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Abstract

We introduce and analyze a general look-ahead approach for Value Iteration Algorithms used in solving both
discounted and undiscounted Markov decision processes. This approach, based on the value-oriented concept
interwoven with multiple adaptive relaxation factors, leads to accelerating procedures which perform better than the
separate use of either the concept of value oriented or of relaxation. Evaluation and computational considerations of
this method are discussed, practical guidelines for implementation are suggested and the suitability of enhancing the
method by incorporating Phase 0, Action Elimination procedures and Parallel Processing is indicated. The method
was successfully applied to several real problems. We present some numerical results which support the superiority
of the developed approach, particularly for undiscounted cases, over other Value Iteration variants.

Keywords: Markov processes; Value iteration; Modified policy iteration; Adaptive relaxation factor; Look-ahead
analysis

1. Introduction

The successive substitution technique for solving Markov Decision Processes (MDPs) appears to be
the best computational method for solving large Markov decision models, by avoiding either dealing with
huge Linear Programming models or repeatedly solving large sets of linear equations (see Tijms [23]).

The classical way of using the above technique is the standard Value iteration Algorithm (VIA),
applied to both discounted and undiscounted MDPs. For discounted cases it relies on a basic recursive
equation of the form

V(i) = min {C2 B T PY-V, (D)}, i<1 (1
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(this direction was mentioned as a future study by Puterman and Shin [19]); to present the merged
approach in a uniform way for both discounted and undiscounted VIAs; (iii) To suggest practical
guidelines for the effective use of this method.

The merged procedure may therefore be classified within the area of Fathoming and Relaxation
Criteria, being used in speeding-up Dynamic Programming algorithms (see Morin and Marsten [10]). The
new criteria for selecting appropriate ARFs, developed in {3,4] and based on a one-step look-ahead, fits
very well with the concept of value oriented. Merging value oriented and relaxation will be done by
developing a general procedure that looks ahead K value-oriented steps (called briefly K-step look-ahead)
incorporated with multiple ARFs for discounted and undiscounted MDPs. The approach has the
potential of performing better than separately using either value oriented or relaxation. This task seems
significant, in particular for undiscounted MDPs, for three main reasons: (i) The effectiveness of the new
AREF criteria is usually better for higher DFs (see {4]); (ii) the convergence of VIAs is usually slow for
discounted MDPs with DFs close to one (see Scherer and White [21]) — the convergence rate of these
cases and of undiscounted MDPs is similar; (iii) to the best of our knowledge, no practical considerations
have been published for undiscounted MDPs when using the value-oriented concept.

The structure of the paper is as follows: In Section 2 we formulate the K-step look-ahead approach
for the main versions of discounted and undiscounted VIAs. Appendix A details a complete derivation of
that formulation for the PJ case. In Section 3 we evaluate the merged approach, discuss various
computational aspects and suggest some practical improved guidelines for selecting the parameter K and
for utilizing effectively the concept of relaxation. Appendix B is added to present the theoretical
background which supports the developed approach. We conclude by presenting a few numerical results
which demonstrate the effectiveness of the merged approach when compared to other variants of VIAs

tested.

2. The K-step look-ahead formulation

The main idea of merging relaxation and value oriented is the following: After the completion of the
n-th iteration we try to look ahead K value-oriented steps incorporated with rglaxation considerations
and estimate the future values of V,,, x(i), i € I. We denote these estimators by V(i) and will use them
in the various VIA schemes for the (n + 1)st iteration instead of the known values V,(i), i € I.

We now apply the merged approach to various VIA schemes.

2.1. Discounted VIA schemes

For discounted MDPs we consider the four main VIA schemes, starting with the PJ case. By using Eq.
(1) for K value-oriented steps without relaxation, one can derive the anticipated values Vy (i), i €1, as
follows:

K K
Ven=Vot L BP(R (V= V,_)) =V, + L B[R(R)] S, 3)
k=1 k=1
where [P(R)];; =P}, Vi, j€1,
R, € arg min {Cf+ﬁZPI‘j'V,,~1(j)}, i€l (4)
a€A; jer

and VK,,,, V,, V,_, and 8, are |I| column vectors with the components VK‘,,(i), V.(D, V,_ (i) and §,(i),
i €1, respectively.
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Based on Eq. (3), one can derive a direct relation between the vector 8, and the vector Sk’n which
represents the contribution of the k-th value-oriented step to the vector Vi,

Sen=B (PR S, k=12, K. )
The intermediate estimators ¥, (i), k > 1. i € I, obtained after the completion of the k-th value-ori-

ented step, can recursively be calculated in the following way:

an(l) Vk e )+5kn(l)"' —12(8) +B- Z "gk—1.n(f)

jel

k
=V(iy+ ¥ 8,,(i), iel, k=1,2,... K, (6)

m=]

where
Vou() =V,(0), €1, and 8,,())=5,(i), i€l (7)

In order to obtain more effective estimators VK,n(i ) we apply the concept of Adaptive Relaxation (see,
for example [3], [4] and [23]). The common way of applying relaxation is to use a single relaxation factor
at each iteration. We propose to utilize this concept several times within each iteration. Thus, in the
process of formulating I}K i) we use K different Adaptive Relaxation Factors (ARFs) w,,,

Wonse-os Wi s« -0 Wi, ONE for each value-oriented step.
In Appendlx A we recursively derive the values Vk (1) and 6,‘ W), k,=1,2,...,K, i €I, which lead to
the generalization of Eq. (6), namely
k
an(l)_ ~—In(l)+wk " gA n(l) n(i)+ Z wm.u.gm.n(i)9 IEI’ k=1’2""’K’ (8)
m=1

where

gea(i) =B L P8, 1,(J), i€l, k=1,2,...,K, 9

jel
6k,r1(i)=8Akf],n(i)+wk,n'[gk,li(i)_gk—l.ll(i)]’ IE[, k=1’2""’K’ (10)

and 170,,,(1') as well as 50,,,(1') are defined by Eq. (7) (see Eqgs. (A.14)-(A.17) in Appendix A).

It is readily seen that Eq. (6), which represents value oriented with no relaxation, is a special case of
Eq. (8), for which the values w,,, = 1, m > 1, and consequently ,, (i) = g,, (/) (see Eq. (10)). It should
be noted that generalizing Egs. (3) and (5) is not that straightforward. Multiplying each of the summed
terms of Eq. (3) by the relaxation factor w, ., for example, does not properly reflect the merged
approach.

For the Jacobi (J) VIA we use the recursive equation

C,»“+BZP,§"V,,_1(J')J/[1—131’,-‘,-‘]}, iel (11)

J#i

Vi = mi
(1) n;g}{

Performing for the Jacobi scheme a very similar analysxs to the one presented in Appendix A and
introducing the superscript J, the terms Vk (i) and 6k (i) can be calculated according to Egs. (8) and
(10), respectively. Eq. (7) holds as well. The only change is in the terms g} (i), for which

gia(i)=B LPF&_,()/[1-BRF], iel, k=1,2,... K. (12)

J#i
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Next consider the Pre-Gauss-Seidel (PGS) scheme:

i—1 11

V(l)—mm Ci+B L P V(D)+BLPSV, (i)}, (€] (13)

I=1 J=i

For this case we use the superscript PGS, so that the terms VF95(i) and §) fS(z) can be calculated
according to Egs. (8) and (10), respectively. Eq. (7) holds as well, while the terms g{$5(:) are calculated
by the recursion

i—1 |1

gES3(i) =B X P gl () +BL PS8R0, i€l k=1,2,.. K. (14)
j=1 j=i

Finally, we consider the Gauss-Seidel (GS) scheme using the recursive equation
asd; j=1 j=i+1

i— 1]
V,,(i)=min{[C,~“+B ZIP.-‘,‘-'V,,(J’HB i PV, 1(1)}/[1—BP£‘]}, el (15)

This time we use the superscript GS where the terms ¥,55(i) and 6,?5(1) are again calculated via Egs.
(8) and (10), respectively. Once more, Eq. (7) holds, while the terms gZ5(i) are calculated by

i—1 111
BZ ‘gl?)sz(])+ﬂ Z PR 5k ln(]):l/[l_ﬁf)lf‘]’ iEI’ k=1’2’“"K'

gk n(l) =
Jj=1 J=i+1
(16)
To summarize, for all four schemes we have
I}k(,n)(l) = (l) + Z Wm n gm n( )— Vk ln(l) +Wk n gk n(l) IEI’ k= 1= 25"~9K
m=1
B =82, (1) +we, [0 —82,,()], i€l k=1,2,.. K, (17)

where 170‘ = V(i) and 85)() = 8,(i), while g{ (i) are calculated by Egs. (9), (12), (14) or (16) for the PJ,
I, PGS or GS scheme, respectxvely The order of calculating the variables at each look-ahead step %,
k=1,2,...,K, is as follows: g{)(0), i €1, w, ., VXD, 8¢, i 1.

2.2. Undiscounted VIA schemes

In this subsection we develop a K-step look-ahead analysis for the undiscounted VIA, applied to
MDP and to Semi-MDP (SMDP). Consider first the MDP:

()~m13{ca+ I AR ,M(j)}, iel. (18)

i jel

For the purpose of formulation one can apply the derivation of the dlscounted PJ scheme, using the
superscript M for MDP and substituting 8 = 1. The terms Vk’\’,l,(z) and S (i) are calculated by the
general Eq. (17). Once again Eq. (7) holds, while the terms g2 (i) are calculated by Eq. (9) with g =1,
namely,

gM (i)=Y PR-SM (), i€l, k=1,2,...,K. (19)

jel
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Next consider the Semi-MDP VIA for undiscounted cases:
V,(i )~mm<C /T + ZP?.[/n—l(j)}’ iel, (20)
i€l

where the one step transition probabilities P/j are transformed to artificial transition probabilities P,’j

aimed at satisfying the uniformization conditions (see Schweitzer [22]), namely,

P" /T, 1], 21
Pl = ..
i Pi-r/ri+1—7/7f, =], 1)
with 7/ being the expected sojourn time of the process in state i when selecting decision a, and
0<r< min {7f}. (22)

iel,aeA;

Using this time the superscript SM, the terms (i) and BkM(z) can be calculated by using Eq. (17).
Once more, Eq. (7) holds, while the terms g; (i) are obtained by the recursion

gim(iy =Y PR &M (), i€l k=1,2,...,K. (23)

jel

3. Computational considerations of the proposed approach

In Section 2 we have presented a general K-step look-ahead procedure incorporated with relaxation
which can be summarized as follows: At the end of iteration n, n> 1, we successively apply K
value-oriented steps, each of which is incorporated with an adaptive relaxation value w, . We thus
modify the various VIAs by using for the (n + 1)st iteration the values V,§ D), i€l instead of the
original values V, (i), i € I, obtained at the end of iteration n. Modifying the VIAs in the above manner is
aimed at reducing the gap between Max {3, (i)} and Min {5, . ;(:)} in order to faster satisfy the stopping
criterion and thus reducing the total number of iterations although at the expense of calculating the
values K,,(z) il This is justified only if the savings in total computational effort required for
convergence, due to the reduction in the number of iterations, is larger than the extra effort assigned for
calculating the value V,§ (i). It is therefore required to find an effective way of implementing this method
in a dynamic fashion that
(i) controls the parameter K and determines its actual value for each iteration #; and
(ii) controls relaxation by assigning values w, , only to selected value-oriented steps, while using no

relaxation (i.e. w,,, = 1) for the other steps.

To do so some principles related to MPI and value oriented have to be discussed. Under the practical
assumptions that the Markov chain, for every possible decision policy R is finite, aperiodic and
irreducible, the elements of the vector 8 (or alternatively the vector g{)) tend to converge with the
growth of the value k& for both discounted and undiscounted MDPs. The convergence is ensured when
applymg value oriented to the PJ scheme with no relaxation, for which w, , =1, k=1, 2,..., K, and
8}\ )y =g4 ) (see van der Wal [25]). Consider for this example the vector Bk ,» as in Eq. (5), even for the
case B =1. For large values k each row of the matrix [P(R)]f tends to converge to the stationary
distribution of the policy R which causes 8A,\,_,,(i), i €I, to converge to the limiting value X ;T1,(j)-8,(j),
where 11,(j) represents the proportion of time the process is at state A j e I, under the decision policy R.

From the above, the higher the level of convergence of the vector 8% i), the closer we are to a complete
contribution of the policy R, following the use of V ’, instead of V,, and thus the closer to a Policy
Iteration. Appendix B clarifies this issue in more detail. The advantage here, for both discounted and



628 H.M. Herzberg, U. Yechiali / European Journal of Operational Research 88 (1996) 622-636

undiscounted cases, is derived from the use of the vector §, to reach fast convergence of 8K , and that
effort assigned to each policy can be controlled by the paxameter K. Furthermore, the concept of
relaxation can be applied to speed-up the convergence of 6 followmg the use of ARFs such as in [3],
[4] and [15]. Analysing the level of convergence of the vectoxs 8A o k=1,2,...,K, is therefore a key
consideration in controlling the look-ahead process. Our task is in fact to define for each iteration n,
n > 1, the required level of convergence of the vector (Sf,('y’,, (look-ahead depth) and to achieve this level
with as few as possible look-ahead steps, denoted K, n > 1. On the other hand, a further increase of K,
may lead to a smaller gap between Max {8, , ()} and Min,(5, . ()}. Exploring this tradeoff requires:

1) To define a representative measure which will indicate the level of convergence of the vector OK -

k=1,2,...,K,, n=1; and

2) To analyse the computational effort associated with Value Iteration and look-ahead steps.

In [14] a convergence indicator for discounted cases was defined by M, , which is the largest element
among ok (i), i €1. We found that this indicator is less suitable for undiscounted cases and suggest to
use one of the following two indicators (derived, in fact, from the stopping criteria mentioned in Section
2) for both discounted and undiscounted cases:

(i) My, —m,, or alternatively,

(i) M, /m,, (when m, , > 0),
where M, (m,,) is the largest (smallest) term of 5k n(z) k=1,2,...,K,,{ €l As a third measure, one
can use the Standard Deviation of the elements of Sk ), (see [3].

The Order of Computational Effort (OCE) per iteration of the _basic VIAs (neither applying the
approach of value-oriented nor using the concept of relaxation) is A - Z -|/{ (derived directly from the
recursive equations of VIAs), where:

A = Average number of decisions (actions) per state.
Z = Average number of non-zero transition probabilities per action per state.
|7] = Total number of states.

The OCE per each look-ahead step is Z -|I|, required to calculate a value-oriented step, augmented
with the effort needed for calculating an ARF w,,, which ranges from 4 - [I{to 12 -|/|, depending on the
criterion used for selecting the ARF (see {3], [4]). This OCE analysis calls to limit the look-ahead
computations per iteration, thus, limiting the value K,. The larger the value A the larger the limit on

K,, denoted Max K, as computational savings of value iterations are increased with the growth of A.

Fig. 1 illustrates typical cases of over, under and effective look-ahead when using the measure
M, , —m, . Each dot on the figure represents the convergence level as a function of n and &, following
the completlon of either a value iteration (for k =0 recall that M, and m,, are Max{§,(i)} and
Min {8,(i)}, respectively) or a look-ahead step (k > 1). It is demonstrated (Case a) that the use of large
values K, might lead to a waste in effort devoted to the look-ahead method. This is reflected by the
relation My, —my , <M, ., —m,, . On the other hand, under look-ahead (case b) does not fully
utilize the value-oriented concept, resulting in unsatisfactory reduction of the number of value iterations.
Under look-ahead can be recognized by the relation My, —m; , > M, ., —my, . ; the extreme case of
under look-ahead is in fact the basic VIA for which K =0 and M, —m,, >M,, ., —m,, . Effective
look-ahead (Case c¢) uses adaptively K, values and targets to the relation My, —myg , <My, .| —mg, ;.
Finally, (Case d), the effective incorporation of relaxation is demonstrated, resulting in reduction of
look-ahead steps and consequently savings in computational effort.

General guidelines and observations which were found useful after applying the proposed method to
many problems tested are as follows:

o The value Max K. It was observed that affective results are obtained when setting Max K in the
range of 1.54-2.5A. This limit is significant mainly at first iterations, when the variability of 8, 1s
high, for problems with low A4 values (about 10 or less). This rule suggests that extra computational
effort will be limited to the level of computations of around 2 value iterations.
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to create an over look-ahead case by reducing My, — m , down to the range of 0.02-¢ to 0.05 - ¢,
where ¢ is the pre-determined tolerance error required for the stopping criterion selected. The
objective is to increase the probability of satisfying the stopping criterion by the end of the (n + 1)st
value iteration.

Applying relaxation. When applying successive look-ahead steps, it is required in addition to
effective selection of ARFs, to determine how often to apply actual relaxation. For the problems
tested, it was found that selecting an ARF for each value-oriented step tends to be less efficient
than selecting an ARF every X steps, where 3 <X < 7. Selecting such X values eliminates, to a
great extent, the cases of ‘jamming’ which often occur when applying the one-step look-ahead
approach (see [3]) and reaches the required level effectively.

The trend of K,. As mentioned earlier, the vector §, tends to converge with the growth of the
iteration number n. This implies that the minimum value K, which achieves any given convergence
level of the vector 55\,‘_)”, tends to decrease with the growth of n. On the other hand, an improved
policy R requires a higher level of convergence of the vector 5}5_’” so as to gain further contribution
of the improved policy. Considering these contradicting effects on K, we have found that, for
problems having large values of A4, the adaptive values K, usually tend to decrease with the growth
of n (the effect of §, is more dominant). This observation, which is based on the experience gained
from solving many real problems of up to 100000 states, is new.

is worth noting that the proposed approach can be enhanced in several ways. It can be regarded as

a general modified VIA for which one can apply ‘Phase 0’ and Action Elimination (see Herzberg [5]).
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Phase 0 is a preliminary procedure aimed at supplying effective initial values V,(¢), i € I. It was found
suitable for problems with high A values and relies on an approximate solution of artificial related
problems with low values of 4. While the look-ahead approach tries to save computational effort of the
policy iteration part, Action Elimination (AE) aimed at saving effort during the value iteration part by
excluding from the calculation actions which are not part of the optimal policy (see MacQueen [9},
Porteus [18], Hastings and Van Nunen [2] and Puterman and Shin [20]). Permanent AE can be applied to
discounted cases immediately after each value iteration while temporary AE, for both discounted and
undiscounted cases, may be applied only after the look-ahead stage just before the next value iteration.

Another enhancement relates to the effectivenes of data processing. Parallel Processing capabilities
may readily be used for the merged approach. Indeed, most of the computational effort is assigned to
calculate the terms g,“.",’,(i), k=1,2,...,K, i €l For the schemes mentioned (excluding PGS and GS)
calculation of a term g{ (i), for a certain state i, can be done independently of the calculations for other
states (given that all calculations for value-oriented step & — 1 and its associated relaxation w,_,,, have
been completed). For PGS and GS the concept of parallel processing is more limited, however, it can
still be applied to the second part of the terms g )(¢), i €I (see Eqs. (14) and (16)).

Applying the proposed procedure requires the use of memory, allocated for the terms I},f",,)(i), g,((:,’,(z')
and 52;},0), k=1,2,..., K,i €l As these terms are recursively calculated, one can practically reuse the
memory assigned to V,.(i), and §,(i), i €I, for the terms V{)i), and &{ (i), i € I, respectively. Similarly,
the memory required for the terms g§ (i), i €I can be reused for the various & values, so additional
memory of only one vector with [I] elements is required for the K-step look-ahead analysis.

Table 1
Numerical results of various discounted value iteration schemes
A\ schen:es Auribute =8 |/|=65 A=10.11|=1000 A=80,]I1=370 A =2000, |1] = 6350
(e=1075) B=08 B=09 pB=08 =09 =08 B=09 B=08 B=09
PI:
Basic VIA NOI 52 101 48 98 56 102 52 125
RSC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
K=1,X=1 NOI 12 21 16 27 27 35 20 43
RSC 2.8 3.0 2.4 2.6 2.0 2.8 2.6 2.9
MPI NOI 4 6 4 5 5 7 4 6
MxK 20 24 24 41 75 35 126
TotK 60 100 34 90 124 313 87 418
RSC 45 55 5.1 7.0 8.6 9.4 12.9 20.1
MARVO, X=5  NOI 3 4 3 4 5 6 4 5
MxK 17 17 18 18 38 54 22 104
TotK 34 50 35 54 103 189 69 266
RSC 6.1 7.3 7.0 10.1 8.6 11.3 12.9 24.3
GS:
Basic VIA NOI 39 74 41 75 47 78 44 84
RSC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
K=1,X=1 NOI 13 22 12 19 21 29 14 25
RSC 23 25 24 28 22 2.6 3.1 34
MPI NOI 3 5 3 4 5 7 4 5
MxK 20 20 24 24 33 64 30 109
TotK 40 80 39 72 94 240 63 375
RSC 49 4.9 6.0 6.7 7.6 7.8 11.0 16.2
MARVO, X=5  NOI 3 4 3 4 4 5 4 5
MxK 17 17 18 18 25 47 19 58
TotK 30 48 31 42 68 148 48 203

RSC 4.8 0.5 6.3 8.7 9.4 10.8 11.0 16.5
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4. Numerical results

Table 1 presents numerical results for selected discounted MDP problems. Each problem has been
solved for various VIAs, where for each algorithm we use 4 different solution procedures: basic VIA,
one-step look-ahead, MPI (value-oriented only) and the proposed scheme called Multiple Adaptive
Relaxation with Value Oriented (MARVO). The problems differ from each other mainly by dimension.
The attributes considered are: NOI — number of iterations, MxK — Maximal value-oriented steps that
actually taken per iteration (MxK < Max K), TotK - total number of value-oriented steps, and RSC -
relative speed until completion in terms of CPU time ratio when compared to the basic VIA. RSC can be
used for comparison analysis under the practical assumption that CPU times per iteration arc the same
for all basic VIAs. For all problems the value X =35 is selected (ARFs are calculated every 5
value-oriented steps). The tolerance error € = 10> was chosen and the discount factors used are 8 = 0.8
and (B =0.9. The same convergence level rules for 6}‘,’” have been applied to the schemas MPI and
MARVO. We found that using alternately the ARF criteria Min Difference and Min Variance (see [4])
achieves for discounted cases effective results. No major differences among the various schemes are
discovered with respect to MPI and MARVO, however some differences are worth noting. As the results
obtained for the J and the PJ (PGS and the GS) schemes were very similar, we show in Table 1 the
numerical results which only relate to the schemes PJ and GS. The convergence of PJ under MARVO
usually requires less iterations than with MPI, resulting in total computations saving of up to 55% when
compared to the MPI. This is less frequent when using the scheme GS but reduction of TotK under
MARVO is achieved in any case. As was expected, MARVO is particularly effective for cases of high
values of B, resulting in higher RSC values for 8 = 0.9 than for 8 = 0.8.

Table 2 presents numerical results for selected undiscounted MDP problems. Each problem has been
solved several times by using the value X as a parameter. For undiscounted MDPs we use alternately the

Table 2
Numerical results of various undiscounted value iteration schemes
c= 0 A=8,1I1=65 A=9,1I1=950 A'=240,11=90 A=250,1{=650
Scheme Attribute MDP SMDP MDP SMDP MDP SMDP MDP SMDP
Basic VIA NOI 337 44 677 698 109 139 537 528
RSC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
N=1 NOI 43 17 94 123 24 27 86 87
MsxK 1 1 1 1 1 1 1 1
TotK 42 16 93 122 23 26 85 86
RSC 57 2.1 6.1 4.8 4.6 5.3 6.3 6.1
MPI NOI 13 4 21 14 8 5 7 6
MxK 19 19 23 23 57 109 174 148
TotK 241 53 455 307 211 284 874 6356
RSC 7.8 4.1 9.6 15.6 12.3 22.6 51.2 61.2
MARVO. X =3 NOI 6 3 12 10 4 5 5 5
MxK 17 17 18 18 82 33 122 109
TotK 85 34 206 172 168 110 396 311
RSC 14.8 4.4 15.7 19.7 219 24.7 733 77.8
MARVO. X =35 NOI 6 3 12 12 4 S 5 5
MxK 17 17 18 18 76 50 105 110
TotK 72 34 196 205 169 121 376 364
RSC 18.1 4.9 17.7 17.8 224 24.8 77.6 77.0
MARVO, X =7 NOI 7 3 14 12 5 N 5 5
MxK 17 17 18 18 78 63 136 119
TotK 100 34 247 211 214 148 428 352

RSC 14.9 53 15.0 18.0 18.1 243 76.6 78.8
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Min Ratio and the Min Variance ARF criteria. The MPI scheme represents the value-oriented concept
with no relaxation. Once again, the same convergence level rules have been used for the MPI and for
MARVO. The tolerance error sclected is & = 107° The Relative Speed until Completion (RSC)
achieved with the combined use of value oriented and relaxation is significantly higher than that in the
discounted cases and the superiority of the method over other schemes is more apparent. The larger the
dimensions of the problem the higher the RSC obtained.

It is worth noting that although Action Elimination and Parallel Processing have the potential to
improve the performance of all variants of discounted and undiscounted VIAs, it is expected that basic
VIAs will benefit from these enhancements more than MP1 and MARVO. This stems from the fact that
the full action space of basic VIAs is always considered while the value-oriented phase, as applied to
MPI and MARVO, uses a single action per state.

5. Conclusions

We have analysed an algorithm which can be regarded as a hybrid of Value and Policy Iteration. The
Value Determination phase of the Policy Iteration algorithm which requires the solution of a set of /]
simultaneous equations is replaced, under the look-ahead approach, by an easier task aimed at letting
the vector BA‘,\’” to converge in a controllable fashion. To carry out this task effectively we have introduced
a novel approach of multiple relaxation which is incorporated with value-oriented steps in a uniform
mode for both discounted and undiscounted MDPs. Applying practical guidelines to this method in
addition to the effective selection of ARF criteria and their use, lead to improved performance when it is
compared to other variants of VIAs for solving MDPs. The computational savings are significant,
especially for cases of high discount factors and for undiscounted MDPs, as it is demonstrated in Tables
1 and 2. The method seems attractive, particularly for solving large-scale MDPs. It was successfully
tested on many state-dependent decision and control processes in the area of private [6] and mobile [7]
telecommunication networks by considering problems in the range of up to 100000 states, having about
100 decisions per state.

Appendix A

In this appendix we present a derivation which formulates the K-step look-ahead approach for the PJ
scheme using recursive Eq. (1) of Section 1. To do so we perform, first, a one-step look-ahead analysis.
The relaxation part of this step is achieved by calculating the modified values V(i) as follows:

I7n(i):wl.n‘V;x(i)-+-(1_wl.;1)'Vlz-l(i)_—_l/n—l(i)"‘}_H}l,rz'éll(i)’ IEI (Al)
Following the completion of the first value-oriented step we derive the estimators I}L,,(i):
Via(i) =CR+B L PRV, ()), i€l (A2)
jel

¥, (i) would represent the value V, , (i) if the values V,(j), in the (n + 1)st iteration, are used instead of
the values V,(i), i €I, respectively, and the action R, still satisfies Eq. (4).
From Egs. (A.2) and (A.1),
[71,)1(1‘) = CiRl + 6 Z Plft ’ [I/n—l(j) + wl.n : 5,,(])]
jel

ZI/II(I) +wl,n'gl‘n(i) iE], (A3)
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where

g (i)=B" Y PR-5.(j), i€l (A.4)

jeil

In a similar manner we define estimators 6, (i) for §,. (i), i € I, where

81.,(1) =V, () =V (i), i€l (A5)
Using Eqgs. (A.1) and (A.3) one gets
sl,rz(i) =6n(i) +wl,n. [gl.;z(i)—(s/:(i)], lE[ (A6)

In order to find ‘good’ values of wy ., we select an ARF by using either the Minimum Difference
criterion or the Minimum Variance criterion (sce {4]) In this way we apply relaxation after calculating
the values g,,(7), in order to obtain effective values §,,(i) and V, (D), iel

Before performing a look-ahead analysis for the second time (step), we apply once again the concept
of relaxation, using this time an APF w,, to get the modified values ¥, (i), i € I, instead of the values

1,00, i €1, respectively, where

Vl,n(i) = I/n(i) + wZ,n ’ [ 1 n( ) n(i)] 5 IGI (A7)
Using again Egs. (A.1) and (A.3) we get
ln( ) n—l(i) +wl,n.6n(i) +W2.n.{V;r(i) +w1,n'g1,n(l‘) [ z——l(') +w1nbn( )]}
V;z—l(i) + wl,n : 5;7(1) + w2,n . {511(1) + wl,n : [gl.n(i) - Bn(l)] }
Applying Eq. (A.6), the above can be written as
I~/-ln(l.)zl/n—l(i)h‘—wln'ﬁn(i)+w2n'6,\ln(i) i€l (AS)

\\e can now complete the second value-oriented step by applying Eq. (A.8) to calculate estimators
) for ¥, (D), i €1, respectively, using the same R, decisions again:

Z/2.,n(i) = C[Ri + B Z Rf‘ : I—/l,n(j)

jel
= CiRi + B Z })ifi ’ [I/;i’“l(j) + wyl,n ’ (Sn(]) + sz.ll ’ é\l‘n(j)]
jel
= I/n(l) + wl,n .gl,n(i) + w2,n .gZ,n(i)’ (A9)
where
i) =B L Pf-8,,00), i€l (A.10)
jel
Alternatively, by Eq. (A.3),
F:.I!(i) = Vl,n(i) + wZ.n ‘gl.n(i)' (All)
The estimators 52‘,,(1') for 8, ,,(i), i €1, are defined as
S?_.n(i) = I}Z,n(i) - Vl,n(i)’ iE I (Alz)

Using Egs. (A.8) and (A.9) one gets
52.:1([) = I/n(i) - Vn——l(i) + wl,n : [gl,n(i) - 6;1([)] + WZ,n ’ [gl,n(i) - S\l,ra(i)] '
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Based on Eq. (A.6), the above can be written as
52,)1(i) =5’\I,n(i) ~"“WZ,M. [gZ,n(i) ~S\].Il(i)]’ IEI (A]3)

By induction it is straightforward to derive a general formulation of k value-oriented steps incorpo-
rated with relaxation (for which Egs. (A.3) and (A.9) are special cases):
k
Vk.n(i)— (l)+ Z wmn gmn( ) VA—lr:(l)+Wk11 gkn(l) [EI, k=132”"’K (A14)

m=1

where V0 ,(i) is defined by Eq. (7). .
Alternatively, generalizing Egs. (A.9), (A.12) and substituting V,i_l )= Vk,,,(j) = 8, (),

Vk‘n(l) =CiRi+ﬁ Z t'j'- Vk~1,n(1)

jel
=CR+B Y PR [V () =8, ()], i€l k=1,2,.. K. (A.15)
jel
Eqgs. (A.4) and (A.10) can also be generalized to the form
gen(i) =B+ L8, 1,(J), i€, k=1,2,... K, (A.16)

jel
where 50,,1(1‘) is defined by Eq. (7).
Egs. (A.6) and (A. 13) are generalized accordingly:

Ben(i) =8krn(i) + Wi [81n(i) =81 (D], i€l k=1,2,... K. (A17)

Appendix B

For completeness, we derive in this appendix further insight of the relation between the look-ahead
approach and Policy Iteration for both discounted and undiscounted MDPs.
Eq. (3) of Section 2 can be rewritten as follows:

K K
" ; k
Ven=Vot LB B(R] S, =V, + L B [P(R)]"S,. (B.1)
k=1 k=0
Consider Eq. (B.1) for the limiting case K — oo:
‘%lm VK!1=V;)—1+[[Id]-—ﬁ[Pn(R)]]‘l6n' (B2)

Eq. (B.2), for the special case where V,_(i)=0 and 8,(i))=Cf, i€l (in fact, using the values
V,_(i)=0, i €1, under a policy R yields V,(i) = CX" and thus §,(i) =V, (i) - V,_(i)=CR,i€l) can
be evaluated by the expression

hm I}K n= [ Id] B[ (R)”—ICR’ (B3)

where [Id] denotes the unit matrix and C® is the cost vector whose elements are CRi il
For undiscounted MDPs the limiting case relates to the vector 8,( . Whose elements converge, by
substituting as before 8,(i) = C[, i €I, to the value
lim 8y, = 2 1g(7) 8,(7) = X Me(j) - Cf. (B.4)

K- jel jer
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Eq. (B.4) represents the process cost per unit time under the policy R, obtained by Howard’s Value
Determination phase for undiscounted cases. Assuming that each element 8y (), i €1, converges to the
value A,, Eq. (A.15), for undiscounted cases 8 = 1 and for k = K, can be modified to the form

A

I}K,n+[An]=CR+ [PH(R)]VK.M’ (BS)

where [4,]is an /| column vector with identical elements equal to A,,.

Replacing ¥, by V. ,, according to Eq. (B.3) (Eq. (B.5)) just before the (»# + 1)st value iteration, is
exactly performing Howard’s Value Determination phase with the policy R for discounted (undis-
counted) MDPs before applying the Policy Improvement phase.

Howard’s Value Determination phase in the well known Policy Iteration algorithm, for both dis-
counted and undiscounted MDPs, is therefore a special case of the look-ahead approach which under a
policy R always uses 8,(i)= C{*, i €1, n > 1, and looks ahead infinite number of steps without relaxation.
For discounted cases it relates to the PJ variant only.
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