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An M/M/1 service station (computer center) consists of M separate queues. 
The ith (i= 1, 2, * * *, M) queue has priority over the jth iff i<j. Upon arrival, 
a customer receives all the information regarding the state of the system and 
accordingly makes an irrevocable decision as to which queue to join, or rather 
to balk (leave) and go to a competitor. The higher the priority of the queue, 
the higher the toll fee to join it but the shorter the time spent in the system. 
This paper considers nonmonopoly and monopoly cases, and optimal priority- 
purchasing or balking rules for the newly arrived customer, as well as optimal 
pricing policies for the service station for both preemptive-resume and non- 
preemptive-priority disciplines. 

IN MOST OF the priority-queuing literature, the priority class that a customer 
belongs to is assumed to be an inherent quality over which the customer has 

to control. However, in real-life situations, customers who are motivated by the 
urgency of their service would like to influence the determination of their priority 
degree. In such cases, depending on the state of the system at the moment of 
arrival, customers may even decide not to join the system at all, i.e., balk, and 
look for service elsewhere. 

The arrival stream to the service station arises because of the customers' poten- 
tial benefit from being served. We assume that, upon completion of service, a 
customer is endowed, on the average, with a reward of u monetary units; in other 
words, u is the average value of the service. On the other hand, to reflect the 
customer's alternative value for his time, we assume that the waiting-time cost is 
c monetary units per unit time (the same for all customers). 

Moreover, a customer who joins the system is charged a service fee (toll) of 
&i monetary units whenever he chooses to join the ith queue. Obviously, there is 
a strictly higher toll charge to join a higher-priority queue, and we will follow the 
convention of letting j<i whenever queue j has priority over queue i (and thus 
0 > Oi). 

The customer's decision as to which priority class to purchase or, rather, to 
balk is based on economic considerations: the toll fee plus the expected cost of 
the time spent in the system (termed in the sequel the expected service cost) is re- 
quired not to exceed u. If the minimum expected service cost is greater than u, 
the customer balks without being served. (We refer to this assumption as the 
cost constraint). 
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The service station is assumed to be a profit-making organization that is inter- 
ested in maximizing its average income per unit time. A service facility operating 
under such a procedure collects money through the tolls that joining customers 
pay to purchase their priority classes. This is true, for example, in a commercial 
computer center where a newly arrived customer is allowed either to purchase his 
priority class by paying a predetermined service charge, or to balk and go to a 
competitor. 

THE MODELS 

A SINGLE SERVER dispenses service to an infinite number of potential customers. 
The arrival process is a homogeneous Poisson process with parameter X. (This 
stream includes customers who leave the competitors and arrive at our station.) 
Service times are assumed to be independent identically distributed exponential 
random variables with mean 1/,u. We restrict our analysis to the steady state. 
A newly-arrived customer, knowing all the information regarding the state of the 
system, is allowed to purchase, out of M available priority classes, his class, or 
to balk. The set of toll fees 0= IOi: i=1, 2, *, M; i> Oj if i<j} is determined 
by the service station so as to maximize its average income per unit time. An 
arrival who decides to pay the amount of Ok (k = 1, 2, * - , M), is assigned to the 
kth priority class. Within each priority class the FIFO rule is practiced. In the 
sequel we consider the preemptive-resume and head-of-the-line (nonpreemptive) 
priority regimes where no losses are involved. 

Two cases are analyzed: 
I. A nonmonopoly service station where a customer has an option to leave and 

get service elsewhere. We reflect this by assuming u to be a positive finite number. 
II. A monopoly service station where a customer does not have the option to 

leave, no matter how high the service cost is; i.e., u is infinite. 
Our purposes in this paper are: (i) optimal decision policies for newly arrived 

customers, and (ii) an optimal set of toll fees for the service station. Obviously, 
(i) and (ii) are highly correlated. 

Recently some papers dealing with related models have been published. Klein- 
rock141 has studied the case where a newly arrived customer decides which pri- 
ority to join without any specific prior knowledge of the current state of the system. 
Naor[51 and Yechiali"7'81 have studied various cases where customers can either join 
a single queue or balk. Balachandrant3] determined the best (and stable) prices 
to be paid by customers on arrival for a system with an infinite number of classes 
where only one or two customers are allowed in each class. 

CASE I: NONMONOPOLY 

Optimal Priority-Purchasing and Balking Policies 

Two Priority Classes, M =2: Preemptive-Resume Regime 

Let s= (X1, X2) denote the state of the system observed by an arrival. Xi 
(i= 1, 2) is the number of customers present in the ith queue. Let flm be the state 
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observed by the mth (m= 1, 2, 3, ) arrival. We say that the system is in state 
s at time m if qm=s. If the mth arrival chooses to pay Ok and to join the kth 
(k =1, 2) queue, we say that he takes an action Am = k. If he decides to balk, we 
let Am = 0 (k = 0). Regarding the system as making its transitions at instants of 
arrival, we obtain a Markovian decision process (MDP) { m, Am, m=0, 1, 2, ... 

A policy R is a set of functions {Dk'(hm-l, qm)}, (m=0, 1, 2, .), where hm1,= 
?lo, Ao, , )m-1, Am-, } represents the history of the MDP up to and including the 

(m-1 )th step. For any history hm-I and any state qm = s, the functions Dk' () 

comprise a probability distribution; i.e., Dk (* ) ? Ofor all k and Ek=Om DkR (- ) = 1. 
Dk2 (hm-1, qm) specifies the probability of the mth arrival taking on action Am= k 
(k = 0, 1, 2). 

An arrival who observes s = (X1, X2) and selects to join queue 1 (k = 1) stays, 
on the average, in the system (Xi+ 1)/,t time units. If he decides to join queue 2 
(k =2), his average time in the system W. (s) is composed of the sum of service 
times of all customers (of both classes) present in the system at the moment of his 
arrival plus his service time plus the service times of all future type 1 customers who 
arrive before he leaves the system. Hence, his expected time in the system is a 
function of the priority-purchasing policies of future arrivals. 

We assume that all customers behave 'rationally' and their optimal policy is cal- 
culated by taking into consideration that every arrival follows the same reasoning. 
Let b,,k. be the expected service cost of a newly arrived customer who observes state 
s= (X1, X2) and decides to join the kth (k= 1, 2) queue. Hence, 

bsl=c(Xl+1)/M+0l, (1) 

and 
bs2= cWu(s)+02. (2) 

In the case where min (bk1, bs2) > u, the customer balks. 

o O= SyS if min(bk1, bs2)-<u, 
o0 otherwise, 

where y is a large positive number. 
The problem a newly arrived customer is faced with may be formulated in the 

following way: Find an optimal policy R = DkR ) that, for every history hm-I and 
every state s, minimizes 

Zk-o Dk (hm-1, s)bsk, (4) 
subject to the constraints 

DkA(- )?O (k=O, 1, 2) (5) 
and 

Ok--o Dk ( .(6 ) 

This is a linear programming problem in three variables. Clearly its solution is 

Do (* )=1 D1(* ) =D2 (. )=O, if mirt(bus b82)>U; 
D1J(R)=1 Do (. )=D2R(_ )=O, if min (bk, bs2)< u and b81<bs2; 
D2R(* )=1 Do R (. ) = D1J (. ) = 0, otherwise. 

Hence, for all histories and for all states, the optimal policy is a stationary non- 
randomized one. 

We now show that the optimal policy is not only a nonrandomized one but is of 
the 'control-limit' type; i.e., there exists an integer n2* such that the optimal join- 
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ing strategy is a control-limit rule of the form: whenever s= (X1, X2), join queue 2 
(i.e., purchase priority 2) if and only if X2<n2*. 

To see this, consider an arrival who observes the state s = (r -1, j) and elects to 
purchase priority 1 by paying 01. This action is taken because this relation holds: 

01+rclA < 02+cW. (r- 1, j ). (7 ) 

Let us assume that a customer observing s = (r, j) decides to pay 02 and to join 
queue 2; his decision is made because 

02+cW. (r, j)-< 01+ (r+ 1 )c/,. (8) 

Relations (7) and (8) yield: 

W. (r, j) < W. (r - 1J)+ 11A. (9) 

But the underlying model and the definition of W. (s) imply that W, (rj) is greater 
than W, (r- 1, j) by at least 1/,M time units. Thus, (9) cannot hold. Hence, an 
optimal policy has the property that, if it pays to purchase priority 1 when observing 
s = (r- 1, ]), (r > 1, j _ 0),then it also pays to purchase the highest priority when 
observing s= (r, j). 

We distinguish among the following three possible cases: 
(i) u<02+c/,4; customers never join the system since their cost constraint is 

not satisfied. 
(ii) 02+c/, ? u< 01+c/M,; queue 1 is always empty. The cost constraint elimi- 

nates the possibility of a customer paying a toll fee of 01 and joining the first queue. 
Our model becomes the usual limited-room M/M/1 queue, where the maximum 
number of customers in the system is [(u- 02),M/c], where [x] denotes the largest 
integer smaller than or equal to x. 

(iii) u_ 01+c/Mu; this is the interesting case where both queues are active. Let 
us consider the service station at its idle period, i.e., in state s = (0, 0). If the 
customer who initiates a busy period decides to pay a toll fee of 01 and to join queue 
1, then, in view of our previous discussion, all the future customers will follow his 
decision and no customer will join queue 2, i.e., the optimal control limit n2* is zero. 
Otherwise, customers join queue 2 until, for some state s= (0, j), j>0, the best 
decision is to join queue 1. This j is the optimal control limit and we set n2*=1 

An arrival who meets the system in state s = (r, n2*) joins queue 1, until, for some 
rl (r = r1), the expected service cost is greater than u. We denote by ml the largest 
r that still satisfies the cost constraint. A newly arrived customer who observes 
(ml, n2*) balks. Hence, if XI = 1, 2, --, iml, then X2 = n2* and, if X1 =0, then 
X2 ? n2*. We now turn to calculating ml and n2*. 

CALCULATING THE OPTIMAL CONTROL LIMITS. Owing to the cost constraint, 
the number of customers in the system is limited. For the case where u>01 +c/p, 
in view of our previous discussion, a newly arrived customer who initiates a busy 
period either joins queue 1 or queue 2. If he elects to join queue 1, then n2*=0; 
otherwise, he pays 02 and joins queue 2. All subsequent arrivals follow him as 
long as X2<n2*. An arrival who observes a system with n2* customers in queue 
2 elects either to join queue 1 or to balk, depending on the number of customers 
in queue 1. The maximum number of customers in queue 1 is 

ml = I (u-01)A/C] . (10) 
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An arrival who finds the system in state s = (ml, n2*) balks. Hence, the number 
of customers in the system is distributed as the number of customers in a limited- 
waiting-room M/M/1 queue where the maximum number of customers in the 
system is N=ml+n2* (designated in the sequel by M/M/1/N). Note that, no 
matter how high the load on the system is, the cost constraint eliminates the pos- 
sibility of saturation. 

Consider a service station in state s = (0, j). For a control limit n2 and maxi- 
mum of ml customers in queue 1, let HM (q, j), (q <g < n2) be the expected time 
elapsed from the moment a customer becomes the (q+l)th customer in queue 2 
until the moment when he departs. Being an optimal control limit, n2 must satisfy 

02+ cH.'(n2-1, n2) -< 0l+C11< 02+Cgmn+l (n2, n2+ 1 (n2 =1, 2, **)(1 

and for n2 =O we have, 
01+c/<02+?cHl 1 (0, 1). (12) 

Regarding the underlying process, it is easily seen that the function Hfl (n2- 1, 

n2) increases with n2 and ml. Since ml is a nonincreasing step function of Al [equa- 
tion (10)], then HnT (n2-1, n2) is also a nonincreasing step function of OA. To find 
n2* we calculate H" (n2-1, n2) for increasing values of n2 (n2 = 0, 1, 2, ) until 
(12) or (11) is satisfied. We calculate H]1 (q, j) for 0<q<j<n2 recursively; i.e., 
we find Ml (q, j) as a function of Ml (q-1, e), e =jg- 1, j , n2-1 with H-1 (0, e), 
e= 1, 2, *., n2- 1, as initial values. 

Let K be the number of arrivals during a service time, and let ak denote the prob- 
ability of exactly k arrivals. Hence, 

ak=P(K=k)=f {(Xt)k/k!Ie Xtye tdt {p/(1+p)}k{1/(1+p)} (13) 

p = )X/,u 

The probability of k or more arrivals during a service time As denoted by art, 

ak= P (K~ k)= =Zik ai= {p/(1+p)}k. (14) 

The density function of a service time L during which k arrivals occur is 

P(I<L<l+dllK=k) - { (Xj)kI/kT }e-xle-l,.dl/P (K = k) (15) 
= (X+,I){ (X+,h)l1ke(X+?) I/ki; (k=O, 1, *.. ) 

i.e., this is an Erlang distribution with parameter (X+ A) and (k+ 1 ) phases. Thus, 

E(LIK=k)= (k+l)/(X+A). (16) 

Consider a system in the state s = (0, j) with n2 and ml as its control limits. 
If during the service of the currently served customer there are k arrivals, and 
k< n2-j, the current service is not preempted and If:2(q, j) is equal to (k+1)/ 
(X+,A)+Imi (q-1,j+k-1). If k>n2-j, then the (n2-j+ 1)th arrival preempts 
our customer's service and initiates a busy period that is distributed as a busy period 
in an M/M/1/m1 queue. The average length of such a busy period"' is (1-ptm')/ 

, (1- p) }. The service of the current customer is resumed when the state of the 
system is changed from s= (1, n2) to s= (0, n2). 

This procedure is repeated with any arrival while the system is in state 8 = (0, n2). 
Thus, each of the (n2-j+ 1 )th, (n2-j+2 )th, - * *, arrivals during the service of the 
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current customer initiates an independent M/M/1/m, busy period of average length 
(1- pml )/ {1 (1-p) }. Owing to the memoryless property of the exponential service 
time, the number of additional busy periods during a service time of a customer A 
is distributed as K, equation (13). Upon completion of the service of the current 
customer, our customer becomes the qth in queue 2. 

Hence, for 0 <q <j < n2 we have 

nI (q j) k=O [(k+1 )/ (X+U)+IIn (q- 1, j+k-1 )]ak 

+Zk=n2-j+l [(k+1)/(X+?)+?{k-(n2-j)} (1-pm1)4(l-P) (17) 

+H'n'(q- 1, n2- 1 Aak. 

Rearranging and simplifying (17) yield 

<2 (q, j-1/8+oe2_j+l[ (1 +P) (1 - P" V (1- P) +H'n' (q- 1 n2- 1 )] 18) 
+ ZkO HIi (q- 1, j+k-1 )ak. 

The initial values HZ1 (0, j), (j= 1, 2, , n2), are calculated by using the same 
arguments. The result is 

H:2 0 j = k=O I (k + 1 )/ (X+ y ) I ak + Ek-n 2-1 k+1 \+, 

+ {k- (n2-i) } (1 _p 1 )/,u(1-p)]ak (19) 

=11/\+a-n2_j+l('+P) ('P1-m)/U('-P). (l:5 < n2 ) 

Equation (19), as well as (18), agrees with our intuition. The unconditional ex- 
pected service time is 1/,u. With probability P(K>n2-j) = an2-j+l the service 
of the current customer is preempted. Given that the service of the customer is 
preempted at least once, the average number of busy periods is E (A + 1) = l+p 
each of average length (1 - pm)/ {I (-p)}. 

To find n2*, one calculates Hn1+l (n2, n2+ 1) for n2=0, 1, 2, *, [equations (19) 
and (18)] and compares sequentially the calculated values until (11) is satisfied. 
The value of n2 that satisfies (11) is the optimal control limit of the second queue 
n2. *= 0 if (12) is satisfied.] 

Two Priority Classes, M- 2: Head-of-the-Line Regime 

In a nonpreemptive discipline, an arrival who observes the system in state 
s = (0, j) and decides to join the first queue is admitted for service only at the com- 
pletion of the current service. By using the same arguments as in the previous 
case, we arrive at the conclusion that, in this case too, the optimal purchasing policy 
is a stationary nonrandomized one of a control-limit type. However, in this case, 
we may encounter states of the form s = (r, n2* -1), r= 1, 2, , iM1. An arrival 
who observes s= (r, n2*1), r=1, 2, *, ml-1, joins the first queue. This is 
true since, if it pays for a customer who observes s= (0, n2*) to join queue 1, then 
it also pays to join the first queue while observing s = (1, n2*- 1). In both cases 
the expected service cost of joining queue 1 is 01+2c/, and joining queue 2 means 
paying a toll fee of 02 and waiting for the completion of the service of n2* customers 
and all future customers that will join queue 1. Clearly, a newly arrived customer 
balks if he finds the system in either state s = (m1, n2*- 1) or state s = (m1-1, n2*); 

hence, the maximum number of customers in the system is now ml+n2* -1. Thus, 
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for s = (X1, X2), if 0 <X1 < ml, then X2 = n2* or X2=n2*- 1, and if Xi = 0, then 
X2=0, 1, 2, , n2 . In the event that X1 >0 and X2=n2*, the currently served 
customer belongs to queue 2, but, in the case where X1> 0 and X2 = n2*- 1, the 
current customer belongs to queue 1. 

Few modifications are needed in the calculation of n2*. Since preemptions are 
not allowed and 01> 02, the optimal control limit is never zero. The necessary and 
sufficient condition for a positive integer n2 to be the optimal control limit n2* takes 
the form 

02+cH.n (n2-1, n2) < 01+2c/cl < 02+cHfl.+? (n2, n2+ 1). (20) 

This equation replaces (11). Owing to the fact that a service is uninterruptable, 
we have 

II2 (O, j ) = 114. (j= 1, 2, ,n2) (21) 
Equation (21) replaces (19). 

In addition, since a customer balks when the system is in state s = (m1 - 1, n2) 
and the average time elapsed from the moment when there are i customers in queue 
1 until, for the first time, there are (i- 1) customers in queue 1 is (1 -pml-i+l)/ 
{A (1- p) (the capacity is limited to ml), then the analogous of equation (17) is 

Irn'(q, j) =k=Oj [(kS+1)1(X+Af)+Irn2(q-1J+kS-1)]ak 

+ n2-j+ml-1 
l 

+1 \g + E-(n 2D { (l-i ) /1 P) } (2 ? k=n22-lj?1l{ X+) ~ (22) 
+H'n2(q-1 n2-1)]ak+ k=fn2-j+rnl [(k+1)/(x+,) 

+ Adml- { (1 _p l ) 1A (1 1-p) I +H 1 (q- n2 1 ) lak. 

M> 2 Priority Classes 

This is a generalization of the case discussed previously where there were only 
two priority queues. Upon arrival, a customer who requires that the expected 
service cost will not exceed u monetary units is supplied with the following informa- 
tion: 

(i) The set of toll fees 0= {OA: i = 1, 2, , M; As < 0 j iff i >j }. 
(ii) The number of customers in each priority queue Xi, i= 1, 2, , M. 
Accordingly, the customer makes an irrevocable decision as to which queue to 

join or to balk. Paying a toll fee of OA, the customer joins the end of the ith queue 

M> 2 Priority Classes: Preemptive-Resume Discipline 

Arguing in the same manner as in the previous case, we can prove that the opti- 
mal purchasing policy remains stationary nonrandomized and of the control-limits 
type. The optimal purchasing-priority policy is comprised of a set of M control 
limits, nM , Iln-, , n2*, ni*, such that a new arrival purchases priority i iff he 

observes the system in state s= (0, 0, , Xi, nif, , nfm), where 0<Xi<ni*. 
Let f be the smallest integer that satisfies 

UOf+C4. (23) 

Only queues numbered f, f+ 1, , M are active. Owing to the cost constraint, a 
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customer balks rather than joining any of the queues 1, 2, * ,f-1. Furthermore, 
the maximum number of customers in the fth queue is 

mf = [ (U-Of )8/C] (24) 

Customers who observe the system in state s = (0, 0, 0, mf, nf+l .. , lnm*) balk 
without receiving service. Hence, we set ni* = 0 for i 1, 2, .f ,f-1. The maxi- 
mum number of customers in the system is mf +nf*++n*+2+** +nM*. It is left 
to calculate the optimal control limits for the M-f lowest-priority queues, namely, 

* * * 
nf+1, nf+2, nm 

A newly arrived customer who observes the system in state s= (0, 0, ** i, 

ni+lini+2, fM*), i>f, has to decide whether to join queue i or i-1, and the 
one who observes s = (0, 0 , Xf, nf+l, nf+2, * ** nM) has to decide whether to 
join the fth queue or to balk. Since we deal with a preemptive-priority discipline, 
at most two consecutive priority queues are taken simultaneously into consideration 
by a newly arrived customer and all other queues are ignored. Hence, calculation 
of i*, i =f+ 1, f+2, , M, is basically the same as in the case M = 2. 

Let Hf. (q, j), i>f, q<j <ni be the expected time elapsed between the moments 
a customer becomes the (q+ 1 )th in the ith queue and the moment of his departure; 
there are j customers in the ith queue; the control limit in the ith queue is ni; the 
maximum number of customers in the fth queue is mf. The set of optimal control 
limits satisfies the relations 

c~m. (ni- 1, ni ) + Oi < c~m4 (O. 1 ) + Oi-l <c~l.+l (ni, ni+ 1 ) + Oi, n~l (25) 
(i=f+2,f+3, *,M) 

and 

CHdf+l (nf+ 1-1, nf+l)+Of+1<C/Il+Of <CHr+l+1 (nf+l, nfll+1 )+Gf+?. (26) 

The calculation procedure is recursive. We begin with queues f and f+1 and 
apply the equations of the section on two priority classes with mf and nf?+ replacing 
m1 and n2, respectively. The value of nf?+ that satisfies (26) is the optimal control 
limit of the (f+ 1 )th queue nf?1. To calculate nf?2, we consider queues f+ 1 and 
f+2. We combine thefth and (f+ 1 )th queues to one queue in which the maximum 
number of customers is mf+n4?l. [Note n*?1 has been calculated in the previous 
step.] We apply again the equations of the section on two priority classes with 
(mf +n*l ) and nf+2 replacing ml and n2, respectively. The value of nf+2 that satis- 
fies (25) is nff+2. [Note H4IIf (0, 1) has been calculated in the previous step.] In 

nfl- 

general, to calculate ni* (i>f) we combine queues f, f+ 1, , i-1 in to one queue 
and apply the equations of the section on two priority classes with (mf+n*+1+. * -- 
+n* i) and ni replacing ml and n2, respectively. The value of ns that satisfies (25) 
is ni*. [Note H7J (0, 1) and ni-1, ni-2, , nU+i, mf have been calculated pre- 

viously.] 

M ?2 Priority Classes: Nonpreemptive Discipline 

The generalization in this case is not simple. It is easy to show that the optimal 
policy is a stationary nonrandomized one and let us assume that it is of a control- 



Nonmonopoly and Monopoly Queues 1059 

limit type. The index of the highest-priority active queue f is determined as the 
smallest integer that satisfies 

u _ Of +2c/,l. (27) 

We will demonstrate the difficulties in the generalization of this case through a 
simple example. Let us consider a special case where there are four active queues, 
namely, queues numbered f, f+ 1, f+2, and M=f+3. An arrival who observes 
s = (0, Xf+l, nf+2, nf+3) knows that the server attends to a customer who belongs to 
the (f+3 )th queue. However, one who meets s = (0, Xf+1, nf+2, nf+3 -1) does not 
know whether the currently served customer belongs to the (f+2)th or (f+l)th 
queue. Moreover, the calculation of the probabilities that specify the queue that 
the currently served customer belongs to seem to be difficult, and is left for further 
research. Since the maximum effect of the existence of a customer in a lower- 
priority queue [in our example, the (f+2)th or the (f+3)th queues] on the ex- 
pected service cost of a newly arrived customer is equivalent to adding an additional 
customer ahead of him in his class [in our example, the (f+1 )th], good approxima- 
tions may be obtained by using the same approach as in the previous case. To 
overcome this difficulty we may assume that the server (operator) informs an arrival 
to which queue the currently served customer belongs (an assumption that is not 
unrealistic). 

Optimal Pricing for the Service Station 

As was mentioned previously, the service station is a profit-making organization 
that collects money through the toll fees. Its objective is to determine a set of 
prices 0 = I 0: i= 1, 2, *, M, 0i < j iff i>j} so as to maximize its average income 
per unit time. However, any change in the set of toll fees causes an immediate 
change in the customer's behavior. For instance, increasing the level of the toll 
fees, i.e., retaining the same difference i- Oi+l for i= 1, 2, *, M- 1 but increasing 

OM, affects the calculation of the set of optimal control limits through the values of 
f and mf. Under the assumption described previously, it is clear that, for any set of 
toll fees, the number of customers in the system is distributed as in an M/M/1/Nf 
model, where 

Nj= Zyno*, (j=f+l,f+2, ,M) (28) 
and 

Nf = Nf l+mf, (29) 

where f is given by (23). Thus, the maximum number Nf of customers in the 
system is a function of the u and 0. (In the case of nonpreemptive regime and 
M= 2, the maximum number of customers in the system is ml+ n2*-1. ) 

A customer who arrives at an empty station joins the Mth queue (lowest prior- 
ity). This policy is followed until a newly arrived customer who observes nM 

customers, all of whom are in the Mth queue, decides to join the (M- 1 )th queue. 
Now, an arrival who observes more than nM* but less than nM*+nM*- customers in 
the system joins the (M- 1)th queue. A newly arrived customer who observes 
nZ-i customers in the (M-1)th queue (nM*?+nfl customers in the system) de- 
cides to join the (M- 2)th queue, and so on. An arrival who observes mf customers 
in the fth queue chooses to balk and looks for service elsewhere. Each of the cus- 
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tomers who leaves (balks) the system without being served damages the reputation 
of our service station. We assume that this damage amounts to r monetary units. 

In an M/M/1/Nf queue the stationary probability of there being x customers is 

p =px (1-p)/ (1_pNf l) p /g (x = 0, 1, 2, , Nf ) (30) 

It should be noted that p may assume any positive value, and in all cases a unique 
nonzero distribution {px } exists. 

The expected number of customers who balk per unit time is 

XPxf = XP f (I- _ )/ (I1 _ pNf +1 ) (31 ) 

Hence, the expected loss per unit time due to the damage to reputation is ?XpNf. 

The service station's net income per unit time z is composed of the expected 
income per unit time gained through the toll fees paid by joining customers minus 
the expected loss per unit time due to the damage of reputation caused by balking 
customers. Hence, the service station is interested in maximizing 

Z=X6MENX. P +X?M-lxEx=NM PX+ +X6fEx=Nf+l PxaXPNf. (32) 

The process is iterative: the service station determines an initial set of toll fees 
0(0) ={0): i= 1, 2, , M, 0&) < 60 ) if i>j}. The set of toll fees and the customers' 
cost constraint determine the number of active queues M-f+1, and the maximum 
number of customers in the highest-priority active queue mf. For this set of prices 
the customers calculate a set of optimal control limits, n* (0) .(O), * * *, *(0) Under 
these optimal control limits, the service station changes the set of toll fees so that 
(32) is maximized. The customers, in view of the new set of toll fees, calculate a 
new set of optimal control limits, which in turn affects (32), and so on. The process 
is repeated iteratively until, hopefully, a 'saddle point' is reached-both the cus- 
tomers and the service station cannot improve their positions. 

To demonstrate the behavior of the optimal policies of both parties, the cus- 
tomers and the service station, we now analyze in detail a simple numerical example. 
The general theoretical treatment concerning the interesting questions of conver- 
gence of the procedure and of existence and uniqueness of the solutions remains open 
for further research. 

A Numerical Example 

We consider a service station with two priority queues (M= 2) where the pre- 
emptive-resume discipline is obeyed. The cost of a unit time spent by a customer 
in the system is taken to be one monetary unit, i.e., c = 1. Hence, all other param- 
eters (u, 61, 62, ?) are measured in these units. We assume u_ 01+c/y, so that both 
queues are active. Substituting (28) through (31) in (32) yields 

Z=X[2 (1 p2* )?+1pn* (1 p1 ) -(1 p)pn ?1]/ (1 p n2*?ml). (33) 

The objective of the service station is to find a set of toll fees 0 = {O,, 021 that maxi- 
mizes z. On the other hand, the objective of the customers is to find the control 
limit n2* that minimizes their expected service cost. Note that n2* is a function of 0. 
Since we deal with a system with only two queues, we term the first and the second 
queues as the high- and the low-priority queues, respectively. 
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Figures 1, 2, and 3 illustrate n2* as a function of 61 for different values of p, u, 
and 62, respectively. The graphs obtained agree with our intuition. As we increase 
61, while all other parameters are fixed, n2* is increased in steps. Since Hn'+? (n2, 
n2+ 1) is an increasing function of p and u, then owing to (12) and (11) for a fixed 
value of 01, the higher p or u the lower the optimal control limits n2*. In view of 
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Fig. 1. Optimal control limits as a function of the toll fee of the high-priority 
queue (for different values of traffic intensity) 

(12) and (11), the influence of 62 and n2* is clear. Since we deal with the case where 
both queues are active, the maximum value 01 may assume is 61 = u- 1/,4 (c = 1). 

For - =0, the values of 01 and 02 that maximize z, the expected net income per 
unit time of the service station, are 61* = 60 and 62* = 51.4. The maximum value of 
z is z* = 8.06. Figure 4 illustrates, for 62* = 51.4, the fluctuations of z as a function 
of 61. The sawteeth are due to changes of ml or n2*. Since 61> 62, the minimum 
value of 61 is 51.4+E, where e is a small positive number. ml is changed from 3 to 
2 at 0i = 55, from 2 to 1 at 6, = 60. On the other hand, at 06 = 59.95, n2* is changed 
from 0 to 1. With 6, = 59.95, the expected net income per unit time is 8.056, and, 
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just before the change of m1 from 2 to 1 at 01=60, we have z=z* =8.063. Hence, 
the 'saddle point' is at 61* = 60, 02* = 51.4, and n2* = 1 when z* = 8.063. 

Table I shows the influence of v on z?, the optimal expected net income per unit 
time, as well as on 61*, 02*, and n2*. The decrease of the values of z, 1*, and 02 

with the increase of v agrees with our intuition. 

TABLE I 

Optimal policies 

01* 02* f2* 

0 8.063 60 51.4 1 
20 7.30 60 51.4 1 
50 6.35 55 42.8 l 

100 5.01 50 34.5 1 
200 2.97 45 26.5 1 
300 1.30 35 11.5 1 

u 70, c = 1, p= 0.9, 1 = 0.2. 
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CASE II: MONOPOLY 

IN THIS CASE a newly arrived customer does not have the option of leaving the 
system, no matter how high the service cost is; i.e., there is no alternative way to 
obtain service but in our station. Mathematically this situation is described by 
letting u be infinite. A necessary and sufficient condition for the system to reach 
steady state is p = X/V <1. All the proofs regarding the optimality of the control 
limit policies remain unchanged. The only changes that need to be made are in 
the calculations of the control limits {nji* and mf. These changes are easily 
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Fig. 5. Optimal control limits as a function of the toll fee (for different values 

of traffic intensity). 

made. First, it is clear that nowf= 1 and ml= oo. The results for the preemptive- 
resume discipline are obtained by letting ml go to infinity in (18) and (19): 

Hn2 (q, j) = l(ga+n2-j+1[ (1+p)/A(l-p)+Hn2 (q-1, n2-1)] (34 

+ Ek=O Hn2 (q- 1, j+k+ 1)ak, (O<q<j<n2) 

and 

H,2 (O. j) = l/U4+an2-j+l (l+P)/y (1-P). (j = 1, 2, ,n2) (35) 

Since we are dealing with a preemptive-resume regime where no time losses are 
involved, (34) is also true for the nonpreemptive discipline, while the initial values 
are given by (21). [Note that the difference between the preemptive and the non- 
preemptive monopoly case is represented by the difference in the initial values of 
Hn2 (0, j) as given by (35) and (21), respectively.] 
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The procedures for obtaining the control limits are identical to the ones specified 
in the sections on the nonmonopoly case. 

As for the optimal pricing, the service station's objective is to maximize 

Z=X0MMZX=-O PX+X0M-l1ZxNM Px+ **+XO2Zx=N3 px+X~lgi.N2 p. (37) 

where, in this case, the steady-state probabilities distribution {px} is the same as in 

P=O.8 
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Fig. 6. Average income per unit time as a function of the toll 

fee (for different values of traffic intensity). 
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an M/M/1 queue, 
Pa= (1-p)p,. (x= 0, 1, 2, **)(38) 

For the discussion to be meaningful, we assume that OM is a bounded constant and 
that its value is determined by some other considerations and is not under the con- 
trol of the service station. (Otherwise, we set 0X = so for all i. ) 

As an example, we consider the preemptive-resume regime with M = 2 priority 
classes. The station's objective is to find 01 so as to maximize 

Z = X02+X (01_02)pn2*. (02 constant) (39) 

For simplicity in obtaining numerical examples (and with no loss of generality) 
we let 02= 0 and c = 1. The numerical results for M =2 are given in Figs. 5 and 6. 

Figure 5 illustrates n2* as a function of 01 for different values of p (1/,i = 5 time 
units). For example, for 01 = 50 we have the optimal control limits 5, 3, and 1 for 
traffic intensity 0.7, 0.8, and 0.9, respectively. Figure 6 illustrates the average 
income per unit time z as a function of the toll fee 01, equation (39). We have a 
unique saddle point. In our example, for p= 0.7, /1A = 5 time units and 01 = 21.5, 
the optimum control limit is n2* =1 and z = 2.1, and for any other value of 01 the 
optimal control limit is such that z gets a smaller value. For p = 0.8, 14 =5 time 
units, z gets its optimal value (z = 4.6) when 01 = 45.0 and n2* = 2. 
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