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In this paper we consider the problem of controlling the 
arrival of customers into a GI/M/1 service station. It is known 
that when the decisions controlling the system are made only 
at arrival epochs, the optimal acceptance strategy is of  a 
control-limit type, i.e., an arrival is accepted if and only if 
fewer than n customers are present in the system. The ques- 
tion is whether exercising conditional acceptance can further 
increase the expected long run average profit of  a firm which 
operates the system. To reveal the relevance of conditional 
acceptance we consider an extension of the control-limit rule 
in which the nth customer is conditionally admitted to the 
queue. This customer may later be rejected if neither service 
completion nor arrival has occurred within a given time 
period since the last arrival epoch. We model the system as a 
semi-Marker decision process, and develop conditions under 
which such a policy is preferable to the simple control-limit 
rule. 

1. Introduction 

Consider an agency that operates a GI/M/1 service 
station in which the arrival process can be controlled 
by accepting or rejecting arriving customers. A f'Lxed 
reward is earned when a customer completes his 
service and linear holding costs are incurred for the 
customers waiting in line. 

It isweU known [5-9] that, when decisions are 
restricted to arrival instants, the proflt.maximizing 
control policy (known also as 'Social Optimization') 
is a control limit rule. That is, the agency admits a 
customer into the queue if and only if fewer than n 
customers are present in the system. 

Consider now an (n, O-policy under which the nth 
customer in the queue is conditio~lly accepted to 
the system. If t units of time elapse without any ser. 
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vice completion this last customer is rejected from 
the queue. The question is whether (or under what 
conditions) this way of exercising conditional accep- 
tance increases the expected average profit of the 
agency. 

As a tangible example for possible implementation 
of the (n, 0-policy, consider a telephone congestion 
system. A customer who calls the station is imme- 
diately accepted when the line is i~le. A limited 
number of at most n customers may be waiting to be 
served on a FIFO basis, whereas calls that find the 
line busy and all n waiting positions occupied are 
rejected, (i.e. lost). The implementation of the (n, t)- 
policy amounts to inspecting the system when the 
queue has been full for t time units since the last call, 
and rejecting the last customer. 

The problems of optimal acceptance strategies in a 
queueing system have attracted considerable atten- 
tion in the literature. Naor [3] was the first to show 
that in the M/M/1 queue, exercising narrow self- 
optimization by individual customers does not neces- 
sarily optimize public good. Yechiali [7,8] extended 
Naor's results to the GI/M/1 and GI/M/S queueing 
systems, and proved that for the infinite horizon, 
average reward criterion, optimal joining strategies 
are control-limit rules for both self and social optimi- 
zation. Several authors then treated the problem 
under various assumptions and further broadened the 
results. Comprehensive bibliographies may be found 
in Stidham [5] in which the reward is random and 
the holding cost is convex, and in Yechiali [9] where 
a descriptive survey of the prevailing models is given. 
It is also worth mentioning the works of Teghem Jr. 
[6] and Doi [1]. Teghem considers an M/M/1 queue 
with a removable server and determines the optimal 
acceptance rules. Doi applies customers' optimization 
ideas to solve a problem of optimal traffic flow. The 
problem is sol'red by considering control.limit policies 
in the M/M/i or M/G~ 1 queueing systems with many 
input sources. 

Considering the conditional acceptance of cus- 
tomers, it might be argued that when the failure rate 
of the interarrival time distribution is increasing, and 
t is high enough, the firm would benefit from such a 
policy, since most probably the nth customer will 
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simply be replaced by the next arrival, and the only 
effect would be to save some waiting costs in the time 
interval from t until the following arrival. The fallacy 
of this reasoning follows from the memoryless prop- 
erty of the service time distribution: no waiting time 
is actually saved since the distribution of the residual 
service time remains unaffected. Nevertheless, in this 
paper we develop conditions under which an (n, t)- 
policy is preferable to the simple control-limit rule. 

The structure of the paper is as follows: In Section 
2 we formulate the problem as a semi-Marker deci- 
sion process. In Section 3 we compare the (n, t)-policy 
with the simple control limit rule and derive neces- 
sary and sufficient conditions for the former to be 
better than the latter. Special cases are studied in 
Section 4, whereas Section 5 concludes the paper 
with few remarks and a conjecture on the optimality 
of a generalized conditional acceptance rule. 

2. The semi-Markov decision p r o c e s s  

Consider a GI/M/1 single server station with inter- 
arrival time distribution H(') possessing a finite mean 
1/>., and exponentially distributed service times with 
mean 1//~. 

The cost-reward structure faced by the operating 
agency is composed of four elements: 

(i) Upon service completion, the agency obtains 
a non-negative net fee o fg  monetary units. 

(ii) Each customer residing in the system incurs 
waiting-time losses at a rate of c >i 0 monetary units 
per unit time. 

(iii) Rejecting a customer immediately upon arrival 
results in a fixed penalty of l >i 0 monetary units. 

(iv) Rejecting a customer that has been condi- 
tionally accepted costs Ii ~ I. 
We assume that there is no discrimination among 
customers, and that g - (c/?z) >1 - I .  Our model is 
closely related to that of Yechiali [7], which will 
serve as our main reference. 

The GI/M/1 queueing process is usually embedded 
at instants of  arrival to form a Markov chain with 
states (= number of customers in system) {0, 1, 2, 
3, ...}. It follows from [7] that if the system is con- 
trolled at arrival instants, the profit.maximizing 
acceptance rule belongs to the class of  control-limit 
policies under which a customer is admitted to the 
queue if and only if the state of  the system is less 
than some number, n, called the control-limit. Under 
this control-limit policy, the state space is divided 
into two regions: 

(i) states 0, I, 2, ..., n - I ,  where arriving cus- 
tomers are accepted; and 

(ii) states n, n + I, n + 2, ..., where arriving cus- 
tomers are rejected. 

An extension of the simple control.limit policy is 
to allow the service agency to reject the nth customer 
in the queue if t units of time have elapsed since the 
last arrival epoch without any service completion. 
We call this strategy an (n, 0-policy. The implementa- 
tion of the (n, t)-policy requires the following distinc- 
tion among states: 

(a) States encountered upon arrival: 
(i) States 0, I, 2 .... .  n - 2, where customers are 

accepted unconGi:ionally. 
(ii) State n - I, where a customer conditionally 

joins the queue, but may be rejected later. 
(iii) States n, n + I, n + 2 ..... where an arrival is 

immediately rejected. 
Co) State (n, t), which is observed when n custom- 

ers are present in the system and t units of time have 
elapsed since the last arrival. Under the (n, t)-policy, 
whenever the system reaches state (n, t), the last cus- 
tomer is rejected. 

In the sequel, we derive conditions under which an 
(n, O-policy (with finite t) is preferable to the optimal 
simple control-limit rule, which we call an (n, co). 
policy. For that purpose, we compare the (n, t)-poHcy 
with the (n, °°)-policy. The comparison is based on a 
representation of the problem as a semi-Markov deci- 
sion process (SMDP). 

The probabilistic analysis of the underlying semi- 
Markov process may be performed by considering the 
n + 1 states of the GI/M/l /n  queueing process, [7], 
with the addition of state (n, 0 .  A customer who, 
upon arrival, finds the system in one of the states 
0, 1, 2, ..., n - 1, is admitted. An arrival who finds 
n customers ahead of him, has to balk. Whenever the 
process enters state (n, t), the firm faces the decision 
problem of whether to accept the last customer in the 
queue or to reject him. Thus, there is more than one 
possible action only at state (n, 0.  Although the above 
(n + 2) states suffice for the probabilistic analysis of 
the process, the associated cost-reward bookkeeping 
scheme to be described shortly requires that  the defi- 
nition of state n be refined into two distinguished 
states, depending on the history of the process. 

The cost-reward bookkeeping is performed as 
follows. An arrival who finds the system in state i, 
i = 0, 1,2, ..., n - 2 joins unconditionally and the 
firm gains an expected net reward o f g  - cq  + 1)/#. 
A customer who finds the system in state n is rejected 
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and the firm incurs a penalty 1. A customer C who 
finds the system in state n - 1 is conditionally 
accepted. As long as the firm keeps the option of 
rejecting C, it continuously incurs waiting.time 
losses. When a decision to reject C is made, the 
agency suffers an additional penalty l~. As soon as it 
is known with certainty that C will stay until his 
service completion, the reward g, as well as the 
expected future waiting time losses, to be caused by 
C, are registered. Observe that the bookkeeping pro. 
cedure is based on a separate registration of the con- 
tribution of each individual customer to the overall 
profit. Since the total profit is the sum of  the indi- 
vidual contributions, this procedure is legitimate. 

We turn now to a detailed analysis of  the SMDP. 
Suppose the process is in state i, and action a is taken. 
Similar to [4], we denote: 

Pi/(a) = transition probability to state ], 
fi(a) = E ri(a) = expected sojourn time in state i, 
R(i,  a) = expected one-step reward. 

When there is only one action possible in state i, we 
omit the dependence on the action a and write Pi/, 
fi and R(O. We further define, for k = 1,2, 3 ..... 
ak = f ~  e-uOOav)k/k! dH(v), the probability of k 
service completions during an interarrival-time, and 
a[  = f~' e-UV[/a(v - t )]k /k[  dH(v),  the jc :at proba- 
bility that neither arrival nor service completion will 
have occu,~'ed by time t, and that k customers will 
have completed their service during the interarrival- 
time. 

Also, let 
OO 

rk = 
i=k+ ! 

and 
o o  

k 

a i = 1 - ~ as, 
i=o 

i=k+ 1 

The parameters of the SMDP associated with the vari- 
ous states follow. 

2.1. States i = O, 1 , 2  . . . .  , n - 2 

The transition probabilities are those of the 
GI/M/1 queue, and are given by 

p i j = a i _ i + l ,  f o r / = 1 , 2 , . . . , i + 1 ,  

Pie = r~. (1) 

The other transition probabilities, including Pi,(n, t), 

are zero. Since each sojourn time is an interarrival 
time, we have 

= 1/x. (2) 

Since an arrival is accepted unconditionally, we have 

R(0  = 2 -  c(i + l)/~. (3) 

2.2. S ta te  n - 1 

The transition probabilities are: 

Pn- l , f n ,  t) = 

= Pr (neither service completion 

nor arrival occur by time t} 

= e-Ut[1 - n ( t ) ] .  (4) 

P n - l , n  = 

= Pr {arrival at some instant v ~ [0, t] 

before any service completion} 

t 

---- _f e - ~ '  dH(v) = a 0 - a ~ .  (5) 
0 

F o r / =  1, 2,3 ..... n -  1: 

Pn-Ij = 

= Pr {arrival at some instant v ~< t and n - ] 

service completions by time v} 

+ Pr (arrival at v > t, first service completion 

at instant x < t and n - ] - 1 service 

completions during the remaining time 

interval (x, v]} 

t 

= f e_.o 
o (n -/)! 

[ g ( o -  x) ]  "- j -I  dx'] X dH(v) 
(n / - 1 ) !  J 

= an-/- a t-/. (6) 

Note that the expression for Pn-i,/may be explained 
by the interpretation of an-i and atn_/. By a similar 
argument, we have 

e , , - l , o  -- r . - i  - r~_, .  (7) 
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The expected sojourn time in state n - 1 is the sum 
of three components: 

(i) f~ v dH(v), for the case of arrival before t, 
(ii) t .  [1 - H(t)] • e -ut,  when the transition is to 

state (n, t ) ,  and 
(iii) (1 - e -ur) f~'= t v dH(v), when service is com- 

pleted before t, but arrival occurs after t. 
Hence, 

t 

~'-(n - 1) = fv an(v) + t[1 . H ( t ) ] e  -u t  
o 

+ (1 - e -~t) f v an(v) (8) 
t 

For the calculation of R(n - 1), we distinguish 
between four possibilities: 

(i) Arrival at instant v ~ t, but no service comple- 
tion by time v. In that case, the system moves to state 
n and the decision of  whether to accept or reject is 
deferred. Hence, only waiting time losses are con- 
sidereal. The contribution of this case to R(n - 1) is 

t 

- e  f v e -u~ a n ( v ) .  
o 

(ii) Neither service completion nor arrival occur by 
time t. The transition is to state (n, t) and the cost is 
ct. Thus, the contribution to R(n - 1) is 

- c t P . _  l,(., t) = - c t e - ~ t  [ 1 - H(t)]. 

(iii) Arrival at instant v < t, and at least one service 
completion" by time v. This implies that the arriving 
customer will find the system in some state i g n - 1, 
and that the customer who was last in the queue 
during the interarrival-time will stay in the system 
unconditionally. Denoting the ith service time by xi,  
the conditional contribution to R(n  - 1), given that 
the interarrival-time is v, is 

Pr{xl~<v}" g - c E  .= x i l x l  ~ = 

= (1 - e - ~ ) ( g  _ enid) + cve -"~. 

The last equality follows since 

n 

E ~[~ x i l x l  ~ v  = ( n - 1 ) / g ÷ E [ x l l x l ~ v l  
i=! 

and 

E[XllXl > v ] - - v +  I/~, 

Hence, by integrating on v, the contribution to 
R(n - 1) is given by 

t t 

(~ - c./~) f (I - e -~v) an(v) + c f ve-~° oH(O. 
0 O 

(iv) Service completion before time t and arrival 
after time t. The contribution to R(n - 1) is 

n 

P r { x l ~ t } [ 1 - H ( t ) a , ~ g - c E F ~ J x i l x l ~ g t l ) =  
\ Lt = 1 

= [1 - H ( t ) ]  [(g - cn/IJ)(1 - e -~t)  + c te -~ t] .  

Finally, by summing the contributions and arranging 
terms, we obtain 

R ( n -  1)= 

= (g - en/g)[l  - e-Ut(1 - H(t)) - (ao - a~)]. (9) 

2.3. States n and 

Suppose an arrival C joins the queue when there 
are (n - 1) customers in the system. If the following 
arrival occurs within t units of  time and no service 
has been completed by then, the system moves to 
state n and is debited only for the waiting time of C. 
If the same sequence of  events is repeated, the system 
is observed again in state n, and so forth (without 
traversing state (n, t)). Now consider the case where 
state (n, t) is reached. If the firm decides to keep C 
in the system, then, by our bookkeeping scheme, it 
is immediately endowed with g - en/#. Now suppose 
that no service is completed by the time of the fol- 

Fig. 1. Trans i t ions  a m o n g  s ta tes  (n - 1), (n, t) ,  n and  ~. 
( '[  ~:ansitions to  and  f r o m  o t h e r  s ta tes  are n o t  s h o w n . )  
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lowing arrival. Had we considered ~ e  new state as 
state n, we might have credited the firm again with 
the reward that had already been granted[ To avoid 
such malbookkeeping, we define a twin.st~te, ~, 
which is observed by an arrival who finds in the sys- 
tem n customers that have already traversed state 
(n, t) without any customer being rejected. Fig. 1 
presents a flow diagram of the possible transitions 
among states n - 1, (n, t), n and ft. (Transition from 
(n, t) to ff may occur only when C is kept in the sys- 
tem, i.e., a = 1.) 

2.4. State n 

The transition probabilities and the expected 
sojourn time are identical to those of state n - 1, as 
given by eqs. (4)-(8) ,  i.e., 

Pn/ --- Pn_l , / ,  f o r / =  O, 1,2, ..., n - i ,  n, (n, t), 

= r(n - 1) .  (10) 

Since the arrival who finds the system in state n must 
balk, we have, 

R(n) = R(n - l)  - ; .  (l 1) 

2.5. State 

State ff is reached only through state (n, t), after 
C, the last customer in the queue, has been accepted 
(unconditionally) to the system. From that moment 
on, the option of rejecting customer C is irrelevant. 
That is, state (n, t) is not considered as long as the 
system is in state ft. We therefore have 

Pr2,(n,t) = P~,n =0 ,  

Prz, l=an_] ,  f o r / =  1,2 ... .  , n -  1, 

P,~,a =a0, P#,o = m - l ,  (12) 

V(fi) = 1/?~, (13) 

1~(~) = - l .  (14) 

2.6. State (n, t) 

In this state we have two possible actions, i.e., to 
accept customer C (a = 1), or to reject C (a = 0). The 
transition probabilities are: 

P(.,,).(o) = 

= Pr {n - I - i service completions from 

t until arrival} 

= f e_U(o_t) [# (v -  t ) j  n - i - I  dH(v) 

t (n - ] - 1)! 1 - H( t )  
e F t  

_ t 
1 - H ( t )  a n - i - l ,  for/ '= 1,2 ..... n -  1,(15) 

e/Jr 
P(¢ t)'°(O) - 1 - H(t------) rtn - 2 ,  (16) 

P(n,t)~(O) = 

= P(n, t),(n, t)(O) = P(n, t)A(O) = O. (I 7) 

Similarly, 

@t 

P(~t),i(1)- I - H ( t )  atn-/' f o r / =  1,2 ..... n -  1, 
(18) 

e bit 

P(n,¢),o(l) - 1 - H(t-------) r ~ - t ,  (19) 

cut 
P(n ' t ) 'h( l )  - 1 - H( t )  a~, (20) 

P(n,O,n(1) = P(n,t),(n,t)(1) = O. (21) 

For both actions, 

1 
f v dH(v) - t. (22) ?(n, t) - I - H ( t )  

Finally, 

R((n, t), 0) = - 6 ,  (23)  

• ~((n, t), 1 ) = g -  cn / l i .  (24) 

3. (n, t)-policy versus the control-limit rule 

Suppose n is the profit maximizing control-limit. 
Starting with the (n, **).policy, we use the policy- 
improvement procedure to reveal the conditions 
under which an (n, O-policy is better than the control- 
limit rule. 

The value determination operation [2] for the 
control-limit rule results in finding O, Vo, v~ . . . .  , On- t ,  
v(n, t), On, on that satisfy 

@/)~+ Vl = i+I 

= g - C(i + l)//.t + riv 0 + ~ ai+ l.-/v], 
/=l 

i = 0 ,  1,2 ..... n -  2, (25) 

~(t* - I) + Vn-I = 
tl 

- ' - a L / ) v j  = R (n - I) + (rn - t - rn- I )Vo (an-/ 
]=I 

+ e-at[1 - H(t)]v(n, t), (26) 
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off(n,  O) + vo~ o = 

e~trtn - 1 

= g - cn /u  + 1 - H(t )  Vo 

+ n ~  e.~a , . e"'a~ 
_ - n - ~  oi + (27) 
1 - H ( t )  1 - H ( t )  v~,  

O~(n) + Vn = 

= TO(n) + ~,._~ - r'n-~)Vo 

n 

+ ~d (an_ i -- arn_i)V/+ e - v t [ 1  - -  HO)]V(n,t), 
1 =~ (28) 

0/~, + va = 
rl--I 

= - l  + rn - tVo  + ~ an_/V~ + aovr~. (29) 
]=1 

Multiplying eq. (27) by e-m[1 - H(t)] and adding 
the resulting equation to eq. (26) yields (after using 
the expressions for {(n - 1), R(n  - 1) and ~(n, 0)  

O/X + Vn- ~ = 

= I s -  cn /~]  0 - (a0  - aD] + r . _ , v o  
n 

+ ~ an-~Vi - a[vn + a[vr,. (30)  
]=1 

From (26) and (28) we derive 

On = On- ~ - I. (31) 

By subtracting (29) from (30) and using (31), we get 
(after cancellations) 

v . _ ,  - va = g -  cn/u + l, (32) 

Adding the simple form (32) to (29) results in 

e / x  + Vn- t = 

n--I 

=g- cn/# +rn_~V o + ~ an_iV1 +aoV~ . (33) 
]=1 

Equations (25), (33) and (29) (in this order) are 
identical with equation (26) of the Markovian model 
of [7] where ns + 1 is replaced by an arbitrary control 
limit fi and ~ = O/X. 

Before proceeding with the analysis of the SMDP, 
we investigate the properties of the v~'s. We correct a 
flaw in the inductive proof of lemma 5 of [7] and 
strengthen the results. 

Define ~ = v~ - v~+~ for i = 0, 1, ..., n - 2 and 
~ n - I  = Vn-~ - v~.  

l.emma 3.1. I f ~ n -  t ~ O, then ~ ~ O, f o r  i = O, I, 
. . . , n - -  2.  

Proof. By subtracting equation i + 1 from equation i 
in (25), and (33) from the last equation of (25), we 
obtain 

1+1 

5 i = c /#  + ~ ai+l_j51,  i = 0, 1, ..., n - 2. (34) 
/=0  

Suppose not all 5i ~ 0. Then, let k = min{il 5i < 0}. 
By eq. (34) we have 

k - I  

=c/v + ~] ak+l-1~j +at~k +ao6~+L, 
j=O 

or  

ao(Sk - 8k+l)  = 

= c/~ + ~ a k + ~ - # i  - 8~,) - ~k.  (38)  
i=0  

The second term on the right-hand side of eq. (35) is 
non-negative since, for ] < k, 8 i ;~ 0 > fi~. The third 
term is positive by the definition of k. Hence, 
~k - 6~+1 > 0, so 6k+l < 6~ < 0. Continuing in the 
same way for ~v.+l, 6k+2, ..., ~n-l we obtain 0 > 
~k > 6 ~ t  > ... >6n-1 ,  which contradicts the 
assumption that 6n-~ ~ 0. 

Setting ~ = n s + 1 and using the fact that Vns - 

Vns+ t >I 0, we obtain L~mma 5 of [7]. 
In our model, let fi be the profit-maximizing con- 

trol limit. Using equations (29) and (33), it follows 
that 8n-t  = Vn-i  - v~ = g -  cn/#  +1. It follows from 
theorem 7 of [7] that 6n_ l ~ 0. Alternatively, one 
may deduce directly from the optimality of the con- 
trol limit ~ that 6n_ l ) 0, since otherwise joining the 
queue in state ~ will improve the policy. Hence, 
Vo ~ vl ~ v2 ~ ... ~ Vn- l  ~ v~. Furthermore, from 
eq. (34) and I.emma 1, we have: 

Corollary 3.2. 

~ l ~ c / # ,  f o r i = O ,  1 , . . . , n - 2 .  

The interpretation is that starting the process in 
state i rather than in state i + I is worth at least the 
expected waiting cost of a single service time. 

We now turn to the policy improvement routine, 
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[2], to compare the initial (n, **)-rule with the (n, t)- 
policy Since the latter policy differs from the former 
only in the action taken at state (n, t), it suffices to 
compute the test quantity 

r(,,, = 

-- |R((n,  t),.a) + 
f .  

~ P(n,t),l(a) " vi L. / 
" I  

OCn, t)l/~((n, t), a), 

for a = 0, 1. If V(n ' t)(1) < F(n, t)(0), it would follow 
that the (n, O-policy is preferable. Since ~((n, t), 0) = 
~((n, t), 1) = ~((n, t)) (given by (22)), we may com- 
pare the quantities 

T(a) = R((n, t), a) + ~ e(n,t),i(a)oi, a = O, 1. 
i 

For a = 0, 

r(o) = - l l  4- 

For a = 1, 

n--I 

1---H(t) t -2v°  + i=, ~ a t - l - '  .(36a) 

7(1) = g -  cn/la + 
e/It 

1 - H(t) 

n--, 
X -10o + ~ an-lOi +ao v • (36b) 

1=, 

Thus, by arranging terms, 

f(t)  T(O)- TO) 

n--I 
e/~t j~o t 

1 - H ( t )  "= an- i - '8 i  - (g - Cn/la + 11). (37) 

We have proved: 

Theorem 3.3. / 'he (n, t~policy is better than the 
optimal control-limit rule i f  and only i f  

n-I 
e#t 1~o 1 --~I(t) = a t - j - ' S j  ~>g- Child 4-l,. (38) 

It is clear that inequali+.y (38) depends heavily on the 
interarrival-time distribution H(" ), through the func- 
tion f(t)  defined in (37). 

Lemma 3 .4 . f (0 )  < 0. The inequality is stn'ct when 
11 >l .  

Proof. First consider the case where l,  = 1. Then, the 
(h, O)-policy is, in fact, a control limit rule with con- 

trol limit h - 1 in the model studied by Yechiali [7], 
and f(0) is the test-quantity for comparing the con- 
trol limits h and (~ - 1). Since h is the optimal con- 
trol limit, we obtain f(O) < O. The result now follows 
since f(t)  as defined by (37) is a decreasing function 
o f / , .  

In the next section, we study a few special cases 
to reveal the relevance of the (n, O-policy. 

4. Special cases 

4.1. Poisson arrival 

Let H(v) = 1 - e -x°. Here, 

a~: = e -(x+u)t h +/a f o r k = O ,  1,2 ..... 

Hence 

f ( t ) - ~ + l a  /=o \X +/a/ 8 / -  (g -cn / ia+l t ) ,  

that is, for Poisson arrival, f(t) is independent of t. 
It follows from Lemma 3.4 that f(t) ~ 0 for all t, so, 
by Theorem 3.3, the (n, O-policy is not better than 
the (n, ,=)-policy for all t. Naturally, this result was 
expected due to the properties of the exponential 
interarrival-time distribution. 

4.2. Deterministic interarrival-time 

Let H(v) = 0 for v > 1/~ and H(o) = 1 for o >1 1/),. 
Thus, f o l k )  = 0. We shall study the behavior o f f ( t )  
for t close to 1/~. (t ~ 1/~,). Let e = 1/X - t; then, 

ark = e-UlX(~e)k/k!, k = 0, 1, 2, ... 

Since, for k = l, '2, 3 .... .  a~ is o (ek - l ) ,  and 8n- l  = 
g - cn/# + 1, we have, 

f(t) = e~'t(a~8n_, + a ] S n _ 2 ) -  8n-I  +l  - Ii +o(e)  

=/Jee-~eSn_2 - (1 - e-Ue)Sn_l  + 1-11 + o ( e )  

=/Je(Sn-2 - 8 n - t )  + 1 - Ii + o(e) .  (39) 

Hence, if 8n-2 > 8 n - l ,  and Ii is close enough to l, 
the (n, t)-policy is an improvement on the control 
limit rule for t close enough to 1/k. 

The same conclusion may be reached by the 
following heuristic argument. Suppose the last cus- 
tomer in the queue is rejected when the system 
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reaches state (n, t). Since the probability of  more 
than one service completion before arrival is o(e), 
there remain two possibilities: 

(i) One service completion. The firm then incurs 
the penalty I and loses the future net reward of 
g - cn/l~, but the next  arrival finds the system in 
state n - 2 rather than state n - I. Hence, the 
expected conditional impvwement with respect to 
the control-limit rule is 

~n-2  -- (g-en/ Iz  + l l ) =  ~n_2 -- ~n--I ÷ i - -  l 1. 

(ii) 3/-O service completion~ In this case, the 
following arrival simply replaces the rejected cus- 
tomer. By the memoryless property of the service. 
time distribution, the expected conditional improve- 
ment is non-positive and equals l - l t . Note that the 
remaining waiting-time of the rejected customer 
(equal to e) is actually not saved, since the expected 
waiting time of the following arrival is still n/lz. 
Finally, the expected improvement is 

lze(Sn_ 2 - ¢Sn_t) + 1 -  I l +o(e )  

as found in 09) .  
We now demonstrate the existence of cases where 

an (n, 0-policy is better than the optimal control- 
limit rule. Consider the social-optimization problem 
studied in [7], under conditions of market equili- 
brium, and assume i = It .  Then, as shown in [7, pp. 
363-365] ,  n = ns. Since 8 , -2  ~ c/t~, we have, for 
small e, 

f ( t ) ~ , e [ ~ - ( g - c n ] # + l ) ]  

- -  - r e [ g -  e(n  + 1)/u + l ]  > 0 .  

We have proved: 

Theorem 4.1. There exist (n, O-policies which are 
better than any control.limit rule. 

Clearly, the (n, O-policy is still better than the opti. 
real control limit rule when I t - I is positive but 
small enough. 

4.3. General finite-range interarrival time distribution 

The considerations applied for the deterministic 
case may now be extended to any finite-range inter- 
arrival.time distribution. Let H(.  ) be concentrated on 
a finite interval [a, b], where 0 < a  < b, H(a) = 0 and 
H(b) = 1. We have 

Lemma 4.2. As t-* b (t < b~ 

+ a l )  - l - o (b  - t).  
1 - H( t )  

Proof. Note that eUta[/[1 - H(t)] is the conditional 
probability of k service completions during an inter- 
arrival time, given that neither arrival nor service 
completion has occurred during (o, t). This is the 
probability of having k Poisson events during a ran- 
dom time interval which is shorter (with probability 
1) than (b - t). Since the probability of having more 
than one Poisson event in a time interval of length e 
is o(e), the result follows. 

Using Lemma 4.2,f( t)  may be expressed as 

eF t 
f ( t )  = i -- H(t) (at6n-I +a~6n-2)  

- 6 n _ 1  + l - I  1 + o ( b - t )  

l l --H-~) (a~ + a ~ ) -  1 8 n - ,  

e Ft 
+ 1 - H(t) air (8 , -2  - 5 , _  l) + (l - l l )  + o(b - t), 

where the first expression is o(b - t), in light of 
Lemma 4.2. Hence, we obtain 

e ~t 
f( t)  - 1 - H(t--~) atl(sn-2 - 8 n - l )  

+ ( l -  + o(b - t) .  ( 40 )  

It follows again that i fSn_ 2 > S n _  l (e.g., under con- 
ditions of market equilibrium in the social-optimiza- 
tion problem) and 11 is close enough to l, exercising 
conditional acceptance does increase the long run 
average profit of the service agency. 

5. Conclusion 

The aim of this paper was to prove the relevance of  
conditional acceptance rules in a GI/M/1 queueing sys- 
tem. Thus) in the search for an optimal policy of con- 
trolling the arrival process, it is not  sufficient to con- 
sider only state-dependent policies, as done in the 
prevailing studies. The elapsed ~ojoum times are also 
relevant and ought to be considered. Our conjecture 
i:~ that the optimal control policy is a generalization 
¢)f our conditional acceptance rule, which is character- 
~ed  by a vector of the form (to, t l ,  t2, t3, ..., ), 
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where oe = to >i tl f> t2 ~ t3 1> . . . .  The significance 
of  this vector is that whenever tn time units have 
elapsed since the last arrival, and n customer'; are 
present in the system, the last customer in the queue 
is rejected. The classical control-limit rule is a special 
case of  the form (0% 0% ..., ~ ,  ~ ,  0, 0, ...), whereas 
our (n, t)-policy is the (more general) special case 
( o o ,  o o  . . . .  
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