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1 Introduction

Imagine standing in line for a cashier at a supermarket with a few people in front of you.
After waiting for a while, as you get closer to the cashier, you notice that she offers the person
in front of you a long list of special deals, all of this while you are waiting your turn. You
understand that the supermarket would like to maximize revenue by offering these special
deals, but you also realize that without these promotion attempts, service times would be
shorter and the line would move faster. Considering this tradeoff, the supermarket might
change its policy to only offer special deals when the lines are short.

This policy that extends customer service time to increase the value of the service to the
firm whenever the number in the system is less than a threshold has gotten some attention in
the literature. Specifically, in the context of cross selling, being applied extensively in call
centers, see Aksin and Harker (1999), Armony and Gurvich (2010), Byers and So (2007),
Gurvich et al. (2009) and Lerzan Örmeci and Zeynep Akşin (2010). Similar policies are used
in systems with higher and lower priority customers, in which lower priority customers are
served only when the number in system is less than a threshold [see Armony and Maglaras
(2004a, b), in the context of call-back option, or Gans and Zhou (2003), Bhulai and Koole
(2003), Pang and Perry (2014) in the context of blended call centers, and Gurvich et al.
(2008), Perry and Whitt (2009) in multiclass call centers]. A similar policy has also been
proposed to handle the tradeoff between accurate diagnosis and timely service in healthcare,
see Wang et al. (2010), Mills et al. (2013) and Alizamir et al. (2013). Recent literature on
dynamic control in queueing systems with speed-quality tradeoff includes, see e.g. Anand
et al. (2011), Kostami and Rajagopalan (2013), Zhan and Ward (2015) and Xu et al. (2015).

In the context of cross-selling it has been shown in Armony and Gurvich (2010) that
in order to maximize expected steady-state revenue from cross-selling (e.g. offering special
deals in the super market example) while keeping expected steady-state waiting time low, it is
asymptotically optimal to initiate cross-selling activity only if the number of customers in the
system is less than a threshold. The asymptotic optimality is in a many-server heavy-traffic
regime and the asymptotically optimal threshold is calculated via limiting approximated
performance expressions. Exact expressions for the steady-state distribution and performance
measures have been unavailable so far. In the current paper, we set out to perform exact
analysis of such a threshold policy in a queueing system with a fixed number of servers.
Assuming the system is Markovian, we compute the steady-state distribution of the two-
dimensional cross-selling system using the methods of (i) generating functions, see Litvak
and Yechiali (2003), Perel and Yechiali (2008, 2013a, b, 2014), and of (ii) matrix geometric,
see e.g. Neuts (1981), Kim et al. (2008). We calculate the system’s performance measures
and use the results to find the optimal cross-selling threshold.

Our contributions are both in methodology and application. From a methodological point
of view,whilewe solve an open problem using existing techniques (i.e. probability generating
functions and matrix geometric analysis), the specifics of this problem required inventivness
in how these methods should be used. These two methods are commonly used to find the
steady-state probabilities of two-dimensional Markov chains. Typically, one or the other
method is used. However, the exact connection between the two methods is not yet well
understood. Therefore, our revealed connection between the two methods is important from
a methodological point of view. It entails the explicit calculation of the entries of the rate
matrix R, associated with the matrix geometric method in terms of the roots of a determinant
of a matrix A(z), which is the cornerstone of the PGFs method. In most cases, the rate matrix
R is calculated numerically via successive substitutions as a solution of a quadratic matrix
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equation, A0+RA1+R2A2 = 0, where A0, A1 and A2 are knownmatrices composed of the
model parameters, see Neuts (1981) and Latouche and Ramaswami (1999). Some advances
in this direction have been made recently by Paz and Yechiali (2014), Perel and Yechiali
(2013b, 2017) and Hanukov et al. (2017), in which a special structure of the matrices A0, A1

and A2 enables an explicit derivation of the matrix R. In the current paper, when describing
the cross-selling model as a quasi-birth and death process (see Sect. 3), the matrices A0

and A1 are diagonal, while A2 consists only of the main diagonal and the one below it,
resulting in a lower triangular matrix R, which is calculated explicitly. However, in spite of
all the advances mentioned above, the full analytic connection between the two methods is
not known yet. Our results serve as an additional step towards a complete understanding of
the inherent relationship between the two methods.

For cross-selling applications, our findings are prescriptive in nature and also provide
managerial insights in terms of identifying the main drivers of the dynamic cross-selling
decision. We further show that the stability condition for the cross selling system is the same
as for an identical system with no cross selling at all.

The paper continues as follows: The model is described and formulated in Sect. 2, where
steady-state equations are derived, probability generating functions are calculated, and mean
queue sized are obtained. In Sect. 3 the matrix geometric method is employed, and the rate
matrix R is explicitly derived, while the relationship with the roots of the basic matrix of
the PGFs is established. Numerical results are presented in Sect. 4, as well as few examples
where the optimal value of the cross selling threshold T , and the optimal arrival rate, are
determined. Section5 concludes the paper.

2 The model

2.1 Model description

Consider a multiserver queueing system with N parallel servers and unlimited waiting room,
to which customers arrive according to a Poisson process with rate λ. A customer service has
two potential phases. Phase 1 is experienced by every customer with exponential duration
having mean 1/μ. After a completion of Phase 1 service a customer is identified as a cross-
selling candidate with probability p, or the customer completes service and leaves the system
with the complementary probabilityq = 1−p. If the customer is a cross-selling candidate and
the system manager decides to go ahead and discuss a cross-selling deal with the customer,
Phase 2of the service begins, having exponential durationwithmean1/ξ . Let L1(t)denote the
number of customers in Phase 1 service at time t , and let L2(t) be the number of customers
in Phase 2 of the service (cross-selling). Let Lq(t) denote the queue length, and L(t) =
Lq(t) + L1(t) + L2(t) is the total number of customers in the system. Assuming non-idling
policies in which a new arrival is admitted to service immediately upon arrival whenever
there is an available server, then (suppressing t) it is sufficient to describe the system with a
two-dimensional state-space (L2, L). To see this, note that the number of customers in phase
1 service satisfies L1 = min{L , N } − L2, and the queue length satisfies Lq = [L − N ]+.

We consider the following cross selling policy: Given a threshold T ≥ 1, upon service
completion of phase 1, initiate cross selling (phase 2 service) to a cross-selling candidate if
and only if the total number of customers in the system is less than or equal to the threshold,
i.e., iff L ≤ T . Notice that the value of T may be greater than the number of servers N , in
which case cross-selling will only be initiated when Lq ≤ T − N . Similarly, the value of
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T might be less than or equal to N , in which case cross-selling will be initiated whenever
the number of idle servers exceeds N − T . This model is precisely the model considered in
Armony andGurvich (2010), where examples were given in which in (asymptotic) optimality
the threshold value is greater or less than the number of servers, respectively.
Under a threshold policy the process (L2(t), L(t)) is a continuous time Markov chain whose
states and transition rates for the case that T > N are depicted in Fig. 1. Note that the analysis
of the case where T < N is quite similar and is briefly given in the Appendix. The analysis
for T = N is omitted from the presentation. Nevertheless, it is taken into consideration when
seeking for an optimal threshold level in Sect. 4.

2.2 Steady-state analysis for the case T > N

In this section we derive the steady-state distribution of the two-dimensional process
defining the states of the system. Again, at time t , let L2(t) denote the number of cus-
tomers in cross-selling, and L(t) denote the total number of customers in the system. Let
L2 = limt→∞ L2(t), L = limt→∞ L(t), and set Pjm = P(L2 = j, L = m) denote the
steady state distribution of the system’s state. We assume that λ < Nμ, which we will show
in Sect. 3 that it is a necessary and sufficient condition for the system’s stability.

2.2.1 Balance equations and generating functions

The balance equations for the steady-state probabilities are the following: For j = 0,

λP00 = qμP01 + ξ P11, (1)

(λ + mμ) P0m = λP0,m−1 + (m + 1)qμP0,m+1 + ξ P1,m+1, 1 ≤ m ≤ N − 1, (2)

(λ + Nμ) P0m = λP0,m−1 + NqμP0,m+1 + ξ P1,m+1, N ≤ m ≤ T − 1, (3)

(λ + Nμ) P0m = λP0,m−1 + NμP0,m+1 + ξ P1,m+1, m ≥ T . (4)

For 1 ≤ j ≤ N − 1,

m = j :
(λ + jξ) Pjm = pμPj−1,m + qμPj,m+1 + ( j + 1)ξ Pj+1,m+1, (5)

j + 1 ≤ m ≤ N − 1:
(λ + jξ + (m − j)μ) Pjm = λPj,m−1 + (m − j + 1)pμPj−1,m + (m + 1 − j)qμPj,m+1

+ ( j + 1)ξ Pj+1,m+1, (6)

N ≤ m ≤ T − 1:
(λ + jξ + (N − j)μ) Pjm = λPj,m−1 + (N − j + 1)pμPj−1,m + (N − j)qμPj,m+1

+ ( j + 1)ξ Pj+1,m+1, (7)

m = T :
(λ + jξ + (N − j)μ) Pjm = λPj,m−1 + NpμPj−1,m + (N − j)μPj,m+1

+ ( j + 1)ξ Pj+1,m+1, (8)

m > T :
(λ + jξ + (N − j)μ) Pjm = λPj,m−1 + (N − j)μPj,m+1 + ( j + 1)ξ Pj+1,m+1. (9)

Finally, for j = N ,

(λ + Nξ) PNm = pμPN−1,m, m = N , (10)
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Fig. 1 States and transition-rate diagram of (L2, L)

(λ + Nξ) PNm = λPN ,m−1 + pμPN−1,m, N + 1 ≤ m ≤ T, (11)

(λ + Nξ) PNm = λPN ,m−1, m > T . (12)

Now, for each j = 0, 1, 2, . . . , N , define the conditional (conditioned on the number of
customers in cross selling) probability generating function of the number of customers in the
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system:

G j (z) =
∞∑

m= j

Pjmz
m .

Then, multiplying each equation form in Eqs. (2)–(4) by zm and summing overm together
with Eq.1), we get

((λz − Nμ)(1 − z))G0(z) − ξG1(z)

= μ

N−1∑

m=0

(N−m)P0mz
m+1 + qμ

N∑

m=1

mP0mz
m + Nqμ

T∑

m=N+1

P0mz
m − Nμ

T∑

m=0

P0mz
m .

(13)

Repeating this process for j = 1, . . . , N − 1, while using Eqs. (5)–(9), we obtain,

((λz − (N − j)μ)(1 − z)) + jξ z)G j (z) − ( j + 1)ξG j+1(z)

= μ

N−1∑

m= j

(N − m)Pjmz
m+1 + pμ

N−1∑

m= j

(m − j + 1)Pj−1,mz
m+1

+ (N − j + 1)pμ
T∑

m=N

Pj−1,mz
m+1

+ qμ

N−1∑

m= j

(m − j + 1)Pj,m+1z
m+1 + (N − j)qμ

T−1∑

m=N

Pj,m+1z
m+1

− (N − j)μ
T∑

m= j

Pjmz
m . (14)

Last, from Eqs. (10)–(12) we derive

(λ(1 − z) + Nξ)GN (z) = pμ
T∑

m=N

PN−1,mz
m . (15)

The set of Eqs. (13)–(15) can be written in a matrix form as

A(z) · G(z) = b(z), (16)

where

A(z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0(z) −ξ 0 · · · · · · · · · 0

0 α1(z) −2ξ 0 · · · · · ·
.
.
.

0 0 α2(z) −3ξ 0
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . . 0

.

.

.
. . .

. . .
. . . 0 αN−1(z) −Nξ

0 · · · · · · 0 0 0 αN (z)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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α j (z) = (λz − (N − j)μ)(1 − z) + jξ z, j = 0, 1, . . . , N − 1,

αN (z) = λ(1 − z) + Nξ,

and G(z) = (G0(z),G1(z), . . . ,GN (z))T is a (N + 1)-dimensional column vector of the
desired PGF’s. The elements of the vector b(z) are

b0(z) = μ

N−1∑

m=0

(N − m)P0mz
m+1 + qμ

N∑

m=1

mP0mz
m + Nqμ

T∑

m=N+1

P0mz
m

− Nμ

T∑

m=0

P0mz
m;

For j = 1, . . . , N − 1,

b j (z) = μ

N−1∑

m= j

(N − m)Pjmz
m+1 + pμ

N−1∑

m= j

(m − j + 1)Pj−1,mz
m+1

+ (N − j + 1)pμ
T∑

m=N

Pj−1,mz
m+1

+ qμ

N−1∑

m= j

(m − j + 1)Pj,m+1z
m+1 + (N − j)qμ

T−1∑

m=N

Pj,m+1z
m+1

− (N − j)μ
T∑

m= j

Pjmz
m,

and,

bN (z) = pμ
T∑

m=N

PN−1,mz
m .

To obtain G j (z)we use Cramer’s rule and write G j (z) = |A j (z)|
|A(z)| , j = 0, 1, . . . , N , where

|A| is the determinant of a matrix A, and A j (z) is the matrix obtained from A(z) by replacing
its j th column by b(z). The functions G j (z) are expressed in terms of 1

2 (N + 1)(2T +
2 − N ) unknown ‘boundary probabilities’, Pjm, j = 0, 1, . . . , N and m = j, j + 1, . . . , T
[appearing in b(z)]. In order to derive these boundary probabilities we need to create a set of
equations that those probabilities satisfy. First, we consider the following balance equations:

– Equations (1)–(3), which give us T equations.
– Equations (5)–(7), which give us (T − 1) + (T − 2) + · · · + (T − (N − 1)) = 1

2 (N −
1)(2T − N ) equations.

– Equation (10), which gives us 1 equation.
– Equation (11), that gives us T − N equations.

Overall, the above equations provide 1
2 (N +1)(2T − N )+1 equations, and we need another

N =
[
1
2 (N + 1)(2T + 2 − N ) − ( 1

2 (N + 1)(2T − N ) + 1
) ]

equations in order to obtain a

unique solution.
Further equations arise from the marginal probabilities Pj• = ∑∞

m= j Pjm , for j =
0, 1, . . . , N , as follows. By applying vertical cuts between every two adjacent columns in
Fig. 1 we get
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pμ
N∑

m= j+1

(m − j)Pjm + (N − j)pμ
T∑

m=N+1

Pjm (17)

= ( j + 1)ξ Pj+1,•, j = 0, 1, . . . , N − 1,

which gives us N more equations, but also increases the number of variables by N + 1.
However, we can also use the normalization equation, i.e.

∑N
j=0 Pj• = 1. So again, we need

N additional equations. To this aimwe utilize the roots of |A(z)| as described in the following
proposition.

Proposition 1 For any λ > 0, μ > 0, ξ > 0 and 0 < p ≤ 1, |A(z)| is a polynomial of
degree 2N + 1 possessing N − 1 distinct roots in the open interval (0, 1), N − 1 distinct
roots in the open interval (1,∞), and three more roots at 1, Nμ

λ
and 1 + Nξ

λ
.

Proof Clearly, |A(z)| = ∏N
j=0 α j (z). Note that for j = 1, . . . , N − 1, the term α j (z) is

a quadratic polynomial with roots z j,1 = λ+(N− j)μ+ jξ−
√

(λ+(N− j)μ+ jξ)2−4λ(N− j)μ
2λ and

z j,2 = λ+(N− j)μ+ jξ+
√

(λ+(N− j)μ+ jξ)2−4λ(N− j)μ
2λ . Since α j (0) = −(n − j)μ < 0, α j (1) =

jξ > 0 and α j (∞) < 0, we have that 0 < z j,1 < 1 < z j,2. As for α0(z), its roots are
z0,1 = 1 and z0,2 = Nμ

λ
> 1, and the single root of αN (z) is zN = 1 + Nξ

λ
> 1. This

completes the proof. ��

We now utilize the roots of |A(z)|. Since G j (z) is a (partial) probability generating function
defined for all 0 ≤ z ≤ 1, each root of |A(z)| in that interval is a root of |A j (z)|. Thus, writing
|A j (z j,1)| = 0 for j = 1, 2, . . . , N − 1 provides us with N − 1 more relations between the
desired probabilities. Therefore, only 1 additional equation is needed, and we derive it by an
innovative set of diagonal cuts as follows:

For each m ≥ T − N we consider cuts along the diagonal, namely, cuts separating states
{(0,m), (1,m+1), . . . , (N ,m+N )} from states {(0,m+1), (1,m+2), . . . , (N ,m+N+1)}.
If T ≤ 2N − 2, the equations are

λ

N∑

j=0

Pj,m+ j = μ

N−m−1∑

j=0

(m + 1)Pj,m+ j+1 + μ

N−1∑

j=N−m

(N − j)Pj,m+ j+1,

T − N ≤ m ≤ N − 2, (18)

λ

N∑

j=0

Pj,m+ j = μ

N−1∑

j=0

(N − j)Pj,m+ j+1, m ≥ N − 1. (19)

Else, the equations are

λ

N∑

j=0

Pj,m+ j = μ

N−1∑

j=0

(N − j)Pj,m+ j+1, m ≥ T − N . (20)

Summing Eqs. (18) and (19) over m ≥ T − N and changing the order of summation
eventually gives
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λ

N∑

j=0

⎛

⎝Pj• −
T−N+ j−1∑

m= j

Pjm

⎞

⎠ = μ

N−1∑

j=0

(N − j)

⎛

⎝Pj• −
T−N+ j∑

m= j

Pjm

⎞

⎠

− μ

N−2∑

m=T−N

N−m−2∑

j=0

(N − j − m − 1)Pj,m+ j+1, (21)

where
∑b

a (•) � 0 if b < a.
TogetherwithEq. (21)we obtain the required set of linear equations bywhich the boundary

probabilities are calculated.

Direct sequential calculation of the marginal probabilities Typically, the marginal proba-
bility of having j customers in cross-selling, i.e. Pj•, is obtained by setting G j (1), where

G j (z) = |A j (z)|
|A(z)| . However, in our case, the set {Pj•} can be calculated directly in a sequential

manner as follows. For j = 0, substituting z = 1 in Eq. (13) yields

P1• = −b0(1)

ξ
.

Similarly, for j = 1 we get from (14)

ξ P1• − 2ξ P2• = b1(1),

or equivalently,

P2• = − 1

2ξ
(b0(1) + b1(1)) .

In the same manner, we get for all 1 ≤ j ≤ N ,

Pj• = − 1

jξ

j−1∑

i=0

bi (1), (22)

and P0• = 1 − ∑N
j=1 Pj•. Note that, by summing Eqs. (13)–(15) over all j and substituting

z = 1, the LHS vanishes, implying that the RHS equals zero. That is
∑N

i=0 bi (1) = 0.
Therefore, Eq. (22) can be rewritten as

Pj• = 1

jξ

N∑

i= j

bi (1), j = 1, . . . , N . (23)

Calculation of the PGFs As mentioned earlier, the PGFs can be calculated by G j (z) =
|A j (z)|
|A(z)| , for j = 0, 1, . . . , N . However, in our case, after deriving the unknown boundary

probabilities, we can obtain the PGFs sequentially, as follows: From the linear system (16)
we have that

GN (z) = bN (z)

αN (z)
, (24)

G j (z) = 1

α j (z)

(
b j (z) + ( j + 1)ξG j+1(z)

)
, j = 0, 1, . . . , N − 1. (25)
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Iterating Eq. (25) gives, for j = 0, 1, . . . , N ,

GN− j (z) =
⎛

⎝
N∏

i=N− j

1

αi (z)

⎞

⎠

⎛

⎝
j∑

i=0

bN−i (z)
(N − i)!
(N − j)!ξ

j−i
N∏

k=N−i+1

αk(z)

⎞

⎠ ,

where we define
∏N

k=N+1 (·) = 1.

Mean queue length Define P•m to be the marginal probability of having m customers in the
system, i.e. P•m = P(L = m). We have: P•m = ∑m

j=0 Pjm for m = 0, 1, . . . , N − 1; and

P•m = ∑N
j=0 Pjm for m ≥ N .

The mean number of customers in cross-selling is

E[L2] =
N∑

j=1

j Pj•,

and the mean proportion of servers busy in cross-selling is E[L2]
N .

Furthermore, let E[L( j)] := ∑∞
m= j mPjm for j = 0, 1, . . . , N . Clearly,

E[L( j)] = d

dz
G j (z)|z=1,

and the mean total number of customers in the system is, therefore,

E[L] =
N∑

j=0

E[L( j)] =
N∑

j=0

d

dz
G j (z)|z=1 =

∞∑

m=0

mP•m .

Note that the E[L( j)] may be derived recursively, by differentiation of Eqs. (24) and (25)
and using the definitions of α j (z) and b j (z). Specifically, by differentiating (24) at z = 1 we
get

E[L(N )] = 1

(Nξ)2

(
Nξpμ

T∑

m=N

mPN−1,m + λpμ
T∑

m=N

PN−1,m

)
.

Differentiating (25) at z = 1 gives, for j = 0, 1, . . . , N − 1,

E[L( j)] = 1

( jξ)2

(
jξ

(
b′
j (1) + ( j + 1)ξE[L( j+1)]

)
− (

(N − j)μ − λ + jξ
)(
b j (1)

+ s( j + 1)ξ Pj+1,•
))

.

Let Lq denote the number of waiting customers. Then,

E[Lq ] =
∞∑

m=N+1

(m − N )P•m =
∞∑

m=N+1

mP•m −
∞∑

m=N+1

N P•m

= E[L] −
N∑

m=0

mP•m − N

(
1 −

N∑

m=0

P•m

)

= E[L] − N +
N∑

m=0

(N − m)P•m . (26)
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3 Matrix geometric method

An alternative approach to analyze this model is by constructing a Quasi Birth and Death
(QBD) process, with N +1 phases, where phase j corresponds to L2 = j ( j = 0, 1, . . . , N ),
and with an infinite number of levels, where each level corresponds to L , the total number
of customers in the system. For m ≥ 0 we define Sm to be the set of states {( j,m) :
j = 0, 1, . . . , nim{m, N }}, and we arrange the system’s states under the order S0, S1,…,
SN , SN+1,…, SN+i ,…, for i ≥ 0. The infinitesimal generator of the QBD is denoted by Q,
and is given by

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B(0)
1 B(0)

0 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
B(1)
2 B(1)

1 B(1)
0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 B(2)
2 B(2)

1 B(2)
0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

...
. . .

. . . B(N )
2 B(N )

1 B(N )
0 0

. . .
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . B(N+1)

2 B(N+1)
1 B(N+1)

0 0
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .
. . . B(T )

2 B(T )
1 B(T )

0 0
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . . A2 A1 A0 0
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . . A2 A1 A0 0

. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, B(n)
0 = [λI, 0] is an (n + 1) × (n + 2) matrix for n = 0, . . . , N − 1, I is the identity

matrix and 0 is a vector of zeros. B(N )
0 = B(N+1)

0 = · · · = B(T )
0 = λI is a square matrix of

order (N + 1) × (N + 1), B(n)
1 is an (n + 1) × (n + 1) matrix for n = 0, . . . , N and is given

by

B(n)
1 =

⎛

⎜⎜⎜⎜⎜⎝

−(λ + nμ) npμ 0 · · · · · · 0
0 −(λ + (n − 1)μ + ξ) (n − 1)pμ 0 · · · 0
.
.
.

. . .
. . .

. . .
. . .

.

.

.

0 · · · · · · 0 −(λ + μ + (n − 1)ξ) pμ
0 · · · · · · · · · 0 −(λ + nξ)

⎞

⎟⎟⎟⎟⎟⎠
,

and B(N )
1 = B(N+1)

1 = · · · = B(T )
1 .

B(n)
2 is an (n + 1) × n matrix for n = 1, . . . , N − 1 and is given by

B(n)
2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nqμ 0 0 · · · · · · 0
ξ (n − 1)qμ 0 · · · · · · 0

0 2ξ (n − 2)qμ 0
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . qμ

0 · · · · · · · · · 0 nξ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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B(N )
2 = B(N+1)

2 = · · · = B(T )
2 is an (N + 1) × (N + 1) square matrix and is given by

B(N )
2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nqμ 0 · · · · · · · · · 0
ξ (N − 1)qμ 0 · · · · · · 0
0 2ξ (N − 2)qμ 0

. . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . qμ 0
0 · · · · · · · · · Nξ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A2 is an (N + 1) × (N + 1) square matrix given by

A2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Nμ 0 · · · · · · · · · 0
ξ (N − 1)μ 0 · · · · · · 0
0 2ξ (N − 2)μ 0

. . . 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . μ 0
0 · · · · · · · · · Nξ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 = B(N )
0 = λI, and A1 is an (N + 1) × (N + 1) square matrix given by

A1 =

⎛

⎜⎜⎜⎜⎜⎝

−(λ + Nμ) 0 · · · · · · · · · 0
0 −(λ + (N − 1)μ + ξ) 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · · · · 0 −(λ + μ + (N − 1)ξ) 0
0 · · · · · · · · · 0 −(λ + Nξ)

⎞

⎟⎟⎟⎟⎟⎠
,

Define the matrix A = A0 + A1 + A2. We get

A =

⎛

⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · 0
ξ −ξ 0 · · · · · · 0
0 2ξ −2ξ 0 · · · 0
...

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 Nξ −Nξ

⎞

⎟⎟⎟⎟⎟⎠
.

This matrix is the infinitesimal generator of the death process of the customers in cross-
selling, when there are at least T +1 customers in the system (and therefore no new customers
are referred to cross-selling). Letπ = (π0, π1, . . . , πN ) be the stationary vector of the matrix
A, i.e. π A = 0 and π ·e = 1 (where e is a column vector with all entries equal to 1). Then, an

immediate result is that π =
⎛

⎝1, 0, 0, . . . , 0︸ ︷︷ ︸
N times

⎞

⎠. The stability condition is (see Neuts (1981))

π A0e < π A2e,

which translates here into λ < Nμ (as indicated at the beginning of Sect. 2.2).
Define for all m ≥ 0 the steady-state probability vector Pm , as follows:

Pm =
{

(P0m, P1m, . . . , Pmm) , 0 ≤ m ≤ N ,

(P0m, P1m, . . . , PNm) , m > N ,
(27)
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Then,

Pm = PT R
m−T , m ≥ T,

where R is the minimal non-negative solution of the matrix quadratic equation

A0 + RA1 + R2A2 = 0. (28)

The vectors P0,P1,…, PT , can be found by solving the following linear system of equa-
tions:

P0B
(0)
1 + P1B

(1)
2 = 0,

P0B
(0)
0 + P1B

(1)
1 + P2B

(2)
2 = 0,

P1B
(1)
0 + P2B

(2)
1 + P3B

(3)
2 = 0,

...

PN−2B
(N−2)
0 + PN−1B

(N−1)
1 + PN B(N )

2 = 0,

PN−1B
(N−1)
0 + PN B(N )

1 + PN+1B
(N )
2 = 0,

PN B(N )
0 + PN+1B

(N )
1 + PN+2B

(N )
2 = 0,

...

PT−2B
(N )
0 + PT−1B

(N )
1 + PT B

(N )
2 = 0,

N−1∑

m=0

Pmem +
T−1∑

m=N

PmeN + PT [I − R]−1eN = 1,

where em is a vector of 1’s of dimension m + 1. The mean total number of customers in the
system E[L] is given by

E[L] =
∞∑

m=0

mPmem =
N−1∑

m=0

mPmem +
T−1∑

m=N

mPmeN +
∞∑

m=T

mPmeN

=
N−1∑

m=0

mPmem +
T−1∑

m=N

mPmeN +
∞∑

m=T

mPT R
m−T eN

=
N−1∑

m=0

mPmem +
T−1∑

m=N

mPmeN + TPT (I − R)−1eN + PT R(I − R)−2eN . (29)

Calculation of the rate matrix R We denote the elements of R as ri j , for i, j = 0, 1, . . . , N .
Since A0 and A1 are diagonal matrices, and A2 is comprised of the main diagonal and the one
below it (all other elements are 0), it follows that R is a lower triangularmatrix. Algorithms for
the computation of the matrix R in Eq. (28) are suggested in various works, see e.g. Artalejo
and Gómez-Corral (2008), Latouche and Ramaswami (1999) and Neuts (1981). However,
in our model, the elements of R can be derived explicitly, as follows: We first calculate the
main diagonal of R. We then derive the elements on the diagonal below it, and so on. It turns
out, by the structure of R and from Eq. (28), that each entry of R depends only on entries
that are on diagonals above it. As a result, we can calculate sequentially the diagonals of R,
starting from the main diagonal and ending at the bottom-left entry. By using this procedure
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we bypass the need to numerically solve the system of non-linear equations given in (28) and
convergence issues become irrelevant.

Before we show the derivation of R, recall that in Sect. 2.2.1 we introduced the
matrix A(z) and the roots of its determinant. Specifically, we recall the roots z j,2 =
λ+(N− j)μ+ jξ+

√
(λ+(N− j)μ+ jξ)2−4λ(N− j)μ

2λ for j = 0, 1, . . . , N − 1, and zN = 1 + Nξ
λ
,

which are all larger than 1. Then, the elements ri j of matrix R are calculated by the following
Theorem.

Proposition 2 The elements of the matrix R are given by:

rii = 1

zi,2
, i = 0, 1, . . . , N − 1, (30)

rNN = 1

zN
= λ

λ + Nξ
, (31)

ri+n,i = (N − i)μ
∑i+n−1

k=i+1 ri+n,krki + (i + 1)ξ
∑i+n

k=i+1 ri+n,krk,i+1

λ + (N − i)μ + iξ − (N − i)μ(rii + ri+n,i+n)
,

for i = 0, 1, . . . , N − 1, n = 1, 2, . . . , N − i. (32)

Otherwise, for i < j, ri j = 0.

Proof Rewriting Eq. (28) for the elements on the main diagonal for i = 0, 1, . . . , N − 1
leads to

λ − (λ + (N − i)μ + iξ)rii + (N − i)μr2i i = 0, i = 0, 1, . . . , N − 1. (33)

Since R is the minimal non-negative solution of (28), from (33) we get

rii = λ+(N−i)μ + iξ−√
(λ + (N − i)μ + iξ)2 − 4λ(N − i)μ

2(N − i)μ
, i = 0, 1, . . . , N − 1.

(34)

Note that from Eq. (34) we have that rii = λ
(N−i)μ zi,1. Since zi,1 and zi,2 are the roots of

the polynomial αi (z) = (λz − (N − i)μ)(1 − z) + iξ z, we have that zi,1 · zi,2 = (N−i)μ
λ

,
and therefore

rii = λ

(N − i)μ
zi,1 = λ

(N − i)μ

(N − i)μ

λzi,2
= 1

zi,2
, (35)

which proves Eq. (30). Now, writing Eq. (28) for rNN results in

λ − (λ + Nξ)rNN = 0,

that is,

rNN = λ

λ + Nξ
, (36)

which proves (31). Once the main diagonal is calculated, we can sequently calculate all
the diagonals below it, as follows. Writing Eq. (28) for ri+n,i , for i = 0, 1, . . . , N − 1 and
n = 1, 2, . . . , N − i gives

− ri+n,i (λ + (N − i)μ + iξ) + (N − i)μ
N∑

k=0

ri+n,krk,i +
N∑

k=0

ri+n,krk,i+1 = 0. (37)
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Table 1 Numerical results for
N = 3, T = 5, λ = 2, μ =
1, p = 0.2

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 11.1 4.49 3.61 3.22 3.01 2.95 2.89

E[L2] 0.889 0.492 0.288 0.154 0.063 0.032 0

E[Lq ] 8.21 1.99 1.33 1.07 0.95 0.92 0.89

ξE[L2] 0.0889 0.246 0.288 0.308 0.315 0.32 0.32

Table 2 Numerical results for
N = 3, T = 5, λ = 2, μ =
1, p = 0.5

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 13.7 6.1 4.59 3.71 3.19 3.03 2.89

E[L2] 0.987 0.833 0.604 0.359 0.155 0.079 0

E[Lq ] 10.71 3.27 1.99 1.35 1.04 0.96 0.89

ξE[L2] 0.0987 0.4165 0.604 0.718 0.775 0.79 0.802

Table 3 Numerical results for
N = 3, T = 5, λ = 2, μ =
1, p = 0.8

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 14.52 7.01 5.38 4.18 3.38 3.13 2.89

E[L2] 0.99 0.953 0.801 0.532 0.243 0.125 0

E[Lq ] 11.53 4.06 2.57 1.65 1.14 1.00 0.89

ξE[L2] 0.099 0.4765 0.801 1.064 1.215 1.25 1.284

Since R is a lower triangular matrix, the lower and upper limits in the summations of Eq.
(37) above are k = i , and k = i + n, respectively. Thus,

− ri+n,i (λ + (N − i)μ + iξ) + (N − i)μ
i+n∑

k=i

ri+n,krk,i +
i+n∑

k=i+1

ri+n,krk,i+1 = 0. (38)

Extracting ri+n,i from (38) results in (32), in which ri+n,i is expressed in terms of all ri j
calculated before. This completes the proof. ��

4 Numerical results and optimization over T and over λ

Section4.1 bellowpresents numerical results for a set of parameter values. Section4.2 follows
when we first calculate the optimal value of the threshold T for a given range of arrival
intensities, and then, assuming that the arrival rate can be controlled, we calculate the optimal
value of λ for various values of the threshold T .

4.1 Numerical results

The following three tables (Tables1, 2, 3) present our first set of numerical results, where the
calculated performance measures in all tables are E[L],E[L2],E[Lq ] and ξE[L2], the exit
rate from cross selling. The three tables maintain the same parameter values: N = 3, T =
5, λ = 2 and μ = 1, but they differ by the values of the parameter p, which assumes the
values 0.2, 0.5 and 0.8, respectively. In each table the changing parameter is ξ , assuming
values between 0.1 and infinity. Notice that, in the limiting case, when ξ approaches infinity
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(while E[L2] tends to zero), the system converges to an M(λ)/M(μ)/N queue. In steady-
state, the exit rate from cross-selling equals the entrance rate, so when ξ → ∞ we have (for
T > N ),

Entrance rate = ξE[L2] → pμ

(
N∑

m=1

mP0m +
T∑

m=N+1

N P0m

)
,

where the probabilities P0m , for 1 ≤ m ≤ T are the steady-state probabilities for the well-
known M(λ)/M(μ)/N queue. The numerical results exhibit that this limit is reached quite
fast. The calculations are summarized in Tables1, 2 and 3 with parameter values N = 3, T =
5, λ = 2 and μ = 1.

Additional tables appear in AppendixA.2 with various values of the systems parameters.
In all tables in AppendixA.2 it is seen that each performance measure, E[L],E[L2] and
E[Lq ] is a monotone decreasing function of the cross-selling rate, ξ . When ξ approaches
infinity,E[L2] tends to 0 (since cross selling is instantaneous, implying that there are no cross-
selling customers in the system). However, the mean rate of system cross-selling, ξE[L2],
approaches a positive asymptote (i.e., 0.32 in Table1, 0.802 in Table 2, 1.284 in Table3,
etc.). Moreover, for a given set of parameters, when ξ approaches infinity, E[L] is unaffected
by p. Furthermore, in each set of 3 tables, larger values of p increase the values of each
performance measure. The same effect occurs for larger values of the threshold T .

4.2 Optimization over T and over λ

4.2.1 Optimal T

In this sectionwe set N = 5 and calculate the optimal value of T , subject to the following cost
parameters. Let c denote the penalty the system incurs for one unit of a customer’s waiting
time, and let r denote the reward gained from each customer going through cross-selling. Let
Π be the system’s mean profit per unit time, i.e. Π = rξE[L2] − cE[Lq ]. Without loss of
generality, we can assume that r = 1 and write Π = ξE[L2] − cE[Lq ]. Note that for larger
values of T,E[L2] increases, causing a higher system’s penalty, while for smaller values of
T , the queue size drops, but the system loses potential cross-selling customers.

Figures 2, 3, 4 and 5 describe the behavior of the mean profit Π as a function of the
Threshold T , for c = 0.1, 0.25, 0.5 and 1, respectively. The rest of the parameters are set
to N = 5, μ = 2, ξ = 1 and p = 0.5, and for each figure we consider five values of
λ: λ = 4, 5, 6, 7 and 8. It is seen from the figures that for larger values of λ, the profit
Π decreases drastically as T increases, where for small values of λ the decrease in Π is
more moderate. This occurs, since for larger values of T , a high arrival rate results in more
customers in cross-selling as well as a higher waiting time. Also, as the cost of waiting time
(i.e. c) increases, the optimal value of T decreases. For example, when c = 0.1 and λ = 5,
the optimal value of T is 10 customers, and when c = 0.5 and λ = 5, the optimal value of T
is 6 customers. However, when c = 1 and λ = 8, it is not profitable to offer any cross-selling.

4.2.2 Optimal λ

Assuming that the arrival rate λ can be controlled, one can find its optimal value, for any
given value of T . This is seen in Tables 4, 5 and 6, calculated for T = 1, T = 5, and T = 10,
respectively. The optimal λ value appears in bold in each table. This is further illustrated in
Fig. 6, where the mean profit rate function Π is concave with a single maximum.
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Fig. 2 Mean profit rate, Π , as a function of T , for N = 5, μ = 2, ξ = 1, p = 0.5 and c = 0.1
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Fig. 3 Mean profit rate, Π , as a function of T , for N = 5, μ = 2, ξ = 1, p = 0.5 and c = 0.25
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Fig. 4 Mean profit rate, Π , as a function of T , for N = 5, μ = 2, ξ = 1, p = 0.5 and c = 0.5
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Fig. 5 Mean profit rate, Π , as a function of T , for N = 5, μ = 2, ξ = 1, p = 0.5 and c = 1

Table 4 Results for mean profit rate, Π , for N = 5, T = 1, μ = 2, ξ = 1, p = 0.5, c = 0.25

λ 0.5 1 1.5 2 2.5 3 4

Π 0.1713 0.2476 0.2771 0.2809 0.2701 0.2502 0.1942

The optimal profit is marked in bold

Table 5 Results for mean profit rate, Π , for N = 5, T = 5, μ = 2, ξ = 1, p = 0.5, c = 0.25

λ 0.5 1 2 3 3.5 4 4.5 5

Π 0.2499 0.4987 0.9618 1.2926 1.3823 1.4160 1.3942 1.3189

The optimal profit is marked in bold

5 Concluding remarks

This paper deals with a multi-server queueing system where customers, after completing
service, may be directed to a cross-selling phase, as long as the total number of customers
in the system is below some threshold level, T . We present exact analysis of the system via
both the PGFs and the matrix geometric methodologies, and reveal some intrinsic relations
between the two methods. Specifically, we show that the elements of the rate matrix R are
expressed in terms of the roots a determinant of a matrix related to the set of linear equations
involving the PGFs. This result is important, as the full connection between the two solution
methodologies is not yet known. We also show that the stability condition of the cross
selling system is the same as for an identical system but without cross selling at all, namely
λ < Nμ. Finally, we present numerical results for different sets of parameters and calculate
the mean total number of customers in the system, the mean number of waiting customers,
the mean number of customers in cross-selling, and the cross selling rate. Our results show
monotonicity of these performancemeasures in the various problemparameters. Interestingly,
we observe that in the limit as ξ goes to∞, the expected cross selling rate converges to a limit
that is consistently less than pλ, and approaches this value when T is large. Furthermore,
for different scenarios, we calculate the optimal value of the threshold T which maximizes
the system’s profit. Our results illustrate that in optimality one may have T < N . That is, it
may be optimal to stop initiating cross selling even if some of the servers are idle. Also, if
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Table 6 Results for mean profit rate, Π , for N = 5, T = 10, μ = 2, ξ = 1, p = 0.5, c = 0.25

λ 0.5 1 2 3 3.5 4 4.5 5

Π 0.2499 0.4998 0.9899 1.4114 1.5464 1.5903 1.5202 1.3353

The optimal profit is marked in bold

Fig. 6 Π as a function of λ, for T = 1, 5 and 10, where N = 5, μ = 2, ξ = 1, p = 0.5, c = 0.25

the arrival rate λ can be controlled, there is an optimal rate that can be calculated, as depicted
in Fig. 6.

Our research may be extended in several directions. First, what if the service has more
than one discretionary phase? In this case, one might consider employing multiple threshold
levels that indicate whether to initiate an additional cross-selling service phase, or completing
customer’s service at the current phase. This system would be of higher dimension than 2,
leading to a more complex analysis. Second, numerical analysis could further investigate
what is the optimal number of servers to employ in order to maximize revenue minus holding
and staffing costs. Finally, this paper considers a threshold policy for the initiation of cross
selling. However, it is possible that the optimal policy takes into account not only the total
number of customers in the system, but also how many are in each phase, so that the optimal
policy may take the form of a switching curve rather than a one dimensional threshold.

A Appendix

A.1 The case T < N

We present here briefly the analysis of the case where T < N . We first write the balance
equations of the system in steady-state.We thenwrite expressions for the PGF’s and construct
a system of linear equations in order to calculate the boundary probabilities appearing in the
PGF’s.

For j = 0,

λP00 = qμP01 + ξ P11,

(λ + mμ) P0m = λP0,m−1 + (m + 1)qμP0,m+1 + ξ P1,m+1, 1 ≤ m ≤ T − 1,

(λ + mμ) P0m = λP0,m−1 + (m + 1)μP0,m+1 + ξ P1,m+1, T ≤ m ≤ N − 1,

(λ + Nμ) P0m = λP0,m−1 + NμP0,m+1 + ξ P1,m+1, m ≥ N .
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For 1 ≤ j ≤ T − 1,

m = j :
(λ + jξ) Pjm = pμPj−1,m + qμPj,m+1 + ( j + 1)ξ Pj+1,m+1,

j + 1 ≤ m ≤ T − 1:
(λ + jξ + (m − j)μ) Pjm = λPj,m−1 + (m − j + 1)pμPj−1,m + (m + 1 − j)qμPj,m+1

+ ( j + 1)ξ Pj+1,m+1,

m = T :
(λ + jξ + (m − j)μ) Pjm = λPj,m−1 + (m − j + 1)pμPj−1,m + (m − j + 1)μPj,m+1

+ ( j + 1)ξ Pj+1,m+1,

T + 1 ≤ m ≤ N − 1:
(λ + jξ + (m − j)μ) Pjm = λPj,m−1 + (m − j + 1)μPj,m+1 + ( j + 1)ξ Pj+1,m+1,

m ≥ N :
(λ + jξ + (N − j)μ) Pjm = λPj,m−1 + (N − j)μPj,m+1 + ( j + 1)ξ Pj+1,m+1.

For j = T ,

(λ + T ξ) PTm = pμPT−1,m + μPT,m+1, m = T,

(λ + (m − j)μ + T ξ) PTm = λPT,m−1 + (m − j + 1)μPT,m+1, T + 1 ≤ m ≤ N − 1,

(λ + (N − j)μ + T ξ) PTm = λPT,m−1 + (N − j)μPT,m+1, m ≥ N .

Recall that G j (z) = ∑∞
m= j Pjmzm . For each j = 0, 1, . . . , T , multiplying each of the

balance equation by zm for the appropriate m and summing over m, results in

((λz − Nμ)(1 − z))G0(z) − ξG1(z)

= μ

N−1∑

m=0

(N−m)P0mz
m+1 + qμ

T−1∑

m=0

(m + 1)P0,m+1z
m+1 + μ

N−1∑

m=T

(m + 1)P0,m+1z
m+1

− Nμ

N∑

m=0

P0mz
m, (39)

((λz − (N − j)μ)(1 − z)) + jξ z)G j (z) − ( j + 1)ξG j+1(z)

= μ

N−1∑

m= j

(N − m)Pjmz
m+1 + pμ

T∑

m= j

(m − j + 1)Pj−1,mz
m+1

+ μ

N−1∑

m=T

(m − j + 1)Pj,m+1z
m+1

+ qμ

T−1∑

m= j

(m − j + 1)Pj,m+1z
m+1 − (N − j)μ

N∑

m= j

Pjmz
m, j = 1, . . . , T − 1,

(40)
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and

((λz − μ(N − T ))(1 − z) + T ξ z)GT (z) = μ(N − T )

N−1∑

m=T

PTmz
m+1

+ pμPT−1,T z
T+1 + μ

N−1∑

m=T

(m − T + 1)PT,m+1z
m+1

− (N − T )μ

N∑

m=T

PTmz
m − μ

N−1∑

m=T+1

(m − T )PTmz
m+1. (41)

The set of Eqs. (39)–(41) can be written as

A(z) · G(z) = b(z),

where

A(z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0(z) −ξ 0 · · · · · · · · · 0

0 α1(z) −2ξ 0 · · · · · ·
.
.
.

0 0 α2(z) −3ξ 0
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . . 0

.

.

.
. . .

. . .
. . . 0 αT−1(z) −T ξ

0 · · · · · · 0 0 0 αT (z)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G(z) = (G0(z),G1(z), . . . ,GT (z))T is a (T + 1)-dimensional column vector of the desired
PGF’s, and

α j (z) = (λz − (N − j)μ)(1 − z) + jξ z, j = 0, 1, ..., T .

The elements of the vector b(z) are

b0(z) = μ

N−1∑

m=0

(N − m)P0mz
m+1 + qμ

T−1∑

m=0

(m + 1)P0,m+1z
m+1

+ μ

N−1∑

m=T

(m + 1)P0,m+1z
m+1 − Nμ

N∑

m=0

P0mz
m;

For j = 1, . . . , T − 1,

b j (z) = μ

N−1∑

m= j

(N − m)Pjmz
m+1 + pμ

T∑

m= j

(m − j + 1)Pj−1,mz
m+1

+ μ

N−1∑

m=T

(m − j + 1)Pj,m+1z
m+1

+ qμ

T−1∑

m= j

(m − j + 1)Pj,m+1z
m+1 − (N − j)μ

N∑

m= j

Pjmz
m;

and,
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bT (z) = μ(N − T )

N−1∑

m=T

PTmz
m+1 + pμPT−1,T z

T+1 + μ

N−1∑

m=T

(m − T + 1)PT,m+1z
m+1

− (N − T )μ

N∑

m=T

PTmz
m − μ

N−1∑

m=T+1

(m − T )PTmz
m+1.

To obtain G j (z) we use Cramer’s rule and write G j (z) = |A j (z)|
|A(z)| , j = 0, 1, . . . , T , where

|A| is the determinant of a matrix A, and A j (z) is the matrix obtained from A(z) by replacing
its j th column by b(z). The functions G j (z) are expressed in terms of 1

2 (T + 1)(2N − T )

unknown ’boundary probabilities’, Pjm, j = 0, 1, . . . , , T and m = j, j + 1, . . . , N − 1
[appearing in b(z)]. In order to derive these boundary probabilities we need to create a set of
equations that those probabilities satisfy. First, we consider the balance equations of states
Pjm , for 0 ≤ j ≤ T and j ≤ m ≤ N − 2. This gives us 1

2 (T + 1)(2N − T − 2) equations.
As in Sect. 2, utilize the roots of |A(z)| which are less than 1, provides us with T more

equations relating the boundary probabilities. These roots are

z j,1 = λ + (N − j)μ + jξ − √
(λ + (N − j)μ + jξ)2 − 4λ(N − j)μ

2λ
, j = 1, 2, . . . , T .

Another equation is the normalization equation, i.e.
∑T

j=0 G j (1) = 1.
In addition, once all boundary probabilities are calculated, the marginal probabilities of

having j customers in cross-selling, i.e. Pj•, can be derived from

pμ
T∑

m= j+1

(m − j)Pjm = ( j + 1)ξ Pj+1,•, j = 0, 1, . . . , T − 1,

and P0• = 1 − ∑T
j=1 Pj•.

The mean total number of customers in the system, the mean number of customers in
cross-selling and the mean number of waiting customers are given, respectively, by

E[L] =
T∑

j=0

d

dz
G j (z)|z=1 =

∞∑

m=0

mP•m,

E[L2] =
T∑

j=1

j Pj•,

E[Lq ] = E[L] − N +
N∑

m=0

(N − m)P•m .

A.2 Numerical results

We present tables to supplement Sect. 4.1, where in each set the changing parameter is the
probability p:
In set 1 (Tables7, 8, 9) the parameter values are N = 3, T = 5, λ = 4 and μ = 3.
In set 2 (Tables10, 11, 12) the parameter values are N = 3, T = 10, λ = 2 and μ = 1.
In set 3 (Tables13, 14, 15) the parameter values are N = 3, T = 10, λ = 4 and μ = 3.
In set 4 (Tables 16, 17, 18) the parameter values are N = 5, T = 10, λ = 2 and μ = 1.
In set 5 (Tables19, 20, 21) the parameter values are N = 5, T = 10, λ = 4 and μ = 3.
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Table 7 Numerical results for
N = 3, T = 5, λ = 4, μ =
3, p = 0.2

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 15.53 4.28 2.74 2.05 1.68 1.58 1.48

E[L2] 1.565 1.07 0.676 0.369 0.152 0.077 0

E[Lq ] 12.64 1.89 0.73 0.34 0.19 0.17 0.14

ξE[L2] 0.1565 0.535 0.676 0.738 0.76 0.77 0.77

Table 8 Numerical results for
N = 3, T = 5, λ = 4, μ =
3, p = 0.5

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 18.88 6.71 4.46 2.94 2.01 1.73 1.48

E[L2] 1.656 1.543 1.285 0.843 0.374 0.191 0

E[Lq ] 15.89 3.835 1.84 0.76 0.32 0.21 0.14

ξE[L2] 0.1656 0.7715 1.285 1.686 1.87 1.91 1.93

Table 9 Numerical results for
N = 3, T = 5, λ = 4, μ =
3, p = 0.8

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 19.77 7.74 5.61 3.80 2.35 1.89 1.48

E[L2] 1.666 1.647 1.548 1.198 0.586 0.303 0

E[Lq ] 16.78 4.76 2.72 1.27 0.43 0.25 0.14

ξE[L2] 0.1666 0.8235 1.548 2.396 2.93 3.03 3.086

Table 10 Numerical results for
N = 3, T = 10, λ = 2, μ =
1, p = 0.2

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 16.02 6.18 4.26 3.48 3.10 3.01 2.89

E[L2] 0.97 0.65 0.37 0.19 0.078 0.04 0

E[Lq ] 13.04 3.53 1.89 1.29 1.03 0.97 0.89

ξE[L2] 0.097 0.325 0.37 0.38 0.39 0.4 0.4

Table 11 Numerical results for
N = 3, T = 10, λ = 2, μ =
1, p = 0.5

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 18.77 10.27 6.88 4.56 3.45 3.19 2.89

E[L2] 1.00 0.96 0.77 0.46 0.19 0.10 0

E[Lq ] 15.77 7.31 4.10 2.10 1.26 1.09 0.89

ξE[L2] 0.1 0.48 0.77 0.92 0.95 0.96 0.974

Table 12 Numerical results for
N = 3, T = 10, λ = 2, μ =
1, p = 0.8

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 19.53 11.88 9.21 5.87 3.84 3.25 2.89

E[L2] 1.00 0.99 0.95 0.68 0.31 0.15 0

E[Lq ] 16.53 8.88 6.26 3.18 1.53 1.11 0.89

ξE[L2] 0.1 0.495 0.95 1.36 1.55 1.55 1.55
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Table 13 Numerical results for
N = 3, T = 10, λ = 4, μ =
3, p = 0.2

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 21.11 6.35 3.28 2.16 1.71 1.59 1.48

E[L2] 1.64 1.27 0.78 0.41 0.16 0.08 0

E[Lq ] 18.14 3.75 1.17 0.42 0.21 0.18 0.14

ξE[L2] 0.164 0.635 0.78 0.8 0.8 0.8 0.8

Table 14 Numerical results for
N = 3, T = 10, λ = 4, μ =
3, p = 0.5

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 24.01 11.39 7.55 3.72 2.10 1.76 1.48

E[L2] 1.67 1.65 1.50 0.97 0.41 0.20 0

E[Lq ] 21.01 8.41 4.72 1.42 0.36 0.23 0.14

ξE[L2] 0.167 0.825 1.50 1.94 2.0 2.0 2.0

Table 15 Numerical results for
N = 3, T = 10, λ = 4, μ =
3, p = 0.8

Values of ξ 0.1 0.5 1 2 5 10 ∞
E[L] 24.77 12.72 10.24 6.08 2.58 1.95 1.48

E[L2] 1.67 1.67 1.65 1.40 0.65 0.33 0

E[Lq ] 21.77 9.72 7.25 3.34 0.60 0.29 0.14

ξE[L2] 0.167 0.835 1.65 2.8 3.2 3.2 3.2

Table 16 Numerical results for
N = 5, T = 10, λ = 2, μ =
1, p = 0.2

Values of ξ 0.1 0.5 1 2 5 ∞
E[L] 9.05 3.03 2.49 2.26 2.13 2.04

E[L2] 2.555 0.793 0.399 0.199 0.079 0

E[Lq ] 4.49 0.24 0.10 0.06 0.05 0.04

ξE[L2] 0.2555 0.3965 0.399 0.399 0.399 0.3997

Table 17 Numerical results for
N = 5, T = 10, λ = 2, μ =
1, p = 0.5

Values of ξ 0.1 0.5 1 2 5 ∞
E[L] 13.34 5.05 3.28 2.61 2.28 2.04

E[L2] 2.978 1.883 0.993 0.499 0.206 0

E[Lq ] 8.35 1.17 0.29 0.11 0.06 0.04

ξE[L2] 0.2978 0.9415 0.993 0.998 0.999 0.999

Table 18 Numerical results for
N = 5, T = 10, λ = 2, μ =
1, p = 0.8

Values of ξ 0.1 0.5 1 2 5 ∞
E[L] 14.47 7.42 4.23 2.98 2.55 2.04

E[L2] 2.991 2.619 1.566 0.796 0.522 0

E[Lq ] 9.47 2.80 0.67 0.40 0.10 0.04

ξE[L2] 0.2991 1.3095 1.566 1.592 1.599 1.599
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Table 19 Numerical results for
N = 5, T = 10, λ = 4, μ =
3, p = 0.2

Values of ξ 0.1 0.5 1 2 5 ∞
E[L] 13.39 3.29 2.19 1.75 1.52 1.34

E[L2] 3.451 1.571 0.799 0.399 0.159 0

E[Lq ] 8.61 0.39 0.06 0.02 0.008 0.004

ξE[L2] 0.3451 0.7855 0.799 0.799 0.799 0.7998

Table 20 Numerical results for
N = 5, T = 10, λ = 4, μ =
3, p = 0.5

Values of ξ 0.1 0.5 1 2 5 ∞
E[L] 17.33 7.39 3.83 2.41 1.75 1.34

E[L2] 3.656 3.182 1.964 0.999 0.399 0

E[Lq ] 12.34 2.88 0.54 0.08 0.02 0.004

ξE[L2] 0.3656 1.591 1.964 1.997 1.997 1.997

Table 21 Numerical results for
N = 5, T = 10, λ = 4, μ =
3, p = 0.8

Values of ξ 0.1 0.5 1 2 5 ∞
E[L] 18.28 10.15 6.02 3.17 2.00 1.34

E[L2] 3.661 3.601 2.930 1.595 0.639 0

E[Lq ] 13.28 5.20 1.76 0.25 0.03 0.004

ξE[L2] 0.3661 1.8005 2.930 3.19 3.195 3.1995
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