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Abstract

The Israeli Queue is a polling-type system with N groups (queues) and un-limited size batch

service, where the next group to be served is the one with the most senior customer. For such a

system we derive (i) the mean size of each group, and (ii) the Laplace-Stieltjes Transform and

mean of the length of a busy period starting with n ≥ 1 groups. Numerical calculations are

presented and the parameters’ effect is discussed.
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1 Introduction

The ’Israeli Queue’ model was introduced in Boxma, van der Wal and Yechiali [3, Section 5] when

studying a multi-queue single-server polling system with unlimited-size batch service [2, 3], where

the next queue to be served is the one with the most senior customer (the customer who has been

waiting for the longest time among all present customers). The term ’Israeli Queue’ originates from

a real waiting line of individuals formed in order to buy tickets for a show. The associated queueing

system is comprised of heads of groups, where each head can buy an unrestricted number of tickets
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for the group of individuals he (”he” stands for ”she” as well) represents, while the purchasing time

is assumed to be independent of the number of tickets bought. A new arrival either joins one of

the existing groups, if he knows the group’s head, or creates a new group, acting as its leader.

Unlimited batch-service was studied by van der Wal and Yechiali [12] when analyzing a computer

tape-reading problem in a system where large amounts of information are stored on tapes. It is

assumed that the time to mount, read and dismount the tape is independent of the amount of

information read from the tape. The problem was formulated as a polling system and optimal

visiting rules of the server were studied. Unlimited batch-service models were also considered in

the literature as application to videotex, telex and TDMA (Time Division Multiple Access) systems

(see e.g. [1], [4] and [6]). Van Oyen and Teneketzis [13] formulated a central data base system and

an Automated Guided Vehicle (AGV) as a polling system with an infinite capacity batch service.

Recently, Perel and Yechiali [8] extended the Israeli Queue model to the case where there is no

bound on the number of different groups that can be present simultaneously in the system. They

analyzed single-server models with finite and infinite number of groups, as well as models with

multiple servers, and derived various performance measures. Perel and Yechiali [9] further studied

a two-class single-server preemptive priority queueing model in which the high priority customers

form a classical M/M/1 queue, while the low priority (class 2) customers form the unlimited-size

batch service Israeli Queue with a finite number of groups. They calculated various performance

measures, such as the mean number of low priority groups in the system along with the mean size

of a class-2 group; the covariance between the number of high priority customers and the number

of low priority groups; sojourn times of a class-2 group leader, as well as of an arbitrary class-2

customer. In addition, Perel and Yechiali [10] studied an Israeli Queue model with retrials in which

the system is comprised of a ’main’ queue and an orbit queue. The main queue consists of at most

M groups, where a new arrival enters the main queue either by joining one of the existing groups,

or by creating a new group. If an arrival can not join one of the groups in the main queue, he goes

to a retrial (orbit) queue. The orbit queue dispatches orbiting customers back to the main queue at

a constant rate. Various performance measures were derived, such as the mean number of groups

in the main queue, the mean number of orbiting customers, the mean size of each group standing

in the main queue, and the mean number of bypasses made by an arriving customer.

In this work we consider a M/MBatch/1 Israeli Queue, where the number of groups present in
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the system is at most N . Each group has a ”leader” or a ”head” - the first one of the group to

arrive to the system. A new arrival sees only the head of each existing group, and the probability

that he knows a group leader is p, independent of the group size. A new arrival joins the group

of the first leader he knows. That is, if there are 1 ≤ n ≤ N − 1 groups in the system (including

the one in service), then the probability that a new arrival joins the k − th group is (1 − p)k−1p,

for 1 ≤ k ≤ n, while the probability that he creates a new group (the (n + 1)-st) is (1 − p)n. We

assume that an arriving customer can also join the group that is being served. Also, if N groups are

present and a new arrival does not join any of the first N−1 groups, he will necessarily join the last

group (in the N -th position). The arrival process is Poisson with rate λ, and the service is given,

as indicated, in unlimited-size batches. That is, it takes one (random) service duration to serve a

group, independent of its size. We assume that a service duration of each group is exponentially

distributed with parameter µ.

Previous results. Define X as the total number of different groups in the system in steady state,

where 0 ≤ X ≤ N . Let πn = P (X = n), for 0 ≤ n ≤ N . In [8] we showed that

πn =

(
λ

µ

)n
(1− p)

n(n−1)
2 π0, 1 ≤ n ≤ N,

π0 =

(
N∑
n=0

(
λ

µ

)n
(1− p)

n(n−1)
2

)−1

. (1.1)

In addition, let D(k) denote the total size of the group standing at the k-th position (1 ≤ k ≤ N),

an instant after a service completion. We have, for 1 ≤ k ≤ N (see [8]),

E
[
D(k)

]
=
λ

µ
(1− p)k−1 +

πk∑N
j=k πj

. (1.2)

In this work we derive (Section 2) the mean value of the group sizes right after a moment of service

completion or an arrival. The Laplace-Stieltjes Transform of the length of a busy period, starting

with n ≥ 1 groups, is obtained in Section 3 and its first moment is calculated. Numerical results

are presented in Section 4.
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2 The Size of a Group

Define a ’Poissonian event’ as an instant where there is either an arrival or a service completion. Let

Lmk denote the number of customers present in the k-th group (k = 1, 2, . . . , N) immediately after

the m-th Poissonian event took place, for m ≥ 1, and let ~Lm = (Lm1 , L
m
2 , . . . , L

m
N ). We observe the

system at two successive Poissonian events, m and m+1. Note that, if the system is not empty, the

time elapsing until the next Poissonian event is exponentially distributed with mean 1
λ+µ , whereas,

if the system is empty, the time elapsing until the next Poissonian event is exponentially distributed

with mean 1
λ .

2.1 Number of groups before a Poissonian event

Let {Ym,m ≥ 1} be the number of groups in the system (state of the process Y ) a moment before

the m-th Poissonian event occurs. {Ym,m ≥ 1} defines a finite (semi) Markov chain with one-step

transition probabilities νij = P(Ym+1 = j|Ym = i), for i, j = 0, 1, . . . , N . Let Q = [νij ]i,j be the one

step transition probability matrix of the process {Ym,m ≥ 1}. Then, Q is given by

Q =



0 1 0 · · · · · · · · · · · · 0

µ
λ+µ

λp
λ+µ

λ(1−p)
λ+µ 0 · · · · · · · · · 0

0 µ
λ+µ

λ(1−(1−p)2)
λ+µ

λ(1−p)2
λ+µ 0

. . .
. . .

...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 µ
λ+µ

λ(1−(1−p)N−1)
λ+µ

λ(1−p)N−1

λ+µ

0 0 0 0 0 0 µ
λ+µ

λ
λ+µ



.

Let ~σ = (σ0, σ1, . . . , σN )T denote the limiting distribution of Y = limm→∞ Ym, i.e. σk = P(Y = k),

~σQ = ~σ, and
N∑
k=0

σk = 1. The derivation of σk, for k = 0, 1, . . . , N is as follows. First, we have

σ0 =
µ

λ+ µ
σ1, (2.1)
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which gives

σ1 = σ0
λ+ µ

µ
. (2.2)

Second,

σ1 = σ0 +
λp

λ+ µ
σ1 +

µ

λ+ µ
σ2,

and after using equation (2.2) and rearranging terms, we get

σ2 = σ0(λ+ µ)
λ

µ2
(1− p). (2.3)

Continuing further, we obtain

σ2 =
λ(1− p)
λ+ µ

σ1 +
λ(1− (1− p)2)

λ+ µ
σ2 +

µ

λ+ µ
σ3,

and after using equations (2.2), (2.3) and rearranging terms, we get

σ3 = σ0(λ+ µ)
λ2

µ3
(1− p)3. (2.4)

It can be verified that for k = 1, 2, . . . , N , σk is given by

σk = σ0(λ+ µ)
λk−1

µk
(1− p)

k(k−1)
2 , (2.5)

where σ0 is obtained from the normalization equation,
N∑
k=0

σk = 1. We thus have

σ0 =

(
1 + (λ+ µ)

N∑
k=1

λk−1

µk
(1− p)

k(k−1)
2

)−1

. (2.6)

As Q is a semi-Markov process of {Ym} in steady state, and σk is the fraction of visits of process

Y at state k, then the proportion of time that there are k groups in the system ({X = k}) is given
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by (see [11])

π0 =
σ0
λ

σ0
λ + 1

λ+µ

N∑
j=1

σj

,

πk =

σk
λ+µ

σ0
λ + 1

λ+µ

N∑
j=1

σj

, k = 1, 2, . . . , N. (2.7)

Indeed, substituting in equation (2.7) the expressions for σk (0 ≤ k ≤ N) given in equations (2.5)

and (2.6), results in equation (1.1).

The Makovian law of motion of the process
(
~Lm
)∞
m=1

is given by (see explanation below equation

(2.8))
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(
Lm+1

1 , Lm+1
2 , . . . , Lm+1

N

)
=



(1, 0, 0, . . . , 0) w.p. σ0

(Lm1 + 1, 0, . . . , 0) w.p. λp
λ+µσ1

(Lm1 , 1, 0, . . . , 0) w.p. λ(1−p)
λ+µ σ1

(0, 0, . . . , 0) w.p. µ
λ+µσ1

(Lm1 + 1, Lm2 , 0, . . . , 0) w.p. λp
λ+µσ2

(Lm1 , L
m
2 + 1, 0, . . . , 0) w.p. λ(1−p)p

λ+µ σ2

(Lm1 , L
m
2 , 1, 0, . . . , 0) w.p. λ(1−p)2

λ+µ σ2

(Lm2 , 0, . . . , 0) w.p. µ
λ+µσ2

(Lm1 + 1, Lm2 , L
m
3 , 0, . . . , 0) w.p. λp

λ+µσ3

(Lm1 , L
m
2 + 1, Lm3 , 0, . . . , 0) w.p. λ(1−p)p

λ+µ σ3

(Lm1 , L
m
2 , L

m
3 + 1, 0, . . . , 0) w.p. λ(1−p)2p

λ+µ σ3

(Lm1 , L
m
2 , L

m
3 , 1, 0, . . . , 0) w.p. λ(1−p)3

λ+µ σ3

(Lm2 , L
m
3 , 0, . . . , 0) w.p. µ

λ+µσ3

...
...

(Lm1 + 1, Lm2 , . . . , L
m
k , 0, . . . , 0) w.p. λp

λ+µσk
...

...

(Lm1 , L
m
2 , . . . , L

m
k + 1, 0, . . . , 0) w.p. λ(1−p)k−1p

λ+µ σk

(Lm1 , L
m
2 , . . . , L

m
k , 1, 0, . . . , 0) w.p. λ(1−p)k

λ+µ σk

(Lm2 , L
m
3 , . . . , L

m
k , 0, . . . , 0) w.p. µ

λ+µσk
...

...(
Lm1 + 1, Lm2 , . . . , L

m
N−1, 0

)
w.p. λp

λ+µσN−1

...
...(

Lm1 , L
m
2 , . . . , L

m
N−1 + 1, 0

)
w.p. λ(1−p)N−2p

λ+µ σN−1(
Lm1 , L

m
2 , . . . , L

m
N−1, 1

)
w.p. λ(1−p)N−1

λ+µ σN−1(
Lm2 , L

m
2 , . . . , L

m
N−1, 0, 0

)
w.p. µ

λ+µσN−1

(Lm1 + 1, Lm2 , . . . , L
m
N ) w.p. λp

λ+µσN
...

...

(Lm1 , L
m
2 , . . . , L

m
N + 1) w.p. λ(1−p)N−1

λ+µ σN

(Lm2 , L
m
2 , . . . , L

m
N , 0) w.p. µ

λ+µσN
(2.8)
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Explanation: When the system is empty (with probability σ0), the next Poissonian event will be

an arrival, so that the first group will contain a single customer. Next, assume that only one group

is in the system (with probability σ1). Then, if the next event is an arrival (with probability λ
λ+µ),

then the new customer will join the single group with probability p or will create a new (second)

group (with probability (1 − p)). The third option is that this group completes its service before

an arrival occurs, so the system becomes empty. This occurs with probability µ
λ+µ . In this manner,

we consider all possible group vectors of customers and all possible events. So, if k groups are

present (with probability σk), an arriving customer may join each of these groups, or create a new

group (with the corresponding probabilities). In all cases, when the system is not empty, a service

completion before an arrival causes each group to move one step forward towards the server.

2.2 First moment of Lk

We now use equation (2.8) in order to derive E[Lk], for k = 1, 2, . . . , N .

For k = 1 we have,

E
[
Lm+1

1

]
= σ0 +

λp

λ+ µ

N∑
j=1

σj + E [Lm1 ]
λ

λ+ µ

N∑
j=1

σj + E [Lm2 ]
µ

λ+ µ

N∑
j=2

σj . (2.9)

When k = 2, we get

E
[
Lm+1

2

]
=
λ(1− p)
λ+ µ

σ1 +
λ(1− p)p
λ+ µ

N∑
j=2

σj + E [Lm2 ]
λ

λ+ µ

N∑
j=2

σj + E [Lm3 ]
µ

λ+ µ

N∑
j=3

σj . (2.10)

In general, for k = 2, 3, . . . , N − 1 we obtain

E
[
Lm+1
k

]
=
λ(1− p)k−1

λ+ µ
σk−1 +

λ(1− p)k−1p

λ+ µ

N∑
j=k

σj + E [Lmk ]
λ

λ+ µ

N∑
j=k

σj + E
[
Lmk+1

] µ

λ+ µ

N∑
j=k+1

σj .

(2.11)

Finally, for k = N we get

E
[
Lm+1
N

]
=
λ(1− p)N−1

λ+ µ
(σN−1 + σN ) + E [LmN ]

λ

λ+ µ
σN . (2.12)
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Define:

αk =
λ

λ+ µ

N∑
j=k

σj , k = 1, 2, . . . , N,

βk =
µ

λ+ µ

N∑
j=k+1

σj , k = 1, 2, . . . , N − 1,

q1 = σ0 +
λp

λ+ µ

N∑
j=1

σj ,

qk =
λ(1− p)k−1

λ+ µ
σk−1 +

λ(1− p)k−1p

λ+ µ

N∑
j=k

σj , k = 2, 3, . . . , N − 1,

qN =
λ(1− p)N−1

λ+ µ
(σN−1 + σN ).

In addition, we now observe the system in steady state where Lmk → Lk when m → ∞. We then

have E[Lmk ] = E[Lk]. Therefore, equations (2.9), (2.11) and (2.12) can be written as

E[Lk] = qk + αkE[Lk] + βkE[Lk+1], k = 1, 2, . . . , N − 1, (2.13)

E[LN ] = qN + αNE[LN ], (2.14)

or equivalently,

E[Lk] =
βk

1− αk
E[Lk+1] +

qk
1− αk

, k = 1, 2, . . . , N − 1, (2.15)

E[LN ] =
qN

1− αN
. (2.16)

Iterating equation (2.15) and using (2.16) lead to the following closed-form expression,

E[Lk] =
qN

1− αN

N−k−1∏
j=0

βk+j

1− αk+j
+
N−k−1∑
j=0

qk+j

1− αk+j

j−1∏
i=0

βk+i

1− αk+i
, k = 1, 2, . . . , N, (2.17)

where we define
−1∏
j=0

(·) , 1, and
−1∑
j=0

(·) , 0.
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3 The Busy Period

Let Θn (n = 1, 2, . . . , N) denote the time from the first moment when there are n groups in the

system until the first moment thereafter when no groups are present. Then the busy period, i.e.

the period of time during which the server is working continuously, is Θ1. In this section we derive

the Laplace Stieltjes Transform (LST) of Θn as well as a closed-form expression for E[Θn].

3.1 The LST of Θn

Let Θ̃n(s) denote the LST of Θn, and let Exp(λ) denote an exponential distribution with parameter

λ. We derive
{

Θn

}N
n=0

by solving a set of N linear equations, as follows. First, we have that

Θ1
d
= Exp(λ(1− p) + µ) +

 0 w.p. µ
λ(1−p)+µ

Θ2 w.p. λ(1−p)
λ(1−p)+µ

,

which yields

Θ̃1(s) =
µ

λ(1− p) + µ+ s
+

λ(1− p)
λ(1− p) + µ+ s

Θ̃2(s). (3.1)

Second, for n = 2, 3, . . . , N − 1,

Θn
d
= Exp(λ(1− p)n + µ) +

 Θn−1 w.p. µ
λ(1−p)n+µ

Θn+1 w.p. λ(1−p)n
λ(1−p)n+µ

, (3.2)

which leads to

Θ̃n(s) =
µ

λ(1− p)n + µ+ s
Θ̃n−1(s) +

λ(1− p)n

λ(1− p)n + µ+ s
Θ̃n+1(s). (3.3)

Last, for n = N ,

ΘN
d
= Exp(µ) + ΘN−1. (3.4)

That is,

Θ̃N (s) =
µ

µ+ s
Θ̃N−1(s). (3.5)
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Equations (3.1) - (3.5) comprise a set of N linear equations which can be written in the following

matrix form:

A(s) · ~Θ(s) = ~b, (3.6)

where

A(s) =



λ(1− p) + µ+ s −λ(1− p) 0 · · · · · · · · · 0

−µ λ(1− p)2 + µ+ s −λ(1− p)2 0 · · · · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...

...
. . .

. . .
. . . −µ λ(1− p)N−1 + µ+ s −λ(1− p)N−1

0 · · · · · · · · · 0 −µ µ+ s


,

~Θ(s) =
(

Θ̃1(s), Θ̃2(s), . . . , Θ̃N (s)
)T

is a column vector of the desired LST’s, and~b = (µ, 0, 0, . . . , 0)T .

The solution for (3.6) is given by ~Θ(s) = (A(s))−1~b, and since ~b is all zeros except from its first

coordinate (which equals µ), we have that ~Θ(s) equals the first column of (A(s))−1 multiplied by

µ. Note that A(s) is a tridiagonal matrix. There is an increasing interest in tridiagonal matrices in

many different theoretical fields, in which inversions of these matrices are necessary. Examples for

recent works that present explicit formula for the elements of the inverse of a general tridiagonal

matrix are Mallik [7] and Kiliç [5], and references there. Thus, once the inverse of A(s) is calculated,

the vector ~Θ(s) is fully obtained.

An alternative approach to derive the LST of the busy period, Θ̃1(s), is by using continued frac-

tions, which often provide good representations for transcendental functions. A finite continued

fraction is denoted by
a1

b1 + a2
b2+

a3
···+an

bn

or equivalently by
a1

b1+

a2

b2+
· · · an

bn
,
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where the an’s and the bn’s are real or complex numbers.

From equation (3.1) we obtain

Θ̃1(s) =
µ

λ(1− p) + µ+ s− λ(1− p) Θ̃2(s)

Θ̃1(s)

. (3.7)

Equation (3.3) can be written as

Θ̃n(s)

Θ̃n−1(s)
=

µ

λ(1− p)n + µ+ s− λ(1− p)n Θ̃n+1(s)

Θ̃n(s)

, n = 2, 3, . . . , N − 1, (3.8)

and equation (3.5) gives

Θ̃N (s)

Θ̃N−1(s)
=

µ

µ+ s
. (3.9)

Iterating (3.8) and using (3.9) results in

Θ̃n(s)

Θ̃n−1(s)
=

µ

λ(1− p)n + µ+ s−
λ(1− p)nµ

λ(1− p)n+1 + µ+ s−
· · · λ(1− p)N−2µ

λ(1− p)N−1 + µ+ s−
λ(1− p)N−1µ

µ+ s
.

(3.10)

By substituting equation (3.10) for n = 2 in equation (3.7) we get a continued fraction representa-

tion for Θ̃1(s),

Θ̃1(s) =
µ

λ(1− p) + µ+ s−
λ(1− p)µ

λ(1− p)2 + µ+ s−
· · · λ(1− p)N−2µ

λ(1− p)N−1 + µ+ s−
λ(1− p)N−1µ

µ+ s
. (3.11)

Note that the approach to derive Θ̃1(s) via continued fractions is in fact much related to

algorithms which are used to calculate the inverse of a tridiagonal matrix, as shown, for example,

in [5].

3.2 Calculation of E[Θn]

As mentioned, Θ1 is the period of time during which the server is working continuously. Since the

idle time of the server is Exp(λ), we get

E[Θ1]
1
λ + E[Θ1]

= 1− π0,

12



resulting in

E[Θ1] =
1− π0

λπ0
. (3.12)

We now calculate E[Θn] for all n = 1, 2, . . . , N . From equation (3.4) we get

E[ΘN−1] = E[ΘN ]− 1

µ
. (3.13)

Calculating the expectation in both sides of equation (3.2) gives

E[Θn] =
1

λ(1− p)n + µ
+

λ(1− p)n

λ(1− p)n + µ
E[Θn+1] +

µ

λ(1− p)n + µ
E[Θn−1],

or equivalently

(λ(1− p)n + µ)E[Θn] = 1 + λ(1− p)nE[Θn+1] + µE[Θn−1]. (3.14)

Substituting n = N − 1 in equation (3.14) leads to

E[ΘN−1] =
1

λ(1− p)N−1 + µ
+

λ(1− p)N−1

λ(1− p)N−1 + µ
E[ΘN ] +

µ

λ(1− p)N−1 + µ
E[ΘN−2].

Using the expression for E[ΘN−1] given in (3.13) and rearranging terms give

E[ΘN−2] = E[ΘN ]− λ(1− p)N−1

µ2
− 2

µ
(3.15)

Continuing further, substituting n = N − 2 in equation (3.14) gives

E[ΘN−2] =
1

λ(1− p)N−2 + µ
+

λ(1− p)N−2

λ(1− p)N−2 + µ
E[ΘN−1] +

µ

λ(1− p)N−2 + µ
E[ΘN−3].

Using the expression for E[ΘN−2] given in (3.15) and for E[ΘN−1] given in (3.13), and rearranging

terms give

E[ΘN−3] = E[ΘN ]− λ2

µ3
(1− p)N−1(1− p)N−2 − λ

µ2

(
(1− p)N−1 + (1− p)N−2

)
− 3

µ
. (3.16)

13



In the same manner, we get

E[ΘN−4] = E[ΘN ]− λ3

µ4
(1− p)N−1(1− p)N−2(1− p)N−3

− λ2

µ3

(
(1− p)N−1(1− p)N−2 + (1− p)N−2(1− p)N−3

)
− λ

µ2

(
(1− p)N−1 + (1− p)N−2 + (1− p)N−3

)
− 4

µ
. (3.17)

Continuing, the structure of equations (3.13), (3.15)-(3.17), leads to the following general solution,

E[ΘN−j ] = E[ΘN ]−
j−1∑
i=1

λi

µi+1

j−i∑
k=1

(1− p)Ni−
i(i+2k−1)

2 − j

µ
, j = 0, 1, . . . , N − 1,

and by setting n = N − j and rewriting the power of the term (1− p) we get

E[Θn] = E[ΘN ]−
N−n−1∑
i=1

λi

µi+1

N−n−i∑
k=1

(1− p)
i(2N−2k−i+1)

2 − N − n
µ

, n = 1, 2, . . . , N, (3.18)

where we define
−1∑
i=1

(·) =
0∑
i=1

(·) = 0.

Now, the second summation appearing in equation (3.18) is

N−n−i∑
k=1

(1− p)
i(2N−2k−i+1)

2 = (1− p)
i(2N−i+1)

2

N−n−i∑
k=1

(1− p)−ik

= (1− p)
i(2N−i+1)

2
(1− p)i(i−N+n) − 1

1− (1− p)i
=

(1− p)
i(2n+i+1)

2 − (1− p)
i(2N−i+1)

2

1− (1− p)i
,

so that equation (3.18) becomes

E[Θn] = E[ΘN ]−
N−n−1∑
i=1

λi
(

(1− p)
i(2n+i+1)

2 − (1− p)
i(2N−i+1)

2

)
µi+1(1− (1− p)i)

− N − n
µ

, n = 1, 2, . . . , N.

(3.19)

The following lemma shows the validity of equation (3.19).

Lemma 1. For n = 1, 2, . . . , N , equation (3.19) satisfies the recursion in (3.14).

Proof. Let us substitute (3.19) in (3.14). We then need to check whether the following equality

14



holds:

(λ(1− p)n + µ)

E[ΘN ]−
N−n−1∑
i=1

λi
(

(1− p)
i(2n+i+1)

2 − (1− p)
i(2N−i+1)

2

)
µi+1(1− (1− p)i)

− N − n
µ


= 1 + λ(1− p)n

E[ΘN ]−
N−n−2∑
i=1

λi
(

(1− p)
i(2n+i+3)

2 − (1− p)
i(2N−i+1)

2

)
µi+1(1− (1− p)i)

− N − n− 1

µ


+ µ

E[ΘN ]−
N−n∑
i=1

λi
(

(1− p)
i(2n+i−1)

2 − (1− p)
i(2N−i+1)

2

)
µi+1(1− (1− p)i)

− N − n+ 1

µ


After moving all terms to the left-hand side and dropping some terms we get

λ(1 − p)n

µ
+ λ(1 − p)n

N−n−1∑
i=1

λi
(

(1 − p)
i(2n+i+1)

2 − (1 − p)
i(2N−i+1)

2

)
µi+1(1 − (1 − p)i)

−
N−n−2∑

i=1

λi
(

(1 − p)
i(2n+i+3)

2 − (1 − p)
i(2N−i+1)

2

)
µi+1(1 − (1 − p)i)


+ µ

N−n−1∑
i=1

λi
(

(1 − p)
i(2n+i+1)

2 − (1 − p)
i(2N−i+1)

2

)
µi+1(1 − (1 − p)i)

−
N−n∑
i=1

λi
(

(1 − p)
i(2n+i−1)

2 − (1 − p)
i(2N−i+1)

2

)
µi+1(1 − (1 − p)i)


=
λ(1 − p)n

µ
+ λ(1 − p)n

(
N−n−2∑

i=1

λi

µi+1(1 − (1 − p)i)

(
(1 − p)

i(2n+i+1)
2 − (1 − p)

i(2n+i+3)
2

))

+
λN−n(1 − p)n

µN−n(1 − (1 − p)N−n−1)

(
(1 − p)

(N−n−1)(N+n)
2 − (1 − p)

(N−n−1)(N+n+2)
2

)
+ µ

(
N−n−1∑

i=1

λi

µi+1(1 − (1 − p)i)

(
(1 − p)

i(2n+i+1)
2 − (1 − p)

i(2n+i−1)
2

))

− λN−n

µN−n(1 − (1 − p)N−n)

(
(1 − p)

(N−n)(N+n−1)
2 − (1 − p)

(N−n)(N+n+1)
2

)
. (3.20)

Continuing the algebra, equation (3.20) can be rewritten as

λ(1− p)n

µ
+ λ(1− p)n

N−n−2∑
i=1

λi

µi+1(1− (1− p)i)
(1− p)

i(2n+i+1)
2 (1− (1− p)i)

+
λN−n(1− p)n

µN−n(1− (1− p)N−n−1)
(1− p)

(N−n−1)(N+n)
2 (1− (1− p)N−n−1)

−
N−n−1∑
i=1

λi

µi(1− (1− p)i)
(1− p)

i(2n+i−1)
2 (1− (1− p)i)

− λN−n

µN−n(1− (1− p)N−n)
(1− p)

(N−n)(N+n−1)
2 (1− (1− p)N−n), (3.21)
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which leads to

λ(1− p)n

µ
− λN−n

µN−n
(1− p)

(N−n)(N+n−1)
2 +

N−n−1∑
i=1

λi+1

µi+1
(1− p)n+

i(2n+i+1)
2 −

N−n−1∑
i=1

λi

µi
(1− p)

i(2n+i−1)
2 .

Now, noting that

N−n−1∑
i=1

λi+1

µi+1
(1− p)n+

i(2n+i+1)
2 −

N−n−1∑
i=1

λi

µi
(1− p)

i(2n+i−1)
2 = −λ(1− p)n

µ
+
λN−n

µN−n
(1− p)

(N−n)(N+n−1)
2 ,

completes the proof.

Finally, substituting n = 1 in equation (3.19), and using the expression for E[Θ1] given in

equation (3.12), yield an expression for E[ΘN ] in terms of π0,

E[ΘN ] =
1− π0

λπ0
+

N−2∑
i=1

λi
(

(1− p)
i(i+3)

2 − (1− p)
i(2N−i+1)

2

)
µi+1(1− (1− p)i)

+
N − 1

µ
. (3.22)

Thus, in view of (3.19), E[Θn] is completely determined for all 1 ≤ n ≤ N .

4 Numerical Results

In this section some numerical results are presented, for the cases N = 5 and N = 10.

In Table 1 (N = 5) we calculate the first moment of Lk and of D(k), k = 1, 2, . . . , 5, as well as the

first moment of Θn, n = 1, 2, . . . , 5. Different values of λ and p are considered, and µ = 1 in all

calculations. The results show that E[L1], the mean size of the group standing in the first position

(the one being served) increases with p, since for larger values of p, most customers concentrate in

the first group. The size of the group in the second position behaves different for various values of

p. Meaning that, when p increases from 0.01 to 0.2, E[L2] slightly increases, while when p grows

from 0.2 to 0.6, E[L2] significantly decreases. Furthermore, E[L3], E[L4] and E[L5] decrease as p

increases. We also observe that E
[
D(k)

]
is larger than E[Lk]. This follows since E

[
D(k)

]
is calcu-

lated after a service completion, when assuming that the k-th group exists. So, E
[
D(k)

]
contains

all the customers that join this group during a single service period, while E[Lk] is calculated right

after a Poissonian event (arrival or service completion). In addition, Table 1 shows that for all n,

E[Θn] drops radically with the enlargement of p.
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Table 2 presents results for E[Lk] when N = 10. As expected, the values of E[Lk] decrease as the

group’s index k grows. However, when p = 0.01, the mean size of the last group is slightly greater

than the mean sizes of the groups in front of it. Also, for p = 0.01, the differences between the

values of E[Lk] are not as great as in other values of p.

In Table 3 the values for E
[
D(k)

]
are presented, when N = 10. When λ

µ is large, π0 is very small,

and therefore, from equation (1.2), E
[
D(1)

]
is very close to λ

µ .

Table 4 exhibits the values of E[Θn] when N = 10. Since large values for λ are considered, it turns

out that when p is small, E[Θn] is extremely large. However, when increasing the value of p from

0.2 to 0.6, E[Θn] drops, so that the influence of p on E[Θn] is clearly shown.

We indicate that a regular M/M/1 queue with µ = 1 and λ ≥ 1, would collapse.

Table 1: Numerical results for N = 5, µ = 1.

λ = 1 λ = 5 λ = 15

Value of p p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6

E[L1] 0.3224 0.5317 0.7901 1.6689 2.6655 3.1171 6.6855 9.5628 11.5512

E[L2] 0.2165 0.2505 0.1481 1.6221 1.6941 0.6519 6.5358 6.5652 2.8826

E[L3] 0.1583 0.1174 0.0182 1.5927 0.9955 0.1255 6.3916 4.1884 0.4367

E[L4] 0.1283 0.0505 0.0011 1.6486 0.5819 0.0213 6.3008 2.4301 0.0687

E[L5] 0.1826 0.0242 2.73 · 10−5 2.2565 0.5505 0.0023 7.0287 1.7942 0.0129

E[D(1)] 1.2081 1.3729 1.6811 5.0014 5.0085 5.1931 15.0000 15.0000 15.0247

E[D(2)] 1.2501 1.2758 1.2543 4.9569 4.0343 2.4787 14.8503 12.0019 6.1518

E[D(3)] 1.3246 1.2208 1.0984 4.9348 3.3136 1.5348 14.7059 9.6179 2.8294

E[D(4)] 1.4803 1.2244 1.0390 5.0238 2.8881 1.2065 14.6194 7.8199 1.6825

E[D(5)] 1.9606 1.4096 1.0256 5.8030 3.0480 1.1280 15.4089 7.1440 1.3840

E[Θ1] 4.8062 2.6815 1.4682 171.131 117.677 5.1775 49196.0 6448.75 40.5324

E[Θ2] 8.6508 4.7834 2.6387 856.996 146.846 7.2663 52508.8 6986.07 47.1212

E[Θ3] 11.5531 6.5051 3.7043 886.149 155.649 8.6273 52734.1 7041.93 49.4498

E[Θ4] 13.5137 7.9147 4.7299 891.952 158.697 9.7553 52749.5 7049.08 50.8338

E[Θ5] 14.5137 8.9147 5.7299 892.952 159.697 10.7553 52750.5 7050.08 51.8338
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Table 2: Numerical results for E[Lk], where N = 10, µ = 1.

λ = 1 λ = 5 λ = 15

Value of p p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6

E[L1] 0.2644 0.5308 0.7902 1.7420 3.2775 3.1175 6.8794 12.1098 11.5783

E[L2] 0.1908 0.2508 0.1481 1.6920 2.2837 0.6521 6.7294 9.1099 2.9039

E[L3] 0.1446 0.1179 0.0182 1.6425 1.5083 0.1255 6.5809 6.7099 0.4432

E[L4] 0.1135 0.0509 0.0010 1.5936 0.9311 0.0214 6.4339 4.7905 0.0699

E[L5] 0.0914 0.0191 2.71 · 10−5 1.5423 0.5381 0.0022 6.2883 3.2585 0.0118

E[L6] 0.0748 0.0059 2.74 · 10−7 1.4983 0.2992 1.07 · 10−4 6.1443 2.0494 0.0014

E[L7] 0.0621 0.0015 1.12 · 10−9 1.4555 0.1656 2.16 · 10−6 6.0019 1.1388 7.84 · 10−5

E[L8] 0.0519 3.14 · 10−4 1.83 · 10−12 1.4306 0.0916 1.76 · 10−8 5.8649 0.5415 1.88 · 10−6

E[L9] 0.0448 5.21 · 10−5 1.2 · 10−15 1.4899 0.0493 5.76 · 10−11 5.7839 0.2467 1.83 · 10−8

E[L10] 0.0696 7.65 · 10−6 3.14 · 10−19 2.0807 0.0357 7.54 · 10−14 6.5099 0.2244 7.20 · 10−11

Table 3: Numerical results for E[D(k)], where N = 10, µ = 1.

λ = 1 λ = 5 λ = 15

Value of p p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6

E[D(1)] 1.1168 1.3665 1.6811 5.0000 5.0014 5.1930 15.0000 15.0000 15.0242

E[D(2)] 1.1209 1.2629 1.2543 4.9500 4.0054 2.4784 14.8500 12.0000 6.1485

E[D(3)] 1.1277 1.1916 1.0984 4.9005 3.2175 1.5336 14.7015 9.6000 2.8186

E[D(4)] 1.1383 1.1418 1.0388 4.8516 2.6057 1.2013 14.5545 7.6803 1.6512

E[D(5)] 1.1546 1.1064 1.0154 4.8033 2.1461 1.0783 14.4089 6.1458 1.2436

E[D(6)] 1.1799 1.0809 1.0062 4.7566 1.8166 1.0309 14.2649 4.9242 1.0937

E[D(7)] 1.2209 1.0624 1.0025 4.7154 1.5949 1.0123 14.1226 3.9679 1.0372

E[D(8)] 1.2936 1.0498 1.0009 4.6978 1.4649 1.0049 13.9859 3.2622 1.0148

E[D(9)] 1.4453 1.0494 1.0004 4.7933 1.4373 1.0019 13.9092 2.8484 1.0059

E[D(10)] 1.9135 1.1342 1.0002 5.5676 1.6711 1.0013 14.7028 3.0133 1.0039
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Table 4: Numerical results for E[Θn], where N = 10, µ = 1.

λ = 1 λ = 5 λ = 15

Value of p p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6 p = 0.01 p = 0.2 p = 0.6

E[Θ1] 8.563 2.728 1.468 1589601.4 734.695 5.181 2.63808 · 1010 2974866.9 41.399

E[Θ2] 16.203 4.888 2.638 1910732.8 918.118 7.271 2.81573 · 1010 3222772.4 48.132

E[Θ3] 22.977 6.701 3.704 1976262.9 975.126 8.634 2.82781 · 1010 3248595.8 50.521

E[Θ4] 28.928 8.289 4.730 1989769.9 997.004 9.769 2.82864 · 1010 3251958.1 51.968

E[Θ5] 34.083 9.724 5.741 1992581.9 1007.198 10.822 2.8287016 · 1010 3252505.2 53.131

E[Θ6] 38.451 11.052 6.744 1993173.5 1012.809 11.842 2.828705 · 1010 3252616.3 54.194

E[Θ7] 42.029 12.302 7.746 1993298.5 1016.328 12.851 2.828706 · 1010 3252644.3 55.219

E[Θ8] 44.795 13.492 8.747 1993325.2 1018.729 13.854 2.828706 · 1010 3252652.9 56.229

E[Θ9] 46.708 14.626 9.747 1993330.7 1020.401 14.855 2.828706 · 1010 3252655.9 57.233

E[Θ10] 47.708 15.626 10.747 1993331.7 1021.401 15.855 2.828706 · 1010 3252656.9 58.233
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