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Control limit type policies are widely discussed in the literature, particularly re-
garding the maintenance of deteriorating systems. Previous studies deal mainly
with stationary deterioration processes, where costs and transition probabilities
depend only on the state of the system, regardless of its cumulative age. In this
paper, we consider a nonstationary deterioration process, in which operation and

maintenance costs, as well as transition probabilities "deteriorate" with both the
system's state and its cumulative age. We discuss conditions under which control
limit policies are optimal for such processes and compare them with thclse used in
the analysis of stationary models.

Two maintenance models are examined: in the first (as in the majority of clas-
sic studies), the only maintenance action allowed is the replacement of the system

by a new one. In this case, we show that the nonstationary results are direct gener-

alizations of their counterparts in stationary models. We propose an efficient algo-
rithm for finding the optimal policy, utilizing its control limit form. In the second
model we also allow for repairs to better states (without changing the age). In this
case, the optimal policy is shown to have the form of a 3-way control limit rule.
However, conditions analogous to those used in the stationary problem do not suf-
fice, so additional, more restrictive ones are suggested and discussed.

1. INTRODUCTION

A great deal of research has been devoted to the

teriorating systems, in particular to the structural
icies. Of special interest are policies known as
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maintenance of stochastically de-
form of optimal maintenance pol-
control limit policies (CLPs), in
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which the system operates uninterrupted up to a certain degree of deterioration, and
maintenance of some kind is performed whenever this limit is exceeded. Such pol-
icies are intuitive in nature and easily implemented in real-life systems. As a result,
conditions ensuring the optimality of CLPs for various maintenance models are of
great interest.

In the basic models introduced by Derman [1] and Kolesar [6], a system deteri-
orates according to a Markov process, where different states correspond to different
levels of deterioration. In these models, the only possible action is the replacement
of the system with a new one. Other models, such as Kijima, Morimura, and Suzuki

[5] and Douer and Yechiali [3] also allow for partial repairs, which are cheaper
(though less effective) than complete replacement. In all of these models, the opti-
mal policy is shown to be a CLP under intuitively meaningful conditions, namely
that costs and failure probabilities increase as the system deteriorates.

In many real-life systems, the deterioration process may change its character-
istics (such as transition probabilities or cost functions) as the system ages. In such
cases, a Markovian process does not accurately describe the system's deterioration.
In order to take the aging process into account in a more general way, Kao [4]
developed a semi-Markovian process. He discussed "stage-age" replacement poli-
cies, in which the optimal replacement time depends on both the state and the so-
journ time in it. Other "state-age" models were developed by Lam and Yeh [7] and
So [9], among others.

The use of the term "system age" with respect to the above semi-Markovian
process is somewhat misleading: while the sojourn time is measured from the last
transition or maintenance action, "true" age accumulates throughout the system's
life cycle; while some of the outcomes of this cumulative aging may be overturned
through maintenance, others may not (for example, when nonrepairable components
exist).

In this paper, therefore, we discuss an extended notion of an aging process: we
address the problem of a nonstationary, age-dependent deterioration process. In
such a process, all parameters-transition probabilities, maintenance and operation
costs-depend explicitly on both the system's state and its total cumulative age. We
discuss both a "replacement-only" model and a "repair-replacement" model in which
repair actions may involve changing the system's state to a better one, but cannot
change its age. The system's age can be reduced (to zero) only through replacement
by a new system. This property describes, for example, a system which contains a

repairable part (whose condition is represented by "states") and a nonrepairable one

(whose condition depends on its cumulative age).

The structure of this paper is as follows. In Section 2, we define the concept of
a control limit policy in the nonstationary context. In Section 3, we discuss the

replacement-only model and the optimality of CLPs under various optimization
criteria. The results are shown to be direct generalizations of previous results for

stationary models [1,3,6]. In Section 4, we propose an algorithm for finding the

optimal policy, utilizing the fact that it has a control limit form. A detailed example,

using the proposed algorithm, is provided. Section 5 offers an advanced, more effi-
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cient solution algorithm. In Section 6, we discuss the repair-replacement model. We

show that, in this case, direct analogies to previous conditions do not ensure opti-
mality of CLPs. More restrictive conditions are suggested and discussed.

2. AN AGE-DEPENDENT CLP

In the classic stationary model, control limit policies may be viewed as bisections of
the one-dimensional system state space: The system is replaced if and only if its state

i is greater than some control limit i *. In the nonstationary model, a replacement
policy defines the set of state-age pairs in which the system is replaced. Intuitively,
one might therefore attempt to define a CLP in the nonstationary case as a bisection
of the two-dimensional state-age space. However, certain two-dimensional bisec-
tions may not be as simple or intuitive as one would expect of a control limit policy
(once defined). For example, a control limit policy would be expected to be mono-
tone in the sense that the extent of maintenance grows as deterioration increases.
Hence, the need for a somewhat finer definition emerges.

We therefore deflne an age-dependent CLP as a policy having the following
structure: For any fixed age t, it has a control limit structure regarding the state; that
is, the system is replaced if and only if the state is above i.(t). Also, forany fixed
state i, it has a control limit form regarding the age; that is, the system is replaced
when its age is greater than r.(i ). Such a policy is indeed monotone (in the meaning
described above) as long as one of the parameters (state or age) is fixed. We also
define a partial CLP as a policy which is a CLP regarding state for any fixed age, but
not necessarily vice versa. Partial CLPs will be used by the solution algorithm pro-
posed in Section 4.

3. REPLACEMENT-ONLY MODEL

A system deteriorates according to a discrete time, nonstationary Markovian pro-
cess. The degree of deterioration is denoted by one of a finite number of states

{0,1,...,N}, where state 0 denotes a fully operational system, state N denotes a
failed system, and intermediate states denote increasing levels of deterioration. We

denote by (;, r) a system at state i and age t.
The transition probability of moving from state i at age / - 1 to stateT at age / is

P,iQ) (we assume that the probability of eventually reaching state N from any given
state i is nonzero). Immediately after every transition, the system is inspected and a
decision is made whether to continue its operation for an additional unit of time
(without taking any action) at cost R,(r) or to replace the system with a new one at

cost Br(t). If the system is replaced, it moves immediately to (0,0) and operates for
one unit of time at cost Ro(0).At state N (failure) replacement is mandatory. We also
assume that the system is always replaced at its maximal life span Z* < oo.

We impose the following conditions on the deterioration process:

Condition 3.1: RiQ), B,(t) are increasing functions, both in i and in r (throughout
this paper, we consider functions as increasing or decreasing in the weak sense).
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Condition 3.2: For every t < T" and i < I/, Br(r) + Ro(0) = R;(r).

Condition 3.2 implies that for a one-step horizon, replacement is always more
expensive than doing nothing.

Condition3.S: The function Z!:rP,iQ) is increasing in both i and I for any fixed k:
0,...,N. It may be shown (see a similar result for the stationary case in [1]) that this
condition is equivalent to the following: for any function h( j,t) which is increasing
in bothT and /, the function $oPy U)hU,r) is also increasing in both i and t.

Condition 3.3 may be viewed as a generalized increasing failure rate (IFR)
condition [3].

Condition 3.4: The function B'(t) - Rr(r) is decreasing in both i and r.

It should be noted that Conditions 3.I-3.4 are direct two-dimensional exten-
sions of the conditions used in previous one-dimensional stationary models.

We now show that under the above conditions, and for the discounted cost
criterion, for any horizon, the optimal policy is a CLP.

Denote by OI(t, r) the expected total discounted cost under the optimal policy,
given that the system is at state i and age t, the discount factor is a and the horizon
is 0 < T I oo time units. The following optimality equations may easily be derived:

or(o,o) : Ro(o) *, i Po;(l) a[-, (j,1)
j:o

oI(N, t) : B*(t) + R0(0) + o ) po;(1) A[-'( j,1)
"r:0

N

aIG,T*) : B,(7.) + R0(0) + " ) Poj(1)or-'(i,l)
j:o

0<r<T*

0<i=N

0<i<N,

0<r<T*

(1)

a[Q,t) -
f o,t,r

min {

1",,',

+ " ) P,,(t + 1)Or-t(i,t + t),
j:0

+ Ro(O) + of po,g)or-'( j, r
j:0

The initial conditions for T - | are:

oj(t, t) = R,(t) i<N;t<T*
ol(M t) : B*(t) + Ro(o) for all t (2)

aLG,T*) : B,(7. ) + Ro(o) for all i.

Lnuun I: For fixed q and T, QIQ,I) is an increasing function of both i and t.

Pnoor': The proof follows readily by induction on I, as every expression on the

right-hand side of Eq.(l), Eq.(2) is increasing by Conditions 3.1-3.3. t
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TsEonru 1: Under Conditions 3.1-3.4, andfor the discounted cost criterionfor
any horizon T ) 0, the optimal policy is a CLP.

Pnoon: For Z: l, the control limit form is immediately evident from Eq. (2). For
| < T ( oo, assuming replacement is the optimal action at some (i, r):

B,(t) + Ro(o) + o ) Po;(1)Or-' (j, 1)
./:0

Rearranging terms results in

B,(t)+Ro(O)-R,(r)

= R,(r) * * i P,,(t +1)Or-r(7,r * 1).
j:0

= * [5r,,(r+ r)oI-'(j,t-rl) - i pri(r)o|-'U,l)l (4)
L v:o j:o J

The left-hand side of inequality (a) is decreasing by Condition 3.4, while the right-
hand side is increasing by Condition 3.3 and Lemma l. Therefore, inequality (4)
holds for any (*,t) wrth m > i and s 2 t, thus proving that the optimal policy is a
CLP.

The infinite-horizon case is dealt with in a similar manner, using the total cost
function O,(i, r) = limr- *QIQ,I). I

Denote by qtal the average cost per unit time for policy d.The following well-
known lemma connects the value of O(d) with that of the infinite-horizon discounted
cost (its proof may be found in Derman [2]). We note that for I* = @, additional
regularity conditions are required for this result to hold (for example, bounded costs,
or other more subtle conditions discussed in Puterman [8] and references therein).

Lpnaue 2: Denote by Af )Q, t) the infinite-horizon expected discounted cost under
policy d. Then

6(rr) - lTlttr - day )(r,/))

for any i,t.

Tsponeu 2: The optimal policy for the auerage cost criterion is also a CLP. Fur-
thermore, the auerage-cost optimal policy is the limit of the discou,nted-cost optimal
policies as the discount factor approaches l.

Pnoor: Let {ao}p, be an increasing sequence of distinct discount factors, with
liml-"o er: l, having the property that the optimal policy under the infinite-horizon
discounted cost criterion-for all discount factors ap-is the same (such a sequence

exists, as there are only finitely many possible replacement policies). Denote this
common policy by d*. For every policy d we therefore have, for every ft,

oI1)(;, t) > afr")Q,t)
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for all i, r. Using Lemma 2 with inequality (5), we have

o(d) : lggtr - o)aytr)U,r) = IIL(l - au)olf.'( i,t): o('/*),

thus proving optimality of d*, which, by Theorem l, is a CLP. I

We note the following economic interpretation of Inequalities (3) and (4): the
left-hand side of Inequality (a) is the marginal one-step cost of replacement com-
pared with doing nothing, while the right-hand side is the expected saving in future
cost as a result of the replacement. These inequalities therefore state, as may intu-
itively be expected, that replacement at (i, r) is cost-effective if and only if the mar-
ginal one-step replacement cost is outweighed by the expected future savings resulting
from the replacement. The optimality of CLPs naturally follows from the above
intuitive explanation: Conditions 3.1 and 3.3 imply that the expected future savings
increase in both i and r, while Condition 3.4 implies that the marginal one-step cost
of replacement decreases in both i and t.

Another aspect of Condition 3.4, particularly of its age-related part, should also
be noted: it limits the rather general cost deterioration structure characterized by
Condition 3.1 and requires that the operation costs "deteriorate" at a higher rate than
the replacement costs, for the optimality of CLPs to hold. Without Condition 3.4,the
optimal policy is not necessarily a CLP, although such optimal policies are possible.
As an example, assume the costs and transition probabilities used in Section 4, with
R,(r) and Pi;(/) held constant at their r = 0 values (so Condition 3.4 does not hold).
It may be seen that as a changes, the optimal policy changes from a CLP to a non-
CLP form. For example, for a : 0.6, the optimal policy is not a CLR but, for a :
0.65 or a : 0.55, it is. For a: A.734, the optimal policy is not a CLP, but it is a CLP
for a : 0.733 or a:0.735.

4. FINDING THE OPTIMAL POLICY

The nonstationary replacement-only problem may be considered a Markovian de-
cision problem, with each pair (i, r) viewed as a separate Markovian "state," and

solved using one of many existing algorithms for such problems. In practice, how-
ever, this method (if applied in a straightforward manner) would be quite inefficient,
as such general algorithms pay little respect to the specific form of the problem (note

the relatively large transition probability matrix, consisting mainly of zeros, as an

example) or the solution.
We shall now propose an algorithm for finding the optimal replacement policy.

The proposed algorithm is based on the well-known general policy iteration algo-

rithm (cf. Tijms [10]), but it utilizes the known control limit form of the optimal
policy. In this section, we describe a basic version of the proposed algorithm. This
version is rather inefficient, but it is more clearly described and justified than the

advanced, computationally efficient version described in the next section. We dis-

cuss only the infinite-horizon discounted cost criterion, noting that the average cost

criterion mav be handled in a similar manner.
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If d is a CLR denote bV ii0) the control limit for age / under d.That is, under d,

a sysrem at age r is replaced if and only if the state is at least ii!). Clearly, i;(T.) -
0foranypolicy d(asreplacementismandatoryatZ*).Forcompletenessofnotation
we also write t;(0) : N for any policy d. The expected total cost under policy d,

when starting at (i,t), is denoted by uaQ,l). We refer to the policy attained after the

nth iteration of the algorithm as dn, denoting its control limit and cost functions by

i,l(t) and un(i,t), respectively.
The following well-known theorem (often referred to as Howard's policy im-

provement theorem) is the theoretical basis for the policy iteration algorithm. Its

proof can be found in [2] and [8]. It is written in terms of a general Markovian
decision process (as previously noted, the nonstationary problem may be described
in this manner).

THeoRpl,r 3: Let S be the state space of a (stationary) Markouian decision process.

Denote by d(s) the action taken under policy d at state s, by F(s,a) the one-step cost
incurredwhen action a is taken at state s, andby P(s'l s,a) the transition probability
of mouing to state s' after action a is taken at state s.

Let d be any policy. If,for some policy g,

F(s,g(s))+o ) P(s'ls,g(s))ua(s') =rr(r) (6)
.r'€S

for euerys € S, then u rG) 
< u /s) for all s e S. Furthermore, if for euerys € S, d(s)

itself minimizes the left-hand side of inequality (6), then d is optimal.

We now describe the basic version of the proposed algorithm for the nonsta-
tionary replacement-only problem.

1. Initialization: The algorithm starts with an arbitrary initial policy ds, which
must be a partial CLP. The algorithm begins at age t : 1.

2. Policy evaluation: The evaluation of a policy (i.e., determination of the
values of u,(i,r) for every i,l) is performed from I* backward: at T* re-
placement is mandatory, so for all i

un(i,T") : B,(f -) + u,(0,0).

Note that the value of u,(0,0) is yet unknown, and we refer to it as a variable
for the time being. Suppose now that u,(i,t + 1) is known for i:0,...,N.
u,(i, t) is evaluated by the following equations:

un(i, t) :

Note that all ex

terms of u,(0,0))

u,(0,0) : Ro(0) + " ) Po;(l)u^(j,l).
j:0

61

lu,(,)+u,(o,o) i>itrG)
{N(7)

f 
o,tr) * ",)* P,,(t + l)u^(i,t + r) i < ii!)

pressions on the right-hand side of Eq. (7) are known (in

. Continuing in this manner, we reach the following equation:

(8)
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Equation (8) can be solved for un(0,0), whose value may be substituted into
ur(i,t) for complete evaluation of d,.The above method is, in fact, equiva-
lent to the method used in the general policy iteration algorithm, that is, the
solution of a set of linear equations. However, it utilizes the special structure
of our problem, in which only transitions to very few states are possible
(those corresponding to age t + l).

3. Policy improvement: The algorithm attempts to shift the control limit t,i(r)
up or down by one state. Using test conditions (9) and (10) below, which are

based on Theorem 3, the algorithm tests whether such a shift is improving,
that is, whether the cost under the new policy is lower than under dn (we refer
to i * rather than i,l(r) hereafter for simplicity of notation).

R,.(r) * *i P,-,i(t *I)u,(j,r+l) 2u,.(r) +u,(0,0) (9)
./:o

Bi*-r(r) + u,(0,0) { o,.-,(r) + o j R.- r.i(t + t)u,(j,t + t). (10)
j:o

If the shift is found to be improving, then the new policy d,*1is evaluated
(by step 2) and additional improvement in the same direction is attempted.
Otherwise, the algorithm moves on to r * 1, and continues in this manner
cyclically. Note that dn*1, like d,,, is a partial CLP.

4. Stopping criterion: The algorithm terminates when an entire cycle is com-
pleted without any improving actions. dn is the optimal policy.

We must now prove that our stopping criterion is indeed a valid one. As opposed
to the general algorithm, Theorem 3 cannot be used directly in order to establish
optimality, as the policy improvement step in the above algorithm is more restric-
tive: only two actions are tested at each iteration, namely, shifting of iIU) at some t
up or down by one step, rather than the complete set of possible actions (as in the
general algorithm). A priori, this could perhaps lead to some local minimum rather
than to an optimal policy.

We first prove the following lemma (we suppress the subscript n hereafter).

Leuue 3: If,for policy d, no improuement is made throughout an entire cycle, then

u(i,t) is increasing in i for euery t.

Pnoon: The proof is by backward induction on /. For t : T*,

u (i,T*) : B,(7.) + u(0,0),

which is clearly an increasing function of i, by Condition 3.1. Assume now that r (
Z* and suppose i > j.If i, j > i.(r) or i, j < i"(t), monotony is evident from Eq. (7)

using the induction hypothesis.
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It is left to show thatu(i.(t),t)>u(t-(r) - l,t).As shifting (particularly down)

of l.(r) is not improving,

Bi.u)-,(r) + u(0,0) > Ri.(r)-,(r) + of P,-ru-r,1(t+ 1)u(7,r + l). (11)
j:o

Using the fact that B;.1,y-,(r) s Bi*(t) (r) with inequality (11), the proof is complete.
I

Turonpru 4: If, for policy d, no improuement is made throughout an entire cycle,
then d is optimal.

Pnoor: We will show that if no improvements can be made by the algorithm, then
any deviation from d-even one that does not result in a partial CLP-is not im-
proving, thus proving optimality by Theorem 3. Assume, therefore, that for all t,

Bi.(t) (l) + u(0,0) ( Ri.(,)(r) + o2 p,.ot,iU + Du( j,/ + l)
j:o

N

Bi*(t)_,(r) + u(0,0) ) R;.(,)_,(r) + o2 p,.t,t_r,/t + l)u(j,t + l).
j:o

Assume now that there exist (k,r), such that k ( i 
*(r), and

Bo(t)+ u(0,0) < Ro(r) * * j po,(t + l)u(j,/ + l).

(r2)

(13)

(14)
j:0

Such (/c, r) would imply that d is not optimal, by Theorem 3. Using Conditi on 3.4
with case (14), we have

Bf(t)-r(r) +u(0,0) (Ri.(,)-,(r) + otro,lr+t)u(7,r+ l).
"l:0

By Condition 3.3 and Lemma 3, we have

Bi*Q)-,(r) + u(0,0) ( Ri.(,)-,(r) + o5 p,.,,i-r,;(/ + 1)u (j,t + l),
j:0

thus contradicting case (12). Therefore, such (k, r) with k < i.(l) do not exist. In the
same manner it is shown that the existence of (ft,1) with k > i*(r), in which doing
nothing is better than replacement, would contradict case (13), thus completing the
proof. r

We now present a detailed example of a problem solved using the proposed al-
gorithm. We denote a policy dby a vector containing the values of tJ(r). Let N = 4,
T* :4, and a:0.9.Assume the following operation and replacement costs: BiU):
5 + 2i + 0.2it, R,(r) : I * 2i + 0.5it The transirion probabilities are:
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P,'i.*Q) :

It is easily verifie
'replace always':

do:1400001.
We first evaluate us(i,t).It is easily seen that for / z 1,

us(i,t) : B,(t) * u,,(0,0) : 5 + 2i + 0.2it * us(0,0).

Solving the following equation for u6(0,0),

uo(0,0) : Ro(0) * * i Po;(l) uo(j,,l) : 1 + 0.9(8.35 * us(0,0)),
j:o

we have uo(0,0) : 85.2. Substituting this into the previous calculations yields the
following values for ue(i, r):

[8s.2 e0.2 90.2 e0.2 e0.21
tt| - 92.4 92.6 92.8 93.0 Itl

uo : | 94.6 95.0 95.4 95.8 
|

I - e6.8 e7.4 e8.o e8.6 |

L - ee.o ss.8 100.6 lor.4j

We now test the benefit of shifting the control limit up at t : l:

Ro(l) *r j Poi(2)uo(j,2):86.0 <g0.2: Bo(L) + ue(0,0).
,t:0

The control limit is therefore shifted up, and u (i, t) evaluated. Yet another shift up
is found to be successful, after which we have

Z. Benyamini and U. Yechiali

0.7 0.1 0.0s-l

0.9 0.1 0.05 I N-,

o o.s o.rs l.o.e' p,,*(t)-l - )ru(r).I i:o
o 0 0.sI

t Conditions 3.1-3.4 hold. We start with the initial policy,

LT
d tha

170.4 72.6 7s.4 7s.4

| - 7s.3 77.8 78.0

dz:1420001, rr:l 79.8 8O-2 80.6

| - 82.0 82.6 83.2

L - 84.2 8s.0 8s.8

Testing the benefit of a third shift up, we find that

7s.41

78.2 
|

8r.0 l.
83.8 

I

86.61

Rr(l) * * j P2,(2)u2(j,2) :80.3 > 79.8: Br(l)+ ur(0,0).
j:o
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Therefore, the algorithm moves to / : 2 without changing the control limit. Again,

the first two shifts are found to be improving, while the third is not, so that d4 :
L422 0 0 ].Moving on to t:3, only one shift up is improving:

ds:1422 I 01,u5:

68.3 70.2 7 r.6 72.5

72.9 74.8 75.9

71.7 78.1 78.5

79.9 80.5 8r.1

82.1 82.9 83.7

It can now be seen that there are no further improvements. d5 is, therefore, the
optimal policy. Optimality of d5 may indeed be directly verified through satisfaction
of the optimality equations.

5. IMPROVING COMPUTATIONAL EFFICIENCY

The algorithm described in Section 4 has one major drawback when compared with
the general policy iteration algorithm: while the general algorithm evaluates the new
policy d,nl only after improving 4 (using Theorem 3) at all states, the above algo-
rithm reevaluates the policy after every shift. As the evaluation step is time-consuming,
this appears to cause a significant reduction in the efficiency of the proposed algo-
rithm. However, using the fact that the new policy is only slightly different than the
previous one, a more efficient policy evaluation step can be devised, thus greatly
improving the algorithm.

Denote by q, the value of the variable u,,(0,0), and by Q,the matrix u,(i,t),
evaluated in terms of qn. We begin with the following lemma, which demonstrates
the effects of shifting i.(t) on Q. Proof is rather straightforward, based on evaluation
Eqs. (7).

Lntrru.l 4: Suppose the control limit is shifted, and the action at (i, t) changed.
Define X,( j,s) : Qn-t(/,s) - Q,( j,s) for all j,s. Then:

| . For any s ) t and for all j: X,( j,s) : 0.
2. For all s and for any j > i,l(s): X,( j,s) : 0.

3. For any j * i: X,( j,t):0.
4. Forany j < itrQ - l): X,(j,t - l): a.P1iU).X,(i,t).
5. For all s 1t - | andfor any,r < iJ(s):

x,,(j,s) = a
k<i;(.r+ l)

It is evident from Lemma 4 that updating Q, is considerably easier than reeval-
uating u,( j,s) for all7,s using Eqs. (7). Let

N

A,(q) : B,(t) + q -R,(r) - " ) P,,(t + I)Q,,(j,/ + l).
j:o

73.3.l

76.1 
I

78.e l.
81.7 

I

84.51
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Obviously, when the value of q, is substituted into A,we have a test quantity for the
benefit of shifting the control limit up at (i, t): if A"(q,) > 0, the shift is improving,
otherwise it is not. Therefore, in order to evaluate the benefit of a shift, only qn and
A,need be evaluated explicitly. u^(i,r) need not be evaluated in full, as the benefit
can easily be determined in terms of Qn. Furthermore, if the shift is indeed benefi-
cial, then A,: X,(i, /), so thatX,(i, r) need not be evaluated separately. A similar test
quantity for evaluation of a shift down can also be established. The entire algorithm
can, fherefore, be executed in terms of Q,, without having to evaluate un(i,r) (with
the exception of u,(0,0) : e) at every iteration.

Executing the algorithm using Q, obviously involves considerably less compu-
tation then solving the problem using u,(i,t). The following improved algorithm
may therefore be devised: After each step, Qnis reevaluated using Lemma 4. Next,
Qn: un(0,0) is explicitly calculated. Finally, the benefit of the next step is tested
using the test quantity An.

We demonstrate the improved algorithm using the same example as before. We
show only the first iteration of the algorithm, beginning with the same d6. Evaluation
of Qo yields:

Qo:

8.52+0.9q 5+q 5+q
7.2+q 7.4+q
9.4+q 9.8+q
lL.6+q 12.2+q
13.8+q 14.6+q

Solving the equation 8.52 + A.9q: q yields, as before, eo: ue(0,0) : 85.2. In order
to evaluate the benefit of a shift up at / : 1 we look at the test quantity

AoQ): Bo(1) + q-Ro(i) - "g Po/2)Qo(j,2):0. tq- 4.3.
j:0

SubstitutinE eoyields A0(85.2) : 4.2 > 0. Therefore, the control limit is shifted. We
know that X1(0,1) : Ao: A.Iq - 4.3. Using Lemma 4, Qr is now evaluated:

Q'(0,1) : Oo(0, tr) - X,(0,l) : 0.9q + 9.3

Xr(0,0) : a.Poo(1).Xt(0,1) : 0.01q - 0.35

0r(0,0) : 0o(0,0) - Xr(0,0) :0.89q + 8.87.

The rest of Q remains unchanged. It is now easily seen that et: 82.1, and so on. The

decrease in computational effort is quite evident.

6. REPAIR-REPLACEMENT MODEL

In this section we add another possible maintenance action-repairing the system to
any stateT < i without changing the age t of the system, at cost CuU). After repair,

the system operates at stateT for one unit of time at cost R;(r).

5+q 5+q I7.6+q 7.8+q 
I

10.2+q 10.6+ql.
12.8+q 13.++ql
15.4+q 16.2+q)



CONTROL LIMIT MAINTENANCE POLIClES 67

In this case, we will show the optimal policy to hold the form of a 3-way CLR
that is, do nothing at "good" state-age pairs, repair at "medium" ones, and replace at

"bad" ones.

We assume the following extensions of Conditions 3.1-3.4:

Condition 6.1: RiU), BiQ), and C;1,Q) (for all k < i) are increasing in both i and t.

Condition6.2: B;(t) +R0(0) = C,o!) +Ro(r) =Rr(t) forevery t 1T*,i:
1,...,N-l,andk(i.
Condition 6.3: The deterioration process is IFR (i.e., Condition 3.3 holds).

Condition 6.4: The functions B,(t) - R,(t), B,(t) - lC,oG) + Ro(r)], [C,o(r) +
Ro(r)] - R,(t) are all decreasing in both i and t.

The following additional conditions are also imposed.

Condition 6.5: The repair and replacement costs satisfy the triangle inequality

C,oU) - C,iG) + C,oQ); B,(t) = C,oQ) + BoQ).

Condition 6.6: The function

i r,,()ar( j,t)
j=o

is superadditive (a function h(i, t) is superadditive if lh(i,s) - h(i, r)] is increasing
in i for s > /). The meaning of this condition will be discussed later.

THnonElt 5: Under Conditions 6.1-6.6, andfor all aforementioned optimization
criteria, the optimal policy is a 3-way CLP.

PRoor': Optimality equations similar to ( I ) are easily established. The equivalent of
Lemma I is also proven along similar lines. We may then show, similar to the proof
of Theorem l, that every pair of actions (replace/repair/do nothing) obeys a CLP, so
that the optimal policy is a 3-way CLP. The extension of the discounted result to the
average cost criteria is achieved, as before, through Lemma2. I

It is also easily seen that, when repair is the optimal action, it is best to repair to
a state in which nothing should be done, due to Condition 6.5.

The replacement-only model in Section 3 is a relatively straightforward gener-
alization of the analogous stationary model [3,6]. The repair-replacement model in
this section, however, is more complicated: previously used conditions are greatly
extended, and new conditions are required. Of special interest is Condition 6.6: not
only is it of entirely new nature, it is also of rather complicated form.

We now discuss the intuitive meaning of this condition, as well as the partial re-
sults obtained without it. Reviewing the proof of Theorem l, and, in particular, In-
equality (4) and its intuitive interpretation, we note that while the expected future cost
if nothing is done increases in i and r (by Lemma 1), the future cost under replacement
is independent of the state and age at which replacement took place (we refer to this
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property of replacement as renewal). The expected saving in future cost, which is the

difference between the aforementioned quantities, is therefore increasing-as in-
deed noted in the proof of Theorem 1. Such renewal also exists when two systems at
different states, but the same age, are repaired to the same state. However, it does not
exist in the repair of systems at different ages.

The equivalent of inequality (4), when "doing nothing" is compared with "re-
pair to state ft," is

C,oQ)+Ro(r)-R,(r)

="Ij
L "r:o

Nl
P,,(t + l)oI-'(j,t + l) - > Po,Q + 1)@r-'(7,r + t) l. (t5y

j:o I

The right-hand side of inequality (15) is increasing in i, by the same reasoning
described above. However, monotony in r is not quite as simple: as both quantities
are dependent upon /, both increasing, the difference between them is not necessarily
increasing as well. It is therefore not obvious that the future savings do indeed in-
crease in /, as needed for completion of the proof. Condition 6.6 overcomes this
difficulty, as it may be rewritten in the following maner:

NN

2 P,,(r)ol(,r,s) - ) P*;(r)oI( j,r)
l:0 j:o

N

P,i(t)Ar;( j,/) - > PriG)AIU,t)
-/:0

>s
j:o

(10;

for any s ) / and i ) /c. Inequality ( l6) has the following intuitive meaning: it states

that the reduction in future cost due to repair to state ft (as opposed to doing nothing)
becomes more substantial as the system ages-thus increasing the benefit of repair
at greater age, as required.

The present form of Condition 6.6 is quite impractical. It may be shown that
Condition 6.6 can be replaced with the following two conditions.

Condition 6.7: 2l:r,Pu(s) is superadditive for all ft.

Condition 6.5: A[U, s) is superadditive.

Even though these conditions seem more appealing, they are still somewhat prob-

lematic, as Condition 6.8 does not depend explicitly on the problem data. We were

unable to establish explicit conditions which ensure the satisfaction of Condition 6.8.

However, we now present an intuitively simple example, in which Conditions 6.6 and

6.8 do not hold, thus proving that the remaining conditions are insufficient.
Let N : 4, T* : 5, and a:0.9. The maintenance costs BiQ), C,/t), as well as

the transition probabilities P,t(t) are assumed to be constant with age, while only the

operating costs R,(r) deteriorate:
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Bo : 36, Br : 36, 82: 37 , 83: 37 , Bq: 40

Cro : 17, C2s: 18, C:o = 20, Czr = Ctz= 7, C31= 9

Ro(0) : Rr(0) : 1, R2(0) :4, R3(0):6, R,(t) : Rr(0) + 0.25'i't

It can be verified that conditions 6.1-6.5 and 6.7 are satisfied. The following
policy may be shown to satisfy the optimality equations with respect to the infinite-
horizon criterion, and is therefore optimal (R stands for doing nothing, C1 for repair
to state l, and B for replacement).

|-0.' 0.7 0.1 o.os o.o5l

I o. t 0.6 0.2 o.Os o.Os I

P,,, : 
I 
o.r 0.2 0.4 o.rs o.ls l'

L0.t 0.2 0.4 o.ls o.lsJ

I
I

I
I

- - - - - - - -t-

0

state I

2

3

N

age

0 | 2 3 4T-
R 

-- 
R 

--R --R -T--t
R R RR B

ctct R R B

ctctctRB
BBBBB.

Obviously, this policy is not a 3-way CLP. For example, a system at state 2 should
be repaired to state I if its age is t: 1,2, but left uninterrupted at ages t :3,4.Indeed,
evaluation of O,(i, t) and of )Xo f rQ)O,( j,l) reveals that neither is superadditive.

In case Condition 6.6 does not hold (or cannot be verified), only a partial result
is obtained. The optimal policy in this case may easily be shown to hold the follow-
ing form (as does the policy described in the above example): it is a CLP regarding
replacement, but only a partial CLP regarding repair.

7. CONCLUSTONS

In this paper we extend the classic stationary Markovian deterioration models to a
nonstationary deterioration process, which explicitly depends on the system's cu-
mulative age. The concept of control limit policies is defined in a two-dimensional
context, and conditions are established for the optimality of such policies. In the
replacement-only model, results are shown to be direct extensions of previous sta-

tionary models. We propose an efficient algorithm for finding the optimal policy,
utilizing its known form. In the repair-replacement model, however, direct exten-
sions of the conditions used in stationary models are not sufficient to ensure opti-
mality of control limit policies in the nonstationary case. A simple counterexample
to the optimality of such policies, under the classic conditions alone, is presented.
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Additional, more restrictive and complicated conditions, which ensure optimality of
control limit policies, are suggested and discussed.

One direction of future research is further investigation of sufficient conditions
for the optimality of CLPs. Of particular importance are explicit and less restrictive
conditions for the repair-replacement model of Section 6. Also, more subtle condi-
tions replacing Condition 3.4 may be of interest.
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