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This paper considers a batch service polling system in which all customers in a queue present upon arrival
of the server a,re served simultaneously. The service time is independent of the batch size. We study the joint
steady-state queue.iength distribution as well as the waiting time distribution at each of the queues.

1. fntroduction
We consider poliing systems where service is given in batches of unlimited size. When the server
visits a queue, all customers present are served in a single batch. We call tlis gated batch seruice.
The batch service time is independent of the size of the batch. Some examples of such systems are
discussed in the literature below. Examples more related to manufacturing are ovens, transportation
of material by one server to a number of different machines and, a,s an approximation, situations
in which the set-up time is an order of magnitude larger than the actual production time.

Literature reu'iew
Polling systems with unlimited batch service have been studied much less extensively then those
in which service is given to customers in a 'one at a time' fashion or in batches of limited size.
Unlimited batch service models are considered in the context of teletext, videotex and TDMA
systerrs, as well as for central data-base operations. Ammar and Wong [1987] studied a teletext
system with l[ queues, fed by independent Poisson arrivai streams. Service times in all queues are
deterministic (slotted, unit time each), there are no switch-over times, and the service discipline
is locally gated. They showed that the policy which minimizes mean response time is of a cyclic
natute, with cycle length L >- N slots, in which" queue i is visited ki times, where |,l:rko: L.
Yet, the problem of finding the exact length -L was only partially resolved. Liu and Nain [1992]
examined a TDMA model with both the locally gated and exhaustive regimes for the case of. zero
switching times and homogeneous arrival process to all queues. Dykeman et al. [1986j used Howard's
poiicy-iteration algorithm to control a videotex system. They indicated that, even with equal and
deterministic service requirements, and with no switching times, the structure of the optimal policy
could be very complicated. Van Oyen and Teneketzis [1996] formulated a central data base system
and an Automated Guided Vehicle as a polling system with an infinite.capacity batch service and
zero switching times, where the controller observes only the length of the queue at which the
server is located. Van der Wal and Yechiali [2003] explored dynamic server's visit-order policies in
non-syrnmetric polling systems with switch-in and switch-out times, where service is in batches of
unlimited size. They concentrated on so-called 'Hamiltonian tour' policies in which - in order to
give a fair treatment to the various queues - the server attends every non-empty queue exactly once
during each cycle. The server then dynamically generates a new visit schedule at the start of each
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round, depending on the current state of the system and on the various non-homogeneous system
parameters. Three service regimes were considered: Locally Gated, Exhaustive and Globally Gated,
and 3 different performance measures were examined. For each combination of service regime and
performance measure, the characteristics of the optimal Hamiltonian tour were derived. Some of
the resulting optimal policies are elegant index-type rulesl others are the solutions of NP-Hard
problems; while special cases are reduced to Assignment problems with specific cost matrices.
Contribution of the paper
In the present paper we consider a polling system consisting of N queues which are visited in
cyclic order by a single server. When the server polls a queue and it is not empty, all customers
present upon arrival are serued in one single batch. We study the joint steady-state queue-length
distribution as well as the waiting time distribution at each of the queues.

2. Gated batch service
2.L. Preliminaries
We study the following polling model. A single server,S cyclically visits If queues Qt,...,QN.
Customers arrive at these queues according to independent Poisson processes, with rate .\; at Qr.,
i -- !,. . . , N. If, upon the arrival of 5 at Qi, there are Xi ) 0 customers present at Qr,, then ,9 serves
exactly those customers, in one batch. The service time of this batch is a random variable, that
we shall generically denote by Bn, with Laplace-Stieltjes tansform (LST) BnO. ,S subsequently
switches to Q*r.The switch-over time of ,S from Qt, to the next queue is a random variable,
that we shall generically denote by Dn, with LST Dn(.). The analysis that follows will also go
through when we distinguish between switch-over times following visits with actual service and
those following visits with null service (i.e., with length zero), but we shall make no such distinction.
We shail furthermore make all the usual independence assumptions regarding the involved inter-
arrival intervals, service times and switch-over times.

For this batch-service gated polling model, we determine the Probability Generating Function
(PGF) of the joint steady-state queue length distribution, as well as the LST of the waiting time
distribution of a class-a customer, 'i: \,. . . , lf. Let us now introduce some further notation. In the
sequel, ,I1; shail denote an indicator function. Furthermore, fori:7,...,lf:

Ai(t) : number of arrivals to Qr during a time interval of iength t.
Xto : number of jobs in queue 87 when Q; is polled.

V : V(Xi): BtI6l>01 : the visit time of S to Qr'
N

Go(rr,. . ., zN) : Wlil"fl1.
j:r

It is easily seen that the following "laws of motion" hold for the X/:
X'n+t: X! +ai(V(x))+ Aj(Di), j +i',
Xl+, : Ai(V(x)) + Ai(Di), i : i,.

While we present these laws of motion in terms of steady-state quantities, in reality we are express-
ing the number of jobs in Qi at the nth visit of ,S to Qi11 into that at Qi at the nth visit of ,9 to
Qo. So we look one queue ahead. By doing this N successive times, we can express the number of
jobs in Qi at the (n+1)th visit of S to Qn into those at the nth visit of S to Q*

Introducingo(2t,...,2N):ILr)i(1- zr),it follows that, fori:1,...,ltr (with Gao+r:Gt):

Go+r(2r.,. ..,, zu) : W[r{} . .. "::rt
r TF I'xrl -x:-'tuLpI..,"i_l

(1)

: Gt(2t,...,zi-l
* Gi(21,...,2i-r

,:;:' . . . rf,{ t6;ro114o(o(rr,, . . ., 211)) Dn@(zrt. . ., zn))

"fj:'..."f,Yt67ol1o@e,,...,r*)) (2)

,,L, zi+t,. .., zx)Br(o(2r,..., z*))Do(o(gr,.. ., t*))
,0, z,;.+t,..., zro)[1 - Bi(o(21,. .., z*))]Dn(o(21,..., z*)).
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To develop insight into the structure of the solution of this recursion, we first consider the special
case of N :2 queues in Subsect\on 2.2; the general case will subsequently be solved in Subsec-
tion 2.3.

2.2, The two-queue case
For N:2, Formula (2) becomes:

tb1

Gr("r, rr) : G,(rr,l)Er@{zr, zr))Dr(oQtr, zz))

* G2(21,0)[1 - B2(o(zy zt))lDr(o(21, z2)),

Gr(rr, 
"r) 

: G, (1, z)Er@(zr, z))Dr(oQ4, zz))

(3)

(4)

+ Gr (0, zr)l - B{o(21, zr))lD r(o(4, z2)).

It follows from ( ) that G2(21,1) is expressed in G1(1,1) and G,(0, 1); sirnilarly, G2(21.,0) rs

expressed in G1(1,0) and Gr(0,0). BV substituting ( ) with zz:I (respectively, ,r:0) into (3), we

are able to express Gr(zr,z2) into known terms plus the four unknown constants G1(1,1) (which
actually equals 1), G1(0,1), G1(1,0) and G1(0,0):

Gr(rr, 
"") 

: {Gr(1, t)Et(o(2r,1))Dt @Q1,1))

:E:[],r'"),',';,";l(](::2)liu,,z"L))l
+ {Gl (1, 0) B{o(21,0))D' (o-(21, 0))
* G t(0,_0) [1 - B1(o (21, 0))lD {o (z', 0))}
x [1- Br(o(zr,zr))]Dr(o(zt,zz)). (5)

It remains to determine G1(0,1), Gt(l,0) and Gt(O,0). Those three unknown constants may be

found by the substitutions {21 :0,22:l}, {zr:I,zz:0} and {"r:0,22:0} into (5), resulting
in three linear equations with three unknowns.

The above yields the following insight. To determine the PGF G6(zr,zz), what really matters is

whether a queue is empty or not when server ^9 visits it. If it is non-emptg the actual queue size

does not have an effect on the visit time. Hence the joint queue length distribution at a visit epoch

of ,S at, say, Qr is determined by the four possible events both Qt and Qz non-emptg at the last
preuious uisit of S to Q1, ..., both Q1 and Q2 emptg at the last preui,ous ui'si,t of S to Qt. Q, being

non-empty at the previous visit has probability P({i > 0) : Gt(1,1) - G1(0, 1) 
= 

1 - Gr(0,1), etc.

It should be noticed that the process {(U:',(l;*'), n:L,2,--.}, with U}"): i (0) denoting
lhat Qi is non-empty (resp., empty) at the ntb visit of ,S to Qr is a f,wo-dirnensional Markov

chain. This Markov chain is irreducible, aperiodit and positive-recutrent, and hence has a unique
non-negative steady-state solution. With an obvious notation, we have: IP([/r : !,Uz:1) : t -
G1(L,O) - G1(0, 1) +G1(0,0), ..., tr(fft :0,U2- 0) : Gr(0'0).

2.3. The lf-queue case
The insight obtained in the previous subsection for the case of 2 queues readily allows us to obtain
the structure of the solution of the case of an arbitrary number of queues. ly' successive substitutions
of (2) result in an expression of. G1(21,...,2n) into the 2N unknown constants Gt(1,1,...,1),
..., Gr(0,0,...,0). These 2N constants (of which the first actually equals 1) can be obtained

by determining the unique steady-state solution of an N-dimensional irreducible, aperiodic and

positive-recurrentMarkovchain{iU{"),...,yrf)), n:!,2,...),withUj"):1(0) denotingthatQt
is non-empty (resp. empty) at the nth polling instant of S to Qr.

The rationale behind this solution structure is that, for determining the steady-state joint queue

length distribution at a visit of S to Qy what really matters is whether Qt, . . . ,Q ,u were empty or



158
Boxrna et al.: Polling ui,th gated batch seruice

AMS 2007

not at the last previous visit of S to Qt not what their actual queue lengths were. The probabilities
of those events are obtained by solving an N-dimensional Markov chain with 2N states.

Remark
It easily follows from (t) that the mean number of customers in Q3 when S polls Q6 fl:-_EXro,
satisfies (with EI\ the mean visit period of .9 at Qa):

Summing (6) over all i yields:

flt: f! +xtry+ 
^iEDi, 

i +i',
f !+, : \iEV* )iED;, i : z'

N
oi . \-zn
fJ : Ai L,@u+EDi)'

where tsV:P(X: >0)EB, : [G,(1,..., 1, ,'r:; Gn(L,.. .,0,... , l)]iBBi, the 1 (resp. 0) appearing
at the eth position. Notice that those Go(... ) have to be determined via the solution of a Markov
chain, as discussed above. Also notice that // equals the mean number of arrivals at Qi during one

cycle time and that, via (6), // is readity e*pi"sedin fjand the mean visit periods at Qi,...,Qu-r.
In particula.r, focussing on the number of customers in Qt, fl is given bV (Z) while

i-L

f| : \rf {nro +F.Dk), 'i:2,...,-|y'.
k:L

2.4. Waiting times
In this subsection we study the waiting time Wa of an arbitrary customer at Q.i in steady state.
First we make the following observation about queue lengths. Once the PGF Go(2t,...,27,r) of
the joint queue length distribution when S polls 8n has been determined for i:1,...,N, it is

straightforward to derive the PGF of the joint queue length distribution at the instant at which ,S

begins a switch-over time ftomQi to the next queuo,'i:1,...,N. Subsequently it is not hard to
determine the PGF Gutstt 1., of the joint queue length distribution during a visit to Q1 (respectiveiy,
the PGF Geut'tcn11of the joint queue length distribution during a switch from Qi to Qu+t). Taking
an appropriate weighted average, one finally obtains the PGF of the joint steady-state queue length
distribution, and hence also the mean steady-state queue length at any queue Qi. That brings
us back to waiting times: Application of Little's formula yields the mean time a type-i customer
spends in the system (waiting plus in service).

It is somewhat more complicated to derive the (LST of the) waiting lime distri,buti,on. Consider
a tagged type-z customer. Conditioning on the type of interval during which that tagged customer
arrived: a visit of ,S to Qi, o, a switch-over from Qi to Qi*r, one can determine the conditional
waiting time LST. We refrain from working out the details. Instead, we sketch the approach by
determining the conditional LST of the waiting time of a tagged type.3 customer who has arrived
during a non-empty visit of 5 to Q1 (respectively, during a switch of ,S from Qr to Q2). Let
pl:l : Gln"n'(I,O,1,...,1) denote the probability that Q2 is empty at an arbitrary visit epoch of
,S to Q1. Similarly, define ql?: Gl-ot'o(L,0, 1, . . . , 1) to. be the probability that Qz is empty at an

arbitrary switch-over epoch of ,S from Qr to Q2. Let Bl'u'' denote the residual.part (overshoot) of
the ongoing batch service at Qr, with density JF(,B1 > r) /E,fu. We define D\'""' similarly. Then

(6)

(7)

(8)

E[e-'wz lthe tagged. customer arrived while ,S was serving Q1]
: (1 - pl?l)P["-" 1B\") + n1+sz+Dil)

7cb
+ e\t) J" e-"tdiP(B{res) * D1 < t)e-r,'Ele-'D')
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foo
+ e\2 J, .e-"dtp(B(res) 

* h < t)(7 - e-r")E[e*'@z+Dilf

: lE [e-'tr l"'") + o, +.a, + o,1 
1

+ p[:]E t"-(a,+]z) 
(Bl"""i +pr) 

]lE [e, or]lL - lE[e-'az 11.

lE[e-,wslthe tagged.customer arrived while,g was switching from Qr to Qz]

: (i - qfll jnt"-'( of"") +n2+o'11

+ qf:l [* .-"dv'(D{"*) < t)e-}ztp fe-uoz1

+ qltl 
'f* 

"-,:OU(D{'"") 
< r)(1 - e-^r,)lg[ u-u(Bz+Dz)1

: U1"j&o l'"q+nz+Dzl1 + cfiinh-(u+I2)Di""lp1"-'or,[1 - n1e-'az11.

(e)

Similarly,

(10)

References
[1]M.H. Ammar and J.W. Wong, "On the Optimality of Cyclic tansmission in Teletext Systems", IEEE

Ttansactions on Communications, Vol. COM-35, No. 1, pp' 68-73 (1987)'

[2]H.D. Dykeman, M.H. Ammar and J.W. Wong, "Scheduling Algorithms for Videotex Systems under

Broadcast Delivery", in Proceedings of the International Conference on Communications (ICC'86)'

pp.1847-1851 (1986).

[B]2. Liu and p. Nain, ,'Optimat Scheduling in Some Multiqueue Single.Server Systems", IEEE Ttansactions

on Automatic Control, Vol. 37, No. 2, pp.247-252 (1992)'

[4]J. van der Wal and U. Yechiali, "Dynamic Visit-Order Rules for Batch-Service Polling", Probability in

the Engineering and Informational sciences, vol. 17, pp. 351-367 (2003).

[b]M.p. Van Oyen and D. Teneketzis, "Optimal Batch Service of a Polling System under Partial Informa-- 
tion", Methods and Models in OR, Yol- M, No. 3, pp. 401-419 (1996)'


