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This paper studies a Markovian single-server non-symmetric two-queue polling system, operating simul- 

taneously under a combination of two well-known queueing regimes: ( i ) ‘Join the Shortest Queue’ and 

( ii ) ‘Serve the Longest Queue’. The system is defined as a two-dimensional continuous-time Markov chain, 

and analyzed via both probability generating functions approach and matrix geometric method. Although 

both queues are unbounded, by applying a non-conventional representation and without resorting to in- 

volved boundary-value problem analysis, we derive the joint steady-state probability distribution of the 

system’s states, and consequently calculate its performance measures and derive its stability condition. 

Numerical results are presented, as well as a comparison with a corresponding M / G /1 queue. 
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. Introduction 

Two queueing models that have been extensively studied in the

iterature are ( i ) the so called ‘Join the Shortest Queue’ (JSQ), in-

olving a single arrival stream of customers and multiple queues,

n which a new arrival joins the shortest queue; and ( ii ) the so

alled ‘Serve the Longest Queue’ (SLQ), in which a single server

ttends several queues, and always chooses the next customer to

e served from the longest queue. Each model aims at balancing

he queue lengths: Under the JSQ regime, arriving customers are

he decision makers, while in the SLQ policy the server is the con-

roller. 

This paper combines the above two operating policies into a

nified model. Specifically, we consider a polling system comprised

f two non-identical Markovian queues, denoted by Q 1 and Q 2 , at-

ended by a single server that alternates between them. An arriv-

ng customer always joins the shortest queue, unless the queue

engths are equal, in which case the customer joins Q i ( i = 1 , 2 )

.p. p i ( p 1 + p 2 = 1 ). The server always serves the longest queue

hile exercising a queue-size depending preemptive priority pol-

cy, i.e. the server never resides in a shorter queue, giving priority

o the longest queue. This preemptive-type policy implies that at
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 moment when the number of customers in an un-served queue

xceeds the number of customers in the served queue (either at

ervice completion or when arrival occurs), the server immediately

witches to the longer queue. This is in contrast to the classical

ulti-class priority model where the priority level of each class

s pre-determined and does not change. In the present model, the

riority levels (of the queues) are size-dependent and dynamically

hange according to queue lengths. As a possible illustration of

ur JSQ-SLQ model, one may consider a medical clinic with several

urse rooms and a single physician. A newly arriving patient is di-

ected to a nurse room having the shortest queue and is treated

here (e.g. her blood is sampled). When the results are obtained,

he single physician attends the patient, always choosing a patient

rom the longest queue. Naturally, the service rates of the nurses

re not identical. 

Single-server polling systems have been widely studied in

he queueing literature, see e.g. Takagi (1986) , Yechiali (1993) ,

oon et al. (2011) , and the extensive references therein. The

ain service disciplines applied by the server are the Exhaustive,

ated, Globally-Gated and k -limited. In most cases, the server vis-

ts the queues in a cyclic (Round-Robin) order, incurring non-zero

witch-over times when switching between queues. Server’s dy-

amic switching rules were also investigated, see e.g. Browne and

echiali (1989) . Single-server two-queue polling models with

witching decisions depending on the queue sizes, but with zero

witch-over times were studied by Perel and Yechiali (2017) , while

https://doi.org/10.1016/j.cor.2019.104809
http://www.ScienceDirect.com
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a corresponding model with non-zero switching times was inves-

tigated by Jolles et al. (2018) . 

’Serving the longer queue’ (SLQ) regime was introduced by

Cohen (1987) , who studied a system with two queues, where a

single server serves the longer queue under non-preemptive pri-

ority policy. Each queue has its own generally distributed service

time and its own Poisson rate of arrival. Flatto (1989) consid-

ered a Markovian system with two identical queues and a sin-

gle server that serves the longer queue under preemptive priority

policy. Zheng and Zipkin (1990) considered the SLQ policy in the

context of inventory control. Houtum et al. (1997) studied a fully

symmetric non-preemptive Markovian system with a single server

and N queues, where upon service completion, the server picks the

next job from the longest queue. Knessl and Yao (2013) provided

asymptotic properties of heavy traffic limits for a Markovian non-

symmetric two-queue model under the SLQ policy. Baharian and

Tezcan (2011) considered the SLQ mechanism and studied the sta-

bility of a system with parallel queues and different classes, both

of customers and servers; Ravid et al. (2013) analyzed a Markovian

repair system with a single repairman and two queues having non

identical arrival rates. They obtained expressions for queue lengths

and sojourn times and pointed out a direct relation between their

model and a corresponding SLQ model; Maguluri et al. (2014) in-

vestigated the SLQ mechanism in the context of scheduling in

wireless networks, while Pedarsani and Walrand (2016) studied the

stability of SLQ scheduling in open multi-class queueing networks.

While the SLQ policy concentrates on the server’s selection pol-

icy of jobs to be processed, the JSQ mechanism deals with cus-

tomers’ decisions upon arrival. Winston (1977) considered a fully

symmetric Markovian system with multiple servers, each having

its own queue, where Poisson arriving customers join the short-

est queue. It is shown that the JSQ policy is optimal in the sense

that it maximizes the discounted number of customers to com-

plete their service in any time t . Adan et al. (1991a) studied a sys-

tem with two parallel queues, each having its specific exponen-

tial service time and a single stream of Poisson arrivals, where

customers follow the JSQ policy. It is shown that the joint equi-

librium distribution of the queue lengths can be represented by

an infinite sum of product-form solutions. In a following paper,

Adan et al. (1991b) studied the same system, while allowing jock-

eying between the queues whenever the difference between the

queue lengths exceeds some threshold T . Adan et al. (2013) fur-

ther analyzed a system with two single server queues, where cus-

tomers inter-arrival times follow an Erlang distribution, an arriv-

ing customer joins the shortest queue, and service times are ex-

ponentially distributed. Furthermore, Adan et al. (2016) considered

a Markovian polling system with two symmetric queues with a

single server operating according the exhaustive switching regime,

i.e., the server stays at the current queue if the system is com-

pletely empty after a service completion. The latter authors de-

rived the equilibrium distribution of the joint queue lengths by

using the compensation approach and by defining and solving a

boundary value problem. Additional studies on JSQ policy can be

found in Halfin (1985) , Menich (1987) , Hordijk and Koole (1990) ,

Menich and Serfozo (1991) , Cohen (1998) , Turner (20 0 0) , Foley and

McDonald (2001) , Yao and Knessl (2005, 2006) , Gupta et al. (2007) ,

Blanc (2009) and Dester et al. (2017) . However, in the above men-

tioned papers, each of the queues has its own server, while in the

current study we analyze a single-server polling system. 

In most studies mentioned above, two dimensional Markovian

queueing systems were investigated when one of the dimensions

was bounded. The common analysis methods are ( i ) via probability

generating functions (PGFs) (see e.g. Perel and Yechiali, 2008 and

Perel and Yechiali, 2014 ), and ( ii ) via matrix geometric analysis (see

e.g. books by Neuts, 1981 and Latouche and Ramaswami, 1999 ).

However, although both methods rely on the same system’s
arameters, the complete relationship between the two methods

as not been revealed yet. Recent papers that use both meth-

ds and explore relationships between them are Perel and Yechiali

2013) , Paz and Yechiali (2014) , Perel and Yechiali (2017) and

hung-Duc (2017) . This paper, in addition to solving the joint JSQ

nd SLQ models, further investigates the above relationships. We

ote that in cases of special structure of the matrices A 0 , A 1 and

 2 appearing in the infinitesimal generator matrix Q , used in the

atrix geometric analysis (see Section 4 ), it is possible to de-

ive a direct calculation of the entries of the rate matrix R (see

atouche and Ramaswami, 1999, Van Leeuwaarden and Winands,

006, Van Houdt and van Leeuwaarden, 2011, Van Leeuwaarden

t al., 2009, Hanukov and Yechiali, 2019 ), but none of the above

ases is applicable in the current model. 

When both queues are unbounded, one can apply a boundary

alue problem analysis, see e.g. Flatto (1989) , Avrachenkov et al.

2014) , Adan et al. (2016) , or a truncation method as carried out

n Bright and Taylor (1995) . In contrast, in this paper, where we

ombine both customers’ JSQ policy and server’s SLQ regime into

 unified system, we allow both dimensions of the non-symmetric

wo-queue polling system to be unbounded. We are able to derive

he equilibrium joint probability distribution function of the queue

engths by using an un-conventional approach when forming rele-

ant PGFs and when applying the matrix geometric method, thus

voiding an intricate boundary value problem analysis. 

The paper continues as follows. The model is described and for-

ulated in Section 2 . In Section 3 , steady-state equations, as well

s probability generating functions are derived, and performance

easures are calculated. In Section 4 the matrix geometric method

s employed and the system’s stability condition is derived, while

ection 5 shortly presents a special case. Numerical results are pre-

ented in Section 6 , as well as a comparison with a correspond-

ng regular M / G /1 queue where service time is exponentially dis-

ributed with rate μi with probability p i . Section 7 concludes the

aper. 

. The model 

We consider a polling system with a single server and two

on-identical queues, denoted by Q 1 and Q 2 . Customers arrive at

he system according to a Poisson process with rate λ. Each arriv-

ng customer exercises the ’Join the Shortest Queue’ (JSQ) policy,

hereas if the lengths of the queues are equal, the customer joins

 i w.p. p i , where p 1 + p 2 = 1 . Service duration of an arbitrary cus-

omer in Q i is exponentially distributed with mean 1/ μi , i = 1 , 2 .

n the other hand, the server alternates between the two queues

ccording to the ’Serve the Longest Queue’ (SLQ) switching policy.

hat is, the server always attends the longest queue. As soon as the

umber of customers in the non-attendant queue rises above the

umber of customers in the attendant queue, the server stops serv-

ng the served customer and immediately switches to the other

ueue. The service of the interrupted customer will resume anew

hen its turn comes. Note that, if the server has completed ser-

ice in Q i ( i = 1 , 2 ) and both queues are equal in size, the server

oes not switch. In this case, if a new customer arrives before the

erver completes one more service, then the new customer will

oin Q 1 or Q 2 with probability p 1 and p 2 , respectively, indepen-

ent of the servers’ position. Consequently, if the latter customer

oins Q j (while the server is in Q i , i � = j ), the server immediately

witches to Q j . The server will return to Q i as soon as the num-

er of customers in Q i exceeds the number of customers in Q j , and

o on. 

At time t > 0, let L i ( t ) denote the number of customers present

n Q i , i = 1 , 2 , and, assuming stability, let L i = lim 

t→∞ 

L i (t) . Also,

efine D (t) = L 1 (t) − L 2 (t) and D = lim 

t→∞ 

D (t) . The dual regime
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Fig. 1. Transition rate diagram of ( L 1 ( t ), L 2 ( t )). 
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SQ-SLQ implies that the random process D ( t ) may assume the val-

es (-1), (0) or (1). In order to indicate the position of the server,

e split state 0 into two states: 0 1 and 0 2 , where 0 i indicates that

he server attends Q i , i = 1 , 2 . In this case, an arriving customer

oins Q i w.p. p i . Note that D = 1 implies that the server is at Q 1 ,

nd since L 1 > L 2 , an arriving customer joins Q 2 , while D = (−1)

mplies that L 1 < L 2 , the server is at Q 2 , and an arriving customer

oins Q 1 . We formulate the above non regular polling system as

 two dimensional continuous time Markovian process, with state

pace {( n, d )}, for n ≥ 0 and d ∈ D = { 1 , 0 1 , 0 2 , −1 } . In the sequel,

e discuss the stability condition of the system. Assuming that

he stability condition holds, the system’s steady state joint proba-

ility distribution function is denoted by P n,d = P (L 1 = n, D = d) . A

ransition rate diagram of the process ( L 1 ( t ), L 2 ( t )) is depicted in

ig. 1 , from which the states of the resulting process ( L 1 ( t ), D ( t ))

re readily concluded. The numbers 1 or 2 in each square on the

iagonal indicate the position of the server, i.e. at Q 1 or at Q 2 ,

espectively. 
. Steady-state analysis using probability generating functions 

In this section we derive the steady-state probability distribu-

ion function of the unbounded two-dimensional process defin-

ng the states of the system, i.e. the joint distribution of ( L 1 , D ).

e use an unconventional construction of the probability gener-

ting functions (PGFs) and utilize their properties, as described

elow. 

.1. Balance equations and PGFs 

Writing the balance equations for all n along each diagonal of

ig. 1 , we obtain: 

When d = 1 , 

(λ + μ1 ) P n, 1 = λp 1 (P n −1 , 0 1 + P n −1 , 0 2 ) + μ2 P n, 0 2 , n ≥ 1 . (1) 

hen d = 0 1 , 

P 0 , 0 1 = μ1 P 1 , 1 , (2) 
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β2 (z 1 ) = μ2 p 2 z 1 (λ + μ1 ) + λz 1 + μ1 − z 1 (λ + μ1 )(λ + μ2 p 1 ) . 
(λ + μ1 ) P n, 0 1 = λP n, 1 + μ1 P n +1 , 1 , n ≥ 1 . (3)

For d = 0 2 , 

λP 0 , 0 2 = μ2 P 0 , −1 , (4)

(λ + μ2 ) P n, 0 2 = λP n −1 , −1 + μ2 P n, −1 , n ≥ 1 . (5)

Finally, for d = −1 , 

(λ + μ2 ) P n, −1 = λp 2 (P n, 0 1 + P n, 0 2 ) + μ1 P n +1 , 0 1 , n ≥ 0 . (6)

For each d ∈ D = { 1 , 0 1 , 0 2 , −1 } , define the conditional proba-

bility generating function of the number of customers in Q 1 as: 

G d (z) = 

∑ 

n 

P n,d z 
n , d ∈ D . 

Multiplying Eq. (1) by z n and summing over n ≥ 1, we get 

(λ + μ1 ) G 1 (z) = λp 1 zG 0 1 (z) + (λp 1 z + μ2 ) G 0 2 (z) − μ2 P 0 , 0 2 . (7)

Repeating this process for d = 0 1 and d = 0 2 , while using

Eqs. (2)–(5) , we obtain, 

(λ + μ1 ) zG 0 1 (z) = (λz + μ1 ) G 1 (z) + μ1 zP 0 , 0 1 , (8)

(λ + μ2 ) G 0 2 (z) = (λz + μ2 ) G −1 (z) + μ2 P 0 , 0 2 . (9)

Last, from Eq. (6) we derive 

(λ + μ2 ) zG −1 (z) = (λp 2 z + μ1 ) G 0 1 (z) + λp 2 zG 0 2 (z) − μ1 P 0 , 0 1 . 
(10)

The set of Eqs. (7)–(10) can be written in a matrix form as 

A (z) · � G (z) = 

�
 P (z) , (11)

where 

A (z) = 

⎛ 

⎜ ⎜ ⎝ 

λ + μ1 −λp 1 z −(λp 1 z + μ2 ) 0 

−(λz + μ1 ) (λ + μ1 ) z 0 0 

0 0 λ + μ2 −(λz + μ2 ) 

0 −(λp 2 z + μ1 ) −λp 2 z (λ + μ2 ) z 

⎞
⎟⎟⎠

�
 G (z) = 

(
G 1 (z) , G 0 1 

(z) , G 0 2 
(z) , G −1 (z) 

)
T is a 4-dimensional

column vector of the desired PGF’s, and 

�
 P (z) =(

−μ2 P 0 , 0 2 , μ1 zP 0 , 0 1 , μ2 P 0 , 0 2 , −μ1 P 0 , 0 1 

)
T is a vector contain-

ing the two unknown, so-called ‘boundary probabilities’, P 0 , 0 1 and

P 0 , 0 2 . 

To explicitly obtain G d ( z ) we use Cramer’s rule and write

G d (z) = 

| A d (z) | 
| A (z) | , d ∈ D = { 1 , 0 1 , 0 2 , −1 } , where | A | is the determi-

nant of a matrix A , and A d ( z ) is the matrix obtained from A ( z ) by

replacing the corresponding column of the latter matrix by � P (z) .

Note that the PGFs G d ( z ), d ∈ D , are expressed in terms of the

two unknown boundary probabilities, P 0 , 0 1 and P 0 , 0 2 , appearing in
�
 P (z) . Two equations are required to calculate the latter probabili-

ties. First, by the normalization condition, we have ∑ 

d∈ D 

G d (1) = 

∑ 

d∈ D 

lim 

z→ 1 

| A d (z) | 
| A (z) | = 1 . (12)

The second relation between P 0 , 0 1 and P 0 , 0 2 is derived from the

matrix A ( z ). Since G d ( z ) is a (partial) probability generating func-

tion defined for all | z | < 1, each root of | A ( z )| is a root of | A d ( z )|.

The determinant | A ( z )| is a 3-rd degree polynomial, and can be ex-

pressed as | A (z) | = (1 − z) h (z) , where 

h (z) = z 2 
[ 
λ4 + λ3 (μ1 (1 + p 2 ) + μ2 (1 + p 1 )) + λ2 (μ2 

1 p 2 + μ2 
2 p 1 ) 

] 
− z 

[ 
λμ1 μ2 (μ1 (1 + p 1 ) + μ2 (1 + p 2 )) + μ2 

1 μ
2 
2 

] 
− μ2 

1 μ
2 
2 . (13)

The quadratic polynomial h ( z ) possesses 2 roots, denoted by z 1 and

z 2 , that can be expressed explicitly by solving a square root for-

mula. Since h (−1) > 0 and h (0) < 0, then z 1 ∈ (−1 , 0) and can be
sed to obtain the required second relation. Since h (∞ ) = ∞ , the

nterval containing the other root, z 2 , is determined by the system

arameters (i.e. λ, μ1 , μ2 and p 1 ) and may be either in (0,1] or in

1, ∞ ). If h (1) > 0 then z 2 ∈ (0, 1), and its use leads to a system of

 equations in the two boundary probabilities, implying that there

s no solution and the system is un-stable. Hence, the condition

 (1) < 0, which means that z 2 ∈ (1, ∞ ) is the system’s stability con-

ition. Note that 

 (1) = (λ + μ1 )(λ + μ2 ) 
[
λ2 + λ(μ1 p 2 + μ2 p 1 ) − 2 μ1 μ2 

]
, 

nd h (1) < 0 simplifies to the inequality 

< 

−(μ1 p 2 + μ2 p 1 ) + 

√ 

(μ1 p 2 + μ2 p 1 ) 2 + 8 μ1 μ2 

2 
. (14)

t will be verified again, when applying matrix geometric analysis

n Section 4 , that Eq. (14) defines the system’s stability condition. 

From all the above, P 0 , 0 1 and P 0 , 0 2 can be derived explicitly,

hich provides us with closed-form expressions for the PGFs,

 d ( z ), for all d ∈ D . Specifically, explicit calculation of the determi-

ants | A d ( z )|, for all d ∈ D results in: 

 A 1 (z) | = −λμ2 z(1 − z) [ P 0 , 0 1 μ1 (p 1 z(λ + μ2 ) + λz + μ2 ) 

+ P 0 , 0 2 z(λ + μ1 )(λ + μ2 p 1 ) ] , (15)

 A 0 1 (z) | = −(1 − z) 
[
P 0 , 0 1 μ1 

(
μ1 μ

2 
2 − λ2 z 2 (λ + μ1 p 2 ) 

+ μ2 z((1 + p 1 ) λμ1 + μ2 (λ + μ1 )) ) 

+ P 0 , 0 2 λμ2 z(μ2 p 1 + λ)(λz + μ1 ) ] , (16)

 A 0 2 (z) | = −(1 − z) [ P 0 , 0 1 λμ1 z(λz + μ2 )(λ + μ1 p 2 ) 

+ P 0 , 0 2 μ2 

(
μ2 

1 μ2 − λ2 z 2 (λ + μ2 p 1 ) 

+ μ1 z((1 + p 2 ) λμ2 + μ1 (λ + μ2 )) ) ] , (17)

 A −1 (z) | = −λμ1 (1 − z) [ P 0 , 0 1 z(λ + μ2 )(λ + μ1 p 2 ) 

+ P 0 , 0 2 μ2 ( p 2 z(λ + μ1 ) + λz + μ1 ) ] . (18)

ubstituting z 1 in any of the above determinants (15) - (18) leads to

he same equation, which provides us with one equation in the

wo boundary probabilities. The second equation is obtained from

q. (12) , which, after some algebra, leads to ∑ 

∈ D 

G d (1) = 

P 0 , 0 1 μ1 (λ + μ2 ) 
[
λ2 + λ(μ1 p 2 + μ2 p 1 ) + 2 μ2 (λ + μ1 ) 

]
(λ + μ1 )(λ + μ2 ) 

[
2 μ1 μ2 − λ(μ1 p 2 + μ2 p 1 ) − λ2 

]
+ 

P 0 , 0 2 μ2 (λ + μ1 ) 
[
λ2 + λ(μ1 p 2 + μ2 p 1 ) + 2 μ1 (λ + μ2 ) 

]
(λ + μ1 )(λ + μ2 ) 

[
2 μ1 μ2 − λ(μ1 p 2 + μ2 p 1 ) − λ2 

] = 1 . 

(19)

ow, using | A d (z 1 ) | = 0 for any d ∈ D and Eq. (19) results in an

xplicit solution for P 0 , 0 1 and P 0 , 0 2 (in terms of the root z 1 ), given

y 

 0 , 0 1 = 

h (1) β2 (z 1 ) 

α1 β2 (z 1 ) + α2 β1 (z 1 ) 
, 

 0 , 0 2 = 

h (1) β1 (z 1 ) 

α1 β2 (z 1 ) + α2 β1 (z 1 ) 
, 

here 

h (1) = (λ + μ1 )(λ + μ2 ) 
[
λ2 + λ(μ1 p 2 + μ2 p 1 ) − 2 μ1 μ2 

]
, 

α1 = μ1 (λ + μ2 ) 
[
λ2 + λ(μ1 p 2 + μ2 p 1 ) + 2 μ2 (λ + μ1 ) 

]
, 

α2 = μ2 (λ + μ1 ) 
[
λ2 + λ(μ1 p 2 + μ2 p 1 ) + 2 μ1 (λ + μ2 ) 

]
, 

1 (z 1 ) = μ1 

[
p 1 z 1 (λ + μ2 ) + λz 1 + μ2 

]
− z 1 (λ + μ2 )(λ + μ1 p 2 ) ,[ ]
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.2. Performance measures 

In this section we derive the first and second moments of the

ueue lengths, as well as the correlation coefficient between them.

e also calculate the proportion of time the server is idle, the

ean sojourn time of an arbitrary customer in each queue, and the

aplace Stieltjes transforms (LSTs) of the sojourn times. Numerical

esults are presented in Section 6.2 . 

Define, respectively, the marginal probabilities of D and of L 1 
s 

 •d = P (D = d) = 

∞ ∑ 

n =0 

P n,d = G d (1) , d ∈ D , 

 n • = P (L 1 = n ) = 

∑ 

d∈ D 

P n,d , n ≥ 0 . (20) 

hen, 

E [ D ] = 1 · G 1 (1) + 0 ·
(

G 0 1 (1) + G 0 2 (1) 
)

+ (−1) · G −1 (1) 

= P •1 − P •(−1) , 

 [ L 1 ] = 

∞ ∑ 

n =0 

nP n • = 

∑ 

d∈ D 

G 

′ 
d (1) , 

 [ L 2 ] = E [ L 1 ] − E [ D ] . 

urthermore, 

ov (L 1 , L 2 ) = E [ L 1 L 2 ] − E [ L 1 ] E [ L 2 ] = E [ L 1 (L 1 − D )] − E [ L 1 ] E [ L 2 ] 

= E [ L 2 1 ] − E [ L 1 D ] − E [ L 1 ] E [ L 2 ] , 

here 

E [ L 2 1 ] = 

∑ 

d∈ D 

G 

′′ 
d (1) + E [ L 1 ] , 

 [ L 1 D ] = 

∑ 

d∈ D 

∑ 

n 

ndP n,d = 

∑ 

n 

nP n, 1 −
∑ 

n 

nP n, −1 = G 

′ 
1 (1) − G 

′ 
−1 (1) .

lso, the variance of L i , for i = 1 , 2 , is given by 

 ar(L 1 ) = E [ L 2 1 ] − ( E [ L 1 ] ) 
2 , 

 ar(L 2 ) = E [ L 2 2 ] − ( E [ L 2 ] ) 
2 = E [(L 1 − D ) 2 ] − ( E [ L 2 ] ) 

2 

= E [ L 2 1 ] − 2 E [ L 1 D ] + E [ D 

2 ] − ( E [ L 2 ] ) 
2 , 

here E [ D 

2 ] = P •1 + P •(−1) . 

From all the above, the correlation coefficient between L 1 and

 2 , denoted by Cor ( L 1 , L 2 ), can be explicitly calculated, using

or(L 1 , L 2 ) = 

Cov (L 1 ,L 2 ) √ 

V ar(L 1 ) V ar(L 2 ) 
(for numerical results, see Section 6.2 ). 

Let λi 
e f f 

denote the effective arrival rate to Q i , i.e. 

1 
e f f = λ

(
p 1 (1− P •1 − P •(−1) ) + P •(−1) 

)
= λ

(
p 1 (1− P •1 ) + p 2 P •(−1) 

)
2 
e f f = λ

(
p 2 (1 − P •1 − P •(−1) ) + P •1) 

)
= λ

(
p 2 (1 − P •(−1) ) + p 1 P •1 

)
. 

learly, λ1 
e f f 

+ λ2 
e f f 

= λ. Defining ρi = 

λi 
e f f 

μi 
, some algebra confirms

hat 

 ( Server is idle ) = P 0 , 0 1 + P 0 , 0 2 = 1 − ρ1 − ρ2 . 

Define W i as the sojourn time of a customer in Q i . Then, by

ittle’s Law, 

 [ W i ] = 

E [ L i ] 

λi 
e f f 

. 

urthermore, the PGF’s of the number of customers in Q i (for i =
 , 2 ), denoted by ˆ L i (z) , are given by 

ˆ 
 1 (z) = G 1 (z) + G 0 1 (z) + G 0 2 (z) + G −1 (z) , (21)

ˆ 
 2 (z) = 

1 

G 1 (z) + G 0 1 (z) + G 0 2 (z) + zG −1 (z) . (22)

z 
q. (21) follows directly from Eq. (20) , while Eq. (22) is a conse-

uence of 

 (L 2 = k ) = 

{
P 0 , 0 1 + P 0 , 0 2 + P 1 , 1 , k = 0 , 

P k −1 , −1 + P k, 0 1 + P k, 0 2 + P k +1 , 1 , k ≥ 1 . 
(23)

ence, 

ˆ 
 2 (z) = E [ z L 2 ] = ( P 0 , 0 1 + P 0 , 0 2 + P 1 , 1 ) z 

0 

+ 

∞ ∑ 

k =1 

(
P k −1 , −1 + P k, 0 1 + P k, 0 2 + P k +1 , 1 

)
z k 

= 

1 

z 
G 1 (z) + G 0 1 (z) + G 0 2 (z) + zG −1 (z) . (24) 

. Matrix geometric method 

.1. Definitions and notations 

An alternative approach to analyze the combined JSQ-SLQ

odel is by constructing a Quasi Birth and Death (QBD) process,

ith 4 phases, where phase d corresponds to D = d, for d ∈ D , and

ith an infinite number of levels, where each level corresponds to

 1 , the total number of customers in Q 1 . For n ≥ 1 define S n to be

he set of states S n = { (n, 1) , (n, 0 1 ) , (n, 0 2 ) , (n, −1) } , and arrange

he system’s states in the order 

 = 

{ 

(0 , 0 1 ) , (0 , 0 2 ) , (0 , −1) ;S 1 ;S 2 ; . . . ;S n . . . 
} 

he infinitesimal generator of the QBD, denoted by Q , is given by 

 = 

⎛ 

⎜ ⎜ ⎝ 

B 1 B 0 0 · · · · · · · · ·
B 2 A 1 A 0 0 · · · · · ·
0 A 2 A 1 A 0 0 · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎠ 

, 

here, 

 0 = 

( 

λp 1 0 0 0 

λp 1 0 0 0 

0 0 λ 0 

) 

, B 1 = 

( −λ 0 λp 2 
0 −λ λp 2 
0 μ2 −(λ + μ2 ) 

) 

, 

 2 = 

⎛ 

⎜ ⎝ 

μ1 0 0 

0 0 μ1 

0 0 0 

0 0 0 

⎞ 

⎟ ⎠ 

. 

nd 

 0 = 

⎛ 

⎜ ⎝ 

0 0 0 0 

λp 1 0 0 0 

λp 1 0 0 0 

0 0 λ 0 

⎞ 

⎟ ⎠ 

, 

 1 = 

⎛ 

⎜ ⎝ 

−(λ + μ1 ) λ 0 0 

0 −(λ + μ1 ) 0 λp 2 
μ2 0 −(λ + μ2 ) λp 2 
0 0 μ2 −(λ + μ2 ) 

⎞ 

⎟ ⎠ 

, 

 2 = 

⎛ 

⎜ ⎝ 

0 μ1 0 0 

0 0 0 μ1 

0 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

. 

.2. Stability condition 

Define the matrix A = A 0 + A 1 + A 2 . We get 

 = 

⎛ 

⎜ ⎝ 

−(λ + μ1 ) λ + μ1 0 0 

λp 1 −(λ + μ1 ) 0 λp 2 + μ1 

λp 1 + μ2 0 −(λ + μ2 ) λp 2 
0 0 λ + μ2 −(λ + μ2 ) 

⎞ 

⎟ ⎠ 

, 
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The matrix A is the infinitesimal generator matrix of the process

describing the evolution of D , given that Q 1 is not empty. Let � π
be the stationary vector of the matrix A , i.e. � πA = 

�
 0 and 

�
 π · � e =

1 (where � e is a 4-dimensional column vector with all its entries

equal to 1). It then follows that 

�
 π = 

(
λp 1 + μ2 

2(λ + μ1 + μ2 ) 

λp 1 + μ2 

2(λ + μ1 + μ2 ) 

λp 2 + μ1 

2(λ + μ1 + μ2 ) 

λp 2 + μ1 

2(λ + μ1 + μ2 ) 

)
.

The stability condition (see Neuts, 1981 ) is 

�
 πA 0 � e < 

�
 πA 2 � e , 

which, after some algebra, translates here into 

λ2 + λ(μ1 p 2 + μ2 p 1 ) − 2 μ1 μ2 < 0 , 

or, equivalently, 

λ < 

−(μ1 p 2 + μ2 p 1 ) + 

√ 

(μ1 p 2 + μ2 p 1 ) 2 + 8 μ1 μ2 

2 

. (25)

Indeed, the stability condition (25) obtained by the matrix ge-

ometric method is equivalent to the condition (14) derived when

analyzing the system via the PGF’s method. 

In the symmetric case, where μ1 = μ2 = μ, the stability con-

dition (14) translates into λ< μ, for any value of p 1 . This occurs

when both service rates are equal and the system can be looked

upon as a single M ( λ)/ M ( μ)/1 queue, for which the known stabil-

ity condition is λ< μ. 

4.3. Calculation of the equilibrium distribution 

For n ≥ 0 define the steady-state probability vector � P n , as fol-

lows: 

�
 P n = 

{
( P 0 , 0 1 , P 0 , 0 2 , P 0 , −1 ) , n = 0 , 

( P n, 1 , P n, 0 1 , P n, 0 2 , P n, −1 ) , n ≥ 1 . 

From Neuts (1981) , 

�
 P n = 

�
 P 1 R 

n −1 , n ≥ 1 , 

where R is the minimal non-negative solution of the matrix

quadratic equation 

A 0 + RA 1 + R 

2 A 2 = 0 . (26)

The vectors � P 0 , � P 1 , can be found by solving the following linear

system of equations: 

�
 P 0 B 1 + 

�
 P 1 B 2 = 

�
 0 , 

�
 P 0 B 0 + 

�
 P 1 A 1 + 

�
 P 1 RA 2 = 

�
 0 , 

�
 P 0 � e 0 + 

�
 P 1 [ I − R ] −1 �

 e = 1 , 

where � e 0 is a 3-dimensional vector of 1’s and I is a 4 × 4 identity

matrix. 

The mean total number of customers in Q 1 , E [ L 1 ] is given by 

E [ L 1 ] = 

∞ ∑ 

n =1 

n 

�
 P n � e = 

∞ ∑ 

n =1 

n 

�
 P 1 R 

n −1 �
 e = 

�
 P 1 [ I − R ] −2 �

 e . (27)

4.4. Characterization of the rate matrix R 

The matrix R = 

[
r i, j 

]
for i, j = 1 , 2 , 3 , 4 , can be calculated by us-

ing well-known algorithms, see e.g. Neuts (1981) , Latouche and

Ramaswami (1999) and Artalejo and Gómez-Corral (2008) , or, by

solving (in our case) a system of 16 non-linear equations with 16

variables. However, we are able to characterize some of the prop-

erties of R in this model. Following Ch. 6.2 in Latouche and Ra-

maswami (1999) , the rate matrix R can be represented as R = A 0 N,

where the element N ij of the matrix N is the expected number of

visits to state ( n, j ), starting from state ( n, i ), before the first visit
o any of the states in levels lower than n . In our context, L 1 repre-

ents the levels, and the index j refers to the phases (represented

y D ). Without calculating N , since the entries of the first row of

 0 are all zeros, all elements in the first row of R are zeros as well.

hat is, r 1 , j = 0 , j = 1 , 2 , 3 , 4 . Furthermore, since the second and

hird rows of A 0 are equal, the second and third rows of R will also

e equal, namely r 2 , j = r 3 , j , j = 1 , 2 , 3 , 4 . In addition, from explic-

tly writing Eq. (26) , each element of R can be expressed in terms

f only two elements, r 2,1 and r 2,2 . These observations reduce the

alculation effort s considerably. 

. Special case: p 1 = 1 

Assume that the service rates are observable by the customers,

o that whenever L 1 = L 2 , an arriving customer always joins the

ueue with the faster service rate. Without loss of generality, as-

ume that μ1 > μ2 , implying that p 1 = 1 . When L 1 � = L 2 , an arriving

ustomer will join the shortest queue. The server’s switching pol-

cy remains the same, i.e. serve the longest queue. 

The stability condition given in Eq. (14) becomes 

< 

−μ2 + 

√ 

μ2 
2 

+ 8 μ1 μ2 

2 

. (28)

he expressions for all the performance measures calculated in

ection 3.2 are slightly modified when p 1 = 1 (and p 2 = 0 ). In

ection 6.2 we provide numerical results for various values of p 1 ,

ncluding p 1 = 1 . 

. Numerical results and comparison with an M / G /1 queue 

In this section we first discuss a related M / G /1 queue and then

resent numerical results of the JSQ-SLQ system’s performance

easures for a set of parameter values. The results are than com-

ared with those of the M / G /1 model. 

.1. A corresponding M / G /1 queue 

Consider a single server queueing system with a Poisson arrival

tream with rate λ and service time B , defined as 

 ∼
{

exp(μ1 ) w.p. p 1 
exp(μ2 ) w.p. p 2 

, 

o that 

E [ B ] = 

p 1 
μ1 

+ 

p 2 
μ2 

, 

 [ B 

2 ] = 

2 p 1 

μ2 
1 

+ 

2 p 2 

μ2 
2 

. 

et W q denote the waiting time of an arbitrary customer, W

ts total sojourn time in the system, and L the total number of

ustomers in the system. Then, from the well-known Pollaczek–

hintchine formula, with ρi = 

λp i 
μi 

, we get 

 [ W q ] = 

λE [ B 

2 ] 

2(1 − λE [ B ]) 
= 

ρ1 μ2 + ρ2 μ1 

μ1 μ2 (1 − ρ1 − ρ2 ) 
, 

nd 

 [ W ] = E [ W q ] + E [ B ] , 

E [ L ] = λE [ W ] . 

n Section 6.2 below, where numerical results are presented, the

erformance measures of the above M / G /1 queue are compared

ith those of the combined JSQ-SLQ model. 
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Table 1 

Numerical results for λ = 4 , μ2 = 5 , p 1 = 0 . 2 , p 2 = 0 . 8 . 

values of μ1 E [ L 1 ] E [ L 2 ] E [ W 1 ] E [ W 2 ] λ1 
e f f 

λ2 
e f f 

ρ1 
e f f 

ρ2 
e f f 

Cor ( L 1 , L 2 ) 

3.3 9.49 9.53 6.52 3.75 1.46 2.54 0.44 0.51 0.9975 

3.5 6.23 6.28 4.24 2.48 1.47 2.53 0.42 0.51 0.9943 

4 3.46 3.53 2.31 1.41 1.50 2.50 0.37 0.50 0.9836 

4.5 2.46 2.55 1.62 1.03 1.52 2.48 0.34 0.49 0.9708 

5 1.95 2.05 1.27 0.83 1.54 2.46 0.31 0.49 0.9575 

6 1.42 1.55 0.91 0.64 1.57 2.43 0.26 0.49 0.9324 

8 0.98 1.14 0.61 0.48 1.60 2.40 0.20 0.48 0.8927 

20 0.51 0.73 0.3 0.32 1.67 2.33 0.08 0.46 0.8153 

100 0.34 0.61 0.20 0.27 1.71 2.29 0.02 0.45 0.8040 

500 0.31 0.59 0.18 0.26 1.72 2.28 0.003 0.45 0.8097 

Table 2 

Numerical results for λ = 4 , μ2 = 5 , p 1 = p 2 = 0 . 5 . 

values of μ1 E [ L 1 ] E [ L 2 ] E [ W 1 ] E [ W 2 ] λ1 
e f f 

λ2 
e f f 

ρ1 
e f f 

ρ2 
e f f 

Cor ( L 1 , L 2 ) 

3.3 61.46 61.39 32.99 28.72 1.87 2.13 0.56 0.43 0.9999 

3.5 12.52 12.46 6.64 5.89 1.88 2.12 0.53 0.42 0.9985 

4 4.35 4.31 2.25 2.08 1.93 2.07 0.48 0.41 0.9888 

4.5 2.71 2.69 1.37 1.32 1.97 2.03 0.44 0.41 0.9738 

5 2 2 1 1 2 2 0.4 0.4 0.9565 

6 1.35 1.38 0.66 0.71 2.05 1.95 0.34 0.39 0.9203 

8 0.87 0.92 0.41 0.49 2.12 1.88 0.26 0.38 0.8568 

20 0.37 0.51 0.16 0.29 2.28 1.72 0.11 0.35 0.7130 

100 0.20 0.39 0.08 0.24 2.38 1.62 0.02 0.32 0.6973 

500 0.17 0.37 0.07 0.23 2.41 1.59 0.005 0.32 0.7183 

Table 3 

Numerical results for λ = 4 , μ2 = 5 , p 1 = 0 . 8 , p 2 = 0 . 2 . 

values of μ1 E [ L 1 ] E [ L 2 ] E [ W 1 ] E [ W 2 ] λ1 
e f f 

λ2 
e f f 

ρ1 
e f f 

ρ2 
e f f 

Cor ( L 1 , L 2 ) 

3.5 130.99 130.83 57.23 76.46 2.29 1.71 0.65 0.34 0.9999 

4 5.65 5.51 2.40 3.36 1.64 2.36 0.59 0.33 0.9933 

4.5 2.97 2.86 1.23 1.80 1.59 2.41 0.54 0.32 0.9778 

5 2.05 1.95 0.83 1.27 2.46 1.54 0.49 0.31 0.9575 

6 1.30 1.22 0.51 0.83 2.54 1.46 0.42 0.29 0.9111 

8 0.78 0.73 0.29 0.54 2.66 1.34 0.33 0.27 0.8215 

20 0.28 0.30 0.09 0.29 2.94 1.06 0.15 0.21 0.5803 

100 0.09 0.17 0.03 0.22 3.19 0.81 0.03 0.16 0.5326 

500 0.06 0.15 0.02 0.21 3.26 0.74 0.006 0.15 0.5955 

Table 4 

Numerical results for λ = 4 , μ2 = 5 , p 1 = 1 , p 2 = 0 . 

values of μ1 E [ L 1 ] E [ L 2 ] E [ W 1 ] E [ W 2 ] λ1 
e f f 

λ2 
e f f 

ρ1 
e f f 

ρ2 
e f f 

Cor ( L 1 , L 2 ) 

4 6.93 6.73 2.60 4.94 2.64 1.36 0.66 0.27 0.93 

4.5 3.17 2.98 1.17 2.31 2.71 1.29 0.60 0.26 0.86 

5 2.08 1.91 0.75 1.56 2.77 1.23 0.55 0.25 0.8 

6 1.27 1.15 0.44 0.99 2.87 1.13 0.48 0.22 0.71 

8 0.73 0.61 0.24 0.63 3.03 0.97 0.38 0.19 0.59 

20 0.24 0.17 0.07 0.31 3.44 0.56 0.17 0.11 0.58 

100 0.05 0.03 0.01 0.22 3.85 0.15 0.039 0.029 0.14 

500 0.01 0.006 0.002 0.2 3.97 0.03 0.008 0.006 0.06 

6
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.2. Numerical results 

Tables 1–5 below present sets of numerical results, where the

alculated performance measures in all tables are E [ L i ] , E [ W i ] ,
i 
e f f 

, ρ i 
e f f 

( i = 1 , 2 ) and Cor ( L 1 , L 2 ). The tables maintain the same

arameter values: λ = 4 and μ2 = 5 , but differ by the values of

he parameter p 1 , where p 1 = 0 . 2 , 0 . 5 , 0 . 8 , 1 in Tables 1–4 , respec-

ively, while p 1 = 

μ1 
μ1 + μ2 

in Table 5 . In each table, μ1 is a vari-

ble that its value varies between 3.3 and 8. It is seen that the

ombined operating policy, namely JSQ with SLQ, greatly achieves

ts goal of balancing mean queue lengths, as well as mean wait-

ng times. Table 2 exhibits that even if μ1 and μ2 take signif-

cantly different values, the ratio E [ L ] / E [ L ] remains quite sta-
1 2 
le. For instance, when μ1 = 3 . 3 , μ2 = 5 , or when μ1 = 8 and

2 = 5 , similar values for the ratios are obtained: E [ L 1 ] / E [ L 2 ] =
 . 00114 , and E [ L 1 ] / E [ L 2 ] = 0 . 94565 , respectively. The correspond-

ng ratios between the mean waiting times are 1.14 86 8 and

.83673. Tables 1 and 3 show that even when p 1 = 0 . 2 and p 2 =
 . 8 (and vice versa), while μ2 = 5 and μ1 varies between μ1 =
 . 5 to μ1 = 8 , the difference in mean queue lengths is negligi-

le. However, the difference between mean waiting times is high.

able 5 exhibits a stronger balancing result. If the joining prob-

bilities are taken as the relative ratios of the service rates, i.e

p i = 

μi 
μ1 + μ2 

, i = 1 , 2 , causing higher proportion of customers to

oin the queue with the faster service, both mean queue lengths

re significantly reduced, where the maximum difference is 3.5%.
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Table 5 

Numerical results for λ = 4 , μ2 = 5 , p 1 = 

μ1 

μ1 + μ2 
, p 2 = 

μ2 

μ1 + μ2 
. 

values of μ1 E [ L 1 ] E [ L 2 ] E [ W 1 ] E [ W 2 ] λ1 
e f f 

λ2 
e f f 

ρ1 
e f f 

ρ2 
e f f 

Cor ( L 1 , L 2 ) 

3.3 22.00 21.97 12.75 9.65 1.72 2.27 0.52 0.45 0.9995 

3.5 9.75 9.72 5.53 4.35 1.76 2.24 0.50 0.45 0.9976 

4 4.16 4.14 2.25 1.93 1.85 2.15 0.46 0.43 0.9878 

4.5 2.69 2.67 1.39 1.29 1.93 2.07 0.43 0.41 0.9735 

5 2 2 1 1 2 2 0.4 0.4 0.9565 

6 1.34 1.35 0.63 0.72 2.12 1.87 0.35 0.37 0.9187 

8 0.82 0.85 0.35 0.51 2.22 1.67 0.29 0.33 0.8428 

20 0.28 0.30 0.09 0.29 2.94 1.06 0.15 0.21 0.5803 

100 0.060 0.067 0.01 0.21 3.68 0.32 0.03 0.06 0.3762 

500 0.01 0.01 0.003 0.02 3.93 0.07 0.007 0.01 0.3395 

Fig. 2. E [ L 1 ] and E [ L 2 ] as a function of p 1 , for λ = 4 , μ1 = μ2 = 5 . 

Fig. 3. E [ W 1 ] and E [ W 2 ] as a function of p 1 , for λ = 4 , μ1 = μ2 = 5 . 

Fig. 4. E [ L ] for the JSQ-SLQ and for the M / G /1 models as a function of p 1 , for λ = 4 , μ1 = 3 . 5 , μ2 = 5 . 
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Furthermore, in all tables, as μ1 increases, the fraction of time the

server resides in both queues (i.e. ρ1 
e f f 

+ ρ2 
e f f 

) reduces consider-

ably. 

Figs. 2 and 3 below show graphically mean queue sizes and

mean waiting times as functions of p 1 for the given parameter val-

ues. Note that, in deviation from regular queues, where increas-
ng arrival rate increases mean queue size and mean waiting time,

arger p 1 in the JSQ-SLQ model (implying more customers join-

ng Q 1 when the queues are equal), reduces mean queue size and

ean waiting time in Q 1 . This is a consequence of the SLQ regime,

hat directs the server to the longer queue ( Q 1 ), thus reducing

ean queue size and waiting time there. Figs. 4–6 show, both for
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Fig. 5. E [ L ] for the JSQ-SLQ and the M / G /1 models as a function of p 1 , for λ = 4 , μ1 = 4 , μ2 = 5 . 

Fig. 6. E [ L ] for the JSQ-SLQ and the M / G /1 models as a function of p 1 , for λ = 4 , μ1 = 6 , μ2 = 5 . 

Table 6 

Numerical results of E [ L ] for the M / G /1 model, when λ = 4 and μ2 = 5 . 

Values of μ1 p 1 = 0 . 2 p 1 = 0 . 5 p 1 = 0 . 8 p 1 = 

μ1 

μ1 + μ2 

3.3 7.74 – – 27.79 

3.5 6.75 35.03 – 16.48 

4 5.29 9.1 24.16 8.09 

4.5 4.49 5.44 6.77 5.34 

5 4 4 4 4 

6 3.42 2.77 2.27 2.68 

8 2.90 1.92 1.31 1.65 
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B  
he JSQ-SLQ and for the M / G /1 models, the value of the mean total

umber of customers in the system, i.e. E [ L ] , as a function of p 1 .

n all figures λ = 4 and μ2 = 5 . In Fig. 4 μ1 = 3 . 5 . It is seen that

or small values of p 1 , E [ L ] in the M / G /1 model is smaller than E [ L ]

n the studied JSQ-SLQ model, but not drastically. However, as p 1 
ncreases, the M / G /1 system becomes unstable at p 1 = 0 . 58 , while

he JSQ-SLQ system becomes unstable only when p 1 = 0 . 84 . That

s, the JSQ-SLQ policy helps to regulate the system and keeps it

table, even if the service rate μ1 is slow. In Fig. 5 is it seen that

or p 1 < 0.5, there is a slight advantage for the M / G /1 model vs.

he JSQ-SLQ model (in terms of E [ L ] ). However, as p 1 increases,

he JSQ-SLQ outperforms the M / G /1 model, as there are signifi-

ant differences between the corresponding values of E [ L ] . Note

hat for p 1 = 1 the M / G /1 model becomes unstable, while the JSQ-

LQ model remains stable. In Fig. 6 , when μ1 = 6 , it is shown that

he differences between E [ L ] in both models are negligible. Clearly,

or any value of p 1 , both models are stable as λ< Min ( μ1 , μ2 )

 Table 6 ). 

. Concluding remarks 

This paper combines two different queueing regimes, usually

reated separately and known as ‘Join the Shortest Queue’ (JSQ)

nd ‘Serve the Longest Queue’ (SLQ), into a unified system: each
rriving customer joins the shortest queue, while the server always

ttends the longest queue. Both regimes aim at minimizing the dif-

erence between the queue lengths. The resulting non-conventional

wo-dimensional continuous-time Markov process describing the 

ystem is investigated via both probability generating functions

nd matrix geometric methods. By applying an non-usual approach

e are able to fully analyze a non-symmetric un-bounded two-

imensional process without resorting to a complicated boundary-

alue problem analysis. The system’s performance measures are

nalytically derived and its stability condition is determined. 

The paper presents numerical results, exhibiting how the mean

ueue lengths, mean waiting times and loads are affected by the

ystem’s parameter values. Furthermore, the combined JSQ-SLQ

ystem is compared with a corresponding M / G /1 queue. The nu-

erical results show that in some range of the system’s param-

ters the performance measures of the JSQ-SLQ model and the

 / G /1 queue are not drastically different. However, a change in the

ystem’s parameters causes the M / G /1 queue to become unstable

aster than the presented model, since the JSQ-SLQ policy helps to

egulate the system. 
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