
terms of Eq. (3) by the relaxation factor wk.,,, for example, does not properly reflect the merged
approach.

For the Jacobi

V"(i): min
ae.A,

Performing for
introducing the su
(10), respectively.

si.,,(i) : p .

(J) VIA we use the recursive equation

(r 1 | i
{lc;'+BI P,n,.v,,_,(i)| llt-FP,ill , ier.
\L i+i ' ll I

the Jacobi scheme a very similar analysis to the one presented in Appendix
perscript J, the terms 12i.,,(i) and df ,,,(i ) can be calculated according to Eqs.
Eq.(7) holds as well. The only change is in the terms gtn,,,(i), for which

Lp,f''61_,,,,(i) /11 - Fp,!,],, i e I, k : 7,,2,..., K.
j+i

(6)

(7)

(8)

(e)

( 10)

( 11)

A and
(8) and

(12)
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Next consider the Pre-GoLtss-Seidel (PGS) scheme:

{ ,_t l1l 'l

v,(i): nll \cf nBLP,'i .v,,(i)+pLp,', .v,,-,(l)f , ie I,
aeA, \ j:l j:i )

For this case we use the superscript PGS, so that the terms Vo',?t(i) anA Ofjs(i) can be calculated
accorcling to Eqs. (8) ancl (10), respectively. Eq. (7) holds as well, while the terms gf:s(i ) are calculated
by the recursion

( 13)

( 14)

( 18)

( 1e)

r- l I1l

8;":'( i) : B,\,r,f,.8;.:'( i) + p.!",f,. d;9?,,,(;), i e r, k : r, 2,..., K.
J- | J'l

Finally, we consider the Gauss-Seidel (GS) scheme using the recursive equation

ll i-t trt 1l \
v,,(i):,,?T \lr:+BLPii .v,,(i)+B t Pi; .v,,-,(i)lltr-pp;ll, iet.o'\L i:t t:t+I Jl I

This time we use the superscript GS where the terms Vf,?(D and 6efl(i ) are again calculated via
(8) and (10), respectively. Once more, Eq. (Z) holds, while the terms gk::(t) are calculated by

f i-i r/l 11.
s-::(r):lpLr,f,.sf,?,(i)+p I 4f,'d-"J,.,(r)lllr-FP,f,l, iet, k:r,2,...,K.

L i:l i:i+l Jl

( 1s)

Eqs.

( 16)

To summarize, for all four schetnes we have

k

v;,,\i):v,,(i) + L.*,,,,,,.g:,;).,,(i):vPt,,,(i) + tek,,'gL.l,(i), i e I, k:7,2,...,K,,

dt,)tr):6[] r,^7,1"1'*o,,.lsL,),(i)-6[],,,(i)] , i..I, k:t,2,...,K, (17)

where v[,,) = V,,(i) anO O[ J(i) : 6,,(l), while sfl,U) are calculated by Eqs. (g), (72), (14) or (16) for the PJ,

I, PGS or GS scheme, respectiveiy. The order of calculating the variables at each look-ahead step k,
k : I,2,..., K, is as follows: g[ ](i ), i e I, wk,,,, V;,,7tt), a;;til, i e I.

2.2. Undiscounted VM schemes

In this subsection we develop a K-step look-ahead analysis for the undiscounted VIA, applied to
MDP and to Semi-MDP (SMDP). Consider first the MDP:

v,,(i): 
*';., {r, * E,r,j'v,,-,( 

j)i , i e r.

For the purpose of formulation one can apply the derivation of the discounted PJ scheme, ttsing the

superscript M for MDP and substituting F :1. The terms fzo],(;) anO afl,ti) are calculated by the
general Eq. (17). Once again Eq. (7) holds, while the terms sX,,(i) are calculated by Eq. (g) with F : l,
namely,

sy,,,(t) : I4f,.dlir.,,(/), i eI, k:r,2,...,K.
iel
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Next consider the Semi-MDP VIA for undiscounted cases:

( _ - \
v,,(i) :,ruT, 

\r:' tri * E,P,J' 
v,,-'(j)j' i e I,

rvhere the one step transition probabilities P,j are transformed to artificial transition probabilities ,q?

aimed at satisfying the uniformization conditions (see Schrveitzer [22]), namely,

ozl

(20)

(zr)

(23)

_ lPi', .r/ri', i+j,
D(I_J'ii \p,'i .r/ri'+1-r/ri, i:j,

UJ't

with ri being the expected sojourn time of the process in state i rvhen selecting decision a, antd

0(r( min trflr.i€I,aeAi

Using this time the superscript SM, the terms Zksy(t) anO 6iYl(i ) can be calculated by
Once more, Eq. (7) holds, while the terms g;Y(t) are obtained by the recursion

s;yl(t) : DP,f'.a;Y,,,,(j), i er, k :t,2,...,K.
:- T
, CI

3. Computational considerations of the proposed approach

(22)

using Eq.(17).

In Section 2 we have presented a general K-step look-ahead procedure incorporated with relaxation
which can be summarized as follows: At the end of iteration n, n >- L, we successively apply K
value-oriented steps, each of which is incorporated with an adaptive relaxation value rvo,,,. We thus
modify the various VIAs by using for the (n + l)st iteration the values tz;-;ti), i e I, inilead of the
original values V,,(i), i e I, obtained at the end of iteration n. Modifuing the VIAs in the above manner is
aimed at reducing the gap between Max,{6,,*r(i)} and Min,[6,,*1(i)] in order to faster satisfu the stopping
criterion and thus reducing the total number of iterations although at the expense of calculating the
values V;),(i), iel. This is justified only if the savings in total computational effort required for
convergence, due to the reduction in the number of iterations, is larger than the extra effort assigned for
calculating the value Vtr.)ti>.It is therefore required to find an effective way of implementing this method
in a dynamic fashion that
(i) controls the parameter K and determines its actual value for each iteration ni and
(ii) controls relaxation by assigning values w0.,, only to selected value-oriented steps, while using no

relaxation (i.e. wu.,,: 1) for the other steps.
To do so some principles related to MPI and vaiue clriented have to be discussed. Under the practical

assumptions that the Markov chain, tor every possible decision policy R is finite, aperiodic and
irreducible, the elements of the vector 6[,] (or alternatively the vector g[,]) tend to converge with the
growth of the value k for both discounted and undiscounted MDPs. The convergence is ensured when
qROlVing value oriented to the PJ scheme with no relaxation, for which^ wk.u: 7, k : 7, 2,.. ., K, and
al.l,:sl,) (see van der Wal t25l). Consider for this example the vector 60.,,,'u, in Eq. (5), even for the
case B:1. For large values k each row of the matrix [P(R)]k tends to converge to the stationary
distribution of the policy R which causes 60.,{i), ieI, to converge to the limiting value lrn^(j)'6,,(j),
where tr^(i) represents the proportion of time the process is at state i, i e 1, under the decision policy R.

From the above, the higher the level of convergence of the vector 6[,], the closer we are to a complete
contribution of the policy R, following the use of f[',] instead of V,,',, and thus the closer to a Policy
Iteration. Appendix B clarifies this issue in more detail. The advantage here, for both discounted and
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undiscounted cases, is derived from the use of the vector 6,, to reach fast convergence of al,),, and that
effort assigned to each policy can be controlled by the parameter K. Furthermore, the concept of
relaxation can be applied to speed-up the convergence of 6!,1, foilorving the use of ARFs such as in [3],
[4] and [i5]. Analysing the level of convergence of the vectors 6[.], k :7,2,...,K, is therefore a key
consideration in controlling the look-ahead process. Our task is in fact to define for each iteration n,
n >- 7, the required level of convergence of the vector A[.], {toot-aheacl depth) and to achieve this level
with as few as possible look-ahead steps, denoted K,,, n ) 1. On the other hand, a further increase of K,,
may lead to a smaller gap between Max,{6,,.n1(i)} and Min,(6,,,r(i)}. Exploring this tradeoff requires:
1) To clefine a representative measure which will indicate the level of convergence of the vectot 6[.],,

k:7,2r...,K,,, n > 1; and
2) To analyse the computaticrnal effort associated rvith Value Iteration and look-aheacl steps.

ln [1a-] a convergence indicator for discounted cases was defined by Mr,,,, which is the largest element
among ii;;til, ieI. We found that this indicator is less suitable for undiscounted cases and suggest to
use one of the following two indicators (derived, in fact, from the stopping criteria rnentioned in Section
2) far both discounted and undiscounted cases:

(i) M k.,, - t?t 4.,, or alternatively,
(ii) Mo.,,1rro,,, (rvherr fttp.,, > 0),

where M0,,,(m0.,,)isthelargest(smallest)terrnof 6[],(l),k:7,2,...,Ku,ieI.Asathirdmeasure,one
can use the Standard Deviation of the elements of Ef ],, (see [31).

The Order of Computational Effort (OCE) per iteration of the basic VIAs (neither applying the
approach of value-orientecl nor using the concept of relaxation) is F'Z'ttl (derived directly from the
recursive equations of VIAs), where:

4: Average number of decisions (actions) per state.
Z: Average number of non-zero transition probabilities per action per state.

l1l: Total number of states.
The OCE per each look-ahead step is Z.l1l, required to calculate a value-oriented step, augmented

withtheeffortneededforcalculatinganARF wk.tt,whichrangesfrom 4'lllto12'ill,dependingonthe
criterion used for selecting the ARF (see [3], [4]). fnis OCE analysis calls to limit the look-ahead
computations per iteration, thus, limiting the value K,,. The larger the value A the larger the limit on
K,,, denoted Max K, as computational savings of value iterations are increased with the growth of Z

Fig. 1 illustrates typical cases of over, under and effective look-ahead when using the measure
Mk.,,-tnp.n. Each dot on the figure represents the convergence level as a function of n and k, following
the completion of either a value iteration (for k :0 recall that Mo.u and rfl,.,, are Max,{D,,(i )} and
Min,{6,,(i )}, respectiveiy) or a look-ahead step (k >- l). It is demonstrated (Case a) that the use of large
values K,, might lead to a rvaste in effort devoted to the look-ahead method. This is reflected by the
relation M*.r-trlK,nKMr,r*r-tt7s1,11*,.Otr the other hand, under look-ahead (case b) does not fully
utilize the value-oriented concept, resulting in unsatisfactory reduction of the number of value iterations.
Under look-ahead can be recognized by the relation M*,,,- ffik.u) Mu.,,*1- nts,,,+r, the extreme case of
under look-ahead is in fact the basic VIA for which K:0 and Mr.,, * frxo.u) M,.,,+r - tflo.,,*r. Effective
look-ahead (Case c) uses adaptively K,, values and targets to the relation M*.n- t?1y.,, {Mo.,,,1- t?7,11.,,*r.

Finally, (Case d), the effective incorporation of relaxation is demonstrated, resulting in reduction of
look-ahead steps and consequently savings in computational effort.

General guidelines and observations which were tound useful after applying the proposed method to
many problems tested are as follows:

o The value Max K. It was observed that affective results are obtained when setting Max K in the
range of 1.5A-2.5A. This limit is significant mainly at first iterations, when the variability of 5,, is
high, for problems with low A values (about 10 or less). This rule suggests that extra computational

effort will be limited to the level of computations of around 2 value iterations.
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M
hn \n Under-Looking Ahead

Case b

olo

n15 ***

Effectlve Looklng Ahead

wlth Relaxatlon Case d

M, -m
Kn t(n Over-Looking Ahead

Case a

ooalloooll 'l-:::o.o...

Mrtr, \" Eftectlve Looklng Ahead

Case c

tta aaaoa

aOaO

nrf

0 l..Kr

M.-mlqn x.n

taa
taa

aa

0r2.... K

look ahead.

taa
taa

nr2

taa

olll
n.5

O3

n.3

ooo

n{

012...K! 012.K3
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r Last iterations. At the last one or two iterations, when tr4rr,,,- ii?,,,,, is close to r, it is recomntended
to create an over look-ahead case by reduci ng Il4 *.,, - tlt K.n down to the range of 0.02 ' s to 0.05 ' e,

where s is the pre-determined tolerance error required for the stopping criterion selected. The
objective is to increase the probabilify of satisfuing the stopping criterion by the end of the (rr + 1)st
value iteration.

o Applying relaxation. When applying successive look-ahead steps, it is required in addition to
effective selection of ARFs, to determine how often to apply actual relaxation. For the problems
tested, it rvas found that selecting an ARF for each value-oriented step tends to be less efficient
than selecting an ARF every X steps, where 3 < X < 7. Selecting such X values eliminates, to a

great extent, the cases of 'jamming' which often occur when applying the one-step look-ahead
approach (see [3]) and reaches the required level effectively.

o The trend of K,,. As mentioned earlier, the vector 6,, tends to converge rvith the grorvth of the
iteration number n.Jhis implies that the minimum value K, which achieves any given convergence
level of the vector 6t;.1,, tends to decrease with the grorvth of z. On the other hand, an improved
policy R requires a higtrer level of convergence of the vector ap,1, ro as to gain further contribution
of the irnproved policy. Considering these contradicting eftects on K,,, we have found that, tor
problems having large values of F, the adaptive values K,, usually tend to decreose with the growth
of rz (the eftect of 6,, is more dominant). fnis observation, which is based on the experience gained
from solving many real problems of up to 100 000 states, is new.

It is rvorth noting that the proposed approach can be enhanced in several ways. It can be regarded as

general modified VIA for which one can apply 'Phase 0' and Action Elimination (see Herzberg [5]).
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Phase 0 is a preliminary procedure aimed at supplying effective initial values V,(i), i e I. It rvas found
suitable for problems with hrgh A values and relies on an approximate solution of artificial related
problems with low values of A. While the look-ahead approach tries to save computational effort of the
policy iteration part, Action Elimination (AE) aimed at saving effort during the value iteration part by
excluding from the calculation actions which are not part of the optimal policy (see MacQueen [9],
Porteus 1181, Hastings and Van Nunen [2] and Puterman and Shin t20l). Permanent AE, can be applied to
discounted cases immediately after each value iteration rvhile temporary AE, for both discounted and
undiscounted cases, ffi&y be applied only after the look-ahead stage just before the next value iteration.

Another enhancement relates to the effectivenes of data processing. Parallel Processing capabilities
may readily be used tor the merged approach. Indeed, most of the computational effort is assigned to
calculate the terms S[ ],(i ), k : I, 2,..., K, i e 1. For the schemes mentioned (excluding PGS and GS)
calculation of a term S[],(t), for a certain state i,can be done independently of the calculations for other
states (given that all calculations for value-oriented step k - l and its associated relaxation u/k-,.,, have
been completed). For PGS and GS the concept of parallel processing is more limited, however, it can
still be applied to the second part of the terms g[ ],(i ), i e 1 (see Eqs. (14) and (16)).

AqRlving the proposed procedure requires the use of memory, allocated for the terms V;,,1,{i), gL.),(i)
anct 6[ ],(;), k: I,2,..., K, i e L As these terms are recursively calculated, one can practicaliy reuse the
*..nory assigned to V,(i), and 6,,(i ), i e l, for the terms V;,,1t0, anO a[ ],(;), i e /, respectively. Similarly,
tlre memory required for the terms g[](l), ieI can be reused for the various k values, so additional
memory of only one vector with l1l elements is required for the K-step look-ahead analysis.

Table 1

Numerical results of various discounted value iteration schemes

VI schemes
(e : 10-5)

A: ra.l1l : 1000 F: Bo,l/l : 370 J: zooo. i1l: 650

B:0.8 p:{\.e p:0.8 F:0'9 p :0.8 p :0.e B : 0.8 F:4.9

Attributc ,4 : [i. lll : 65

PJ:

Basic VIA

K:I,X:1

IvIPI

N4ARVO, X :5

G5-:

Basic VIA

K:1,X:1

MPI

MARVO. X: 5

NOI
RSC
NOI
RSC
NOI
MxK
TotK
RSC
NOI
MxK
TotK
RSC

NOI
RSC
NOI
RSC
NOI
MxK
TotK
RSC
NOI
MxK
TotK
RSC
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1.t)
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A
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1.0
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4.t1

i0i
1n
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),1
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1.0
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2.5
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,1 0
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a
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4
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1
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,11

1.0
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1^

3
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1B

-1 I
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1.0
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2.6

5
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4
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75

1.0

19

2.8
,1-

1A

'72
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+l
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l.t,
27
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5

75

t24
8.6

5
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il.6
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1.0

2I
2.2

5

J-1
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t

25

6B

9.4

i02
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2.8

7
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1.0
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z.o
7
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5
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1.0
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4
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4
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1.0

14
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4
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11.0

4
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1i.0
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1.0
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2.9

6
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5
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24.3
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1.0
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5
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16.2
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203
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-1. Numerical results

Table 1 presents numerical results for selected discounted MDP problems. Each problem has been
solved for various VIAs, where for each algorithm rve use 4 different solution procedures: basic VIA,
one-step look-ahead, MPI (value-oriented only) and the proposed scheme called Multiple Adaptive
Relaxation rvith Value Oriented (MARVO). Ttre problems differ from each other mainly by dimension.
The attributes considered are: NOI - number of iterations, MxK - Maximal value-oriented steps that
actualiy taken per iteration (MxK < Max K), TotK - total number of value-oriented steps, and RSC -
relative speed until completion in terms of CPU time ratio when compared to the basic VIA. RSC can be
used for comparison analysis under the practical assumption that CPU times per iteration are the same
tor all basic VIAs. For all problems the value X :5 is selected (ARFs are calculated every 5

value-oriented steps). The tolerance error e :10-5 was chosen and the discount factors used are B:0.8
and (B :0.9. The sarne convergence level rules for a[.], have been appliecl to the schemas MPI and
\'lARVO. We found that using alternately the ARF criteria Min Difference and Min Variance (see l4l)
achieves for discounted cases effective results. No rnajor differences among the various schemes are
discovered with respect to MPI and MARVO, howevel'some differences are rvorth noting. As the results
obtained for the J and the PJ (PGS and the GS) schemes were very similar, we show in Table I the
numerical results which only relate to the schemes PJ and GS. The convergence of PJ under MARVO
usually requires less iterations than with MPI, resulting in total computations saving of up to 5570 when
.'ompared to the MPI. This is less frequent when using the scheme GS but reduction of TotK under
\IARVO is achieved in any case. As was expected, MARVO is particularly effective for cases of high
ralues of P, resulting in higher RSCvalues for B:0.9 than for p:0.8.

Table 2 presents numerical results for selected undiscounted MDP problems. Each problem has been
.olved several times by using the value X as a parameter. For undiscounted MDPs we use alternately the

TuL.le 2
'iuitre rical results of various undiscounted value iteration schernes

A:8,111:65 A:9,1/l: e50 ,q:z+o,lrl:eo f:zso.l/i:6so
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Min Ratio and the Min Variance ARF criteria. The MPI scheme represents the value-oriented concept
with no relaxation. Once again, the same convergence level rules have been used for the MPI and for
MARVO. The tolerance error selected is e : 10*3. The Relative Speed until Completion (RSC)
achieved with the combined use of value oriented and relaxation is significantly higher than that in the
discounted cases and the superiority of the method over other schemes is more apparent. The larger the
dimensions of the problem the higher the RSC obtained.

It is worth noting that although Action Elimination and Parallel Processing have the potential to
improve the performance of all variants of discounted and undiscounted VIAs, it is expected that basic

VIAs rvill benefit from these enhancements more than MPI and MARVO. This stems from the fact that
the full action space of basic VIAs is always considered while the value-oriented phase, as applied to
MPI and MARVO, uses a single action per state.

5. Conclusions

We have analysed an algorithm rvhich can be regarded as a hybrid of Value and Policy lteration. The
Value Determination phase of the Policy Iteration algorithm which recluires the solution of a set of l1l
simultaneous equations is replaced, under the look-ahead approach, by an easier task aimed at letting
the vectot A[,], to converge in a controllable fashion. To carry out this task effectively we have introduced
a novel approach of multiple relaxation which is incorporated with value-oriented steps in a uniform
mode for both discounted and undiscounted MDPs. Applying practical guidelines to this rnethod in
addition to the effective selection of ARF criteria and their use, lead to improved performance when it is
compared to other variants of VIAs for solving MDPs. The cornputational savings are significant,
especially for cases of high discount factors and for undiscounted MDPs, as it is demonstrated in Tables
1 and 2. The method seems attractive, particularly for solving large-scale MDPs. It was successfully
tested on many state-dependent decision and control processes in the area of private [6] and mobile [7]
telecommunication networks by considering problems in the range of up to 100 000 states, having about
100 decisions per state.

Appendix A

In this appendix we present a derivation which formulates the K-step look-ahead approach for the PJ

scheme using recursive Eq. (1) of Section 1. To do so we perform, first, a one-step look-ahead analysis.
The relaxation part of this step is achieved by calculating the modified value s V,,(i) as follows:

V,,U):w1.,,'V,,(i) + (1 - trt,,,)'V,,-,(i ) : V,-r(i) + w1,,,'6,,(i), i e L (A.1)

Following the completion of the first value-oriented step we derive the estimators l?r.,,ti),

tr,,,(i):c!<,+BlP,t|,.V,,(i), iel. (A.2)
jel

tr.,,ti)would represent thevalue V,,+{i) if thevalues t,,{.0, in the (n + 1)st iteration, are used instead of
the values V,,(i), i e I, respectively, and the action R, still satisfies Eq. (4).

From Eqs. (A.2) and (A.1),

Vr,,,(i) : c!', + g L.P,f, . lv,,-,(i) * w r,n' 6,,(i)l
lel

:V,,(i) +wr,,,'g,,,,(i ) iel, (A.3)
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In order to find 'good' values of pr,,,, we select an ARF by using either the Minimum Difference
criterion or the Minimum Variance criterion (see [4]). In this way we apply relaxation after calculating
the values g,,,,(i), in orcier to obtain effective values d,,,,{i) and12r,,(i), ieI.

Before performing a look-ahead analysis for the second time (step), we apply once again the concept
of relaxation, using this time an APF w2,,, to get the modified values Vr.,,ti), i e 1, ilstead of the values
I -r.,,(i ), i e I, respectively, rvhere

Vr,,,(i) : V,,(i) + v,r,,,. lvr.,,(t1 - V,,1t11, i e I.

Using again Eqs. (A.1) and (A.3) we ger

Vr,,,(i):V,,_,(i ) *wr,,.6,,(i) *wr.n.{v,,(i) +wr.,,.gt.,,(t) - [V,,*r(i) +wr,,,6,,(i)]i
: V,,_,(t) + rr1,,.0,,(i ) * w2.,,. {4,,(i ) *,,, ,,,.1gr.,,(i ) - 6,,(r)]}.

\pplying Eq. (4.6), the above can be written as

Vr.,,(i):V,,_,(i ) *w,.,.6,,(i ) *wr.n.d,.,,(i ), i eL
\ve can now complete the second value-oriented step by applying Eq. (A.B) to calculate estimators

. - ri) for \,*2Q),, i e I, respectively, using the same R, decisions again:

Vr,,,(i) : c:, + B L, p,f , .Vr,,,(i 
)

jeI

:c!,+g P,t|,.\v,-r(l) + wr,,,,6,,( j) * trz.,,'a,.,,(i )]

: V,,(i) + w,,n .gi.,,( i) + +ur.,,. g2.,,(i) ,

,.neI'e

3:.,,(i):B'

wnere

8,,,,(i) : {1. L p,f,.6,,(i), i eI.
jel

In a similar manner we define estimators 6,,,,(i) for 6,,,1(i), iel,rvhere
AA

6,,,,(i) : Vr.,(i) * V,,(i), i e L

Using Eqs. (4.1) and (A.3) one gers

a6,,,,(i) :6,,(i) +wr,,,. IS,.,,(l) - 6,,(t)], i el.

P,f''6r,,,(j), iel.

Airernatively, by Eq. (A.3),

t,.,,(i ) : Vr,,,(i) + w2.,,. sz,U).
Tlre estimators dr,,,{i ) for 6,, or(i), i e I, are defined as

d..,,(i) : tr.,,(i) - /r.,,(i), i e L

Using Eqs. (A.8) and (A.9) one gets

t
jel

(A.4)

(A.s)

(A.6)

(A.7)

(A.B)

(A.e)

(A.10)

(A.11)

(A.r2)

\-
/r
i-l

dr.,'( i ) : V,,(i) - V,,-,( i ) * w 1,,,. I g,,,,( i ) - 6,,( i ) ] + w 2,,. I s r,,,(i; - a,,,,1 i;],
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Based on Eq. (,4..6), the above can be written as

a a I . . .-.16r,,,(i):0,.,,(i) *w2.,,'[gr.,,(i) -6,.,,(i)], iel. (A.13)

By induction it is straightforward to derive a general formuiation of k value-oriented steps incorpo-
rated with relaxation (for which Eqs. (A,3) and (A.9) are special cases):

k

to.,(i):v,,(i)+ L rr,,,n.E,,,n(i):to-r,,(i)+*0,,.gr,,,(i), ieI, k:7,2,...,K (A.14)
ttt:I

. rn /.\ t

where Vo,,,(i) is defined by Eq. (7).

Alternatively, generalizing Eqs. (A.9), (A.72) and substituting tr,-,.,,(/) :120.,,{ j) - 60.,,{ j),

to,,(i) : c!,+ p L P,l,.Vo-,,,(r)
j€I

:c:,+pLp,f, lto.,,(i)-60,,,(i)], ieI, k:r,2,...,K. (A.15)
jeI

Eqs. (A.4) and (A.10) can also be generalized to the form

E*,^(i):p.Lp,f'.6*-,,,,(i), iel, k:L,2,...,K, (4.16)
jel

where Ar,,(i) is defined bv Eq. (7).

Eqs. (4..6) and (A. 13) are generalized accordingly:

60,,,(r):4 -r,,(i) **0,,.Iru,,,(t) -d*-,,,,(i)], ieI, k:r,2,...,K. (A.17)

Appendix B

For completeness, we derive in this appendix further insight of the relation between the look-ahead
approach and Policy Iteration for both discounted and undiscounted MDPs.

Eq. (3) of Section 2 can be rewritten as follows:

o. -v + iur[r,,(n)1u6,,: v,,-rt iur[r,,,(n)]0a,,. (8.1)' K,tt - 'tt ' 
O:, k:0

Consider Eq. (e.1) for the limiting case K -, m:

,l*to,n:vn-r* [tro] * Blp,(R)]]-'6,,. (B.2)

Eq. (g.Z), for the special case where V,,-{i):0 and 6,,(i):Cf', i e1 (in fact, using the values
V,,-{i):0, i e /, under a policy R yields V,,(i):Clt and thus 6,,(i) -V,,(i)-V,,-,(i): Cf,, i e 1) can
be evaluated by the expression

_tim t*,,,: [[ro] - Blp,,(R)]] -'c^, (8.3)
K+a

where [Id] denotes the unit matrix and CR is the cost vector whose elements are C,R', i e I.
For undiscounted MDPs the limiting case relates to the vector Sn,., whose elements converge, by

substituting as before 6,,(i) : C!t,, i e I, to the value

,tim 6".,: I ilo(i ) .6,,(i ) : I n^(i) .c!'. (8.4)
K'.o ier i.-l
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Eq. (8.4) represents the process cost
Determination phase for undiscounted
value A,,, Ee. (A.15), for undiscounted

per unrt time under the policy R, obtained by Horvard's value
cases. Assuming that each elernent 6K.,,(i), i e I, converges to the
cases F : 7 and fclr k : K, can be moclifiecl fo the torm

Vrr,,, * [A,,] : C R + [p,,( R]lt*.,,, ( 8.5)
where [,1,,] is an l1l column vector with identical elements equal to A,,.

Replacing (, by t*.,, according to Eq. (8.3) (Eq. (8.5)) just betore rhe (ir + 1)sr value irerarion, js
exactly performing Howard's Value Determination phase with the policy R for discounted (undis-
counted) MDPs before applying the policy Improvement phase.

Howard's Value Determination phase in the rvell known Policy Iteration algoritirm, tor both clis-
counted and undiscounted MI)Ps, is therefore a .special case of the look-ahead approach which undcr a
policy Ralways rtses6,,(i):Cl'*',iel,n2I,andlooksahead infinite numberof steps v,ithoytrelaxatiort.
For discounted cases it relates to the pJ variant onlv.
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