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MULTI-SERVER QUEUES WITH INTERMEDIATE BUFFER
AND DELAYED INFORMATION ON SERVICE COMPLETIONS

V. Kitsio and U. Yechiali

Department of Statistics and Operations Research, School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv, Israel

O A controller with an unlimited buffer recetves messages to be dispatched to ¢ servers
downstream in the network. However, the queue sizes at the individual servers are not known
exactly, since information on each service completion reaches the controller only after some
random delay. The controller can dispatch messages as soon as they arrive, in a cyclic manner,
to the ¢ servers. Alternatively, s/he can wait until full information is gained and dispatch a
waiting message to a server only when s/he is sure that the server is free. Another strategy is
to maintain a limited intermediate buffer in front of the servers, and forward messages to this
buffer when information on service completion reaches the controller. If a server completes a job
and the intermediate buffer is non-empty, it starts serving a job from this buffer with no delay.

Such situations are common in many real life processes (such as passport control
procedures, or at large waiting rooms in public offices) where customers wait, in front of ¢
servers, to be served. A customer walks (=delay) to the next idle server when s/he sees her/his
“waiting number” flashing on the screen.

We analyze this model when the underlying process is the M/M/c queue and the
information delay is exponential. We use both: i) probability generating functions of the
multi-dimensional state space to calculate the boundary probabilities, and ii) matrix geometric
approach to derive the stability condition of the system. We show that the intermediate buffer
scheme reduces queue sizes and waiting times. Numerical examples are presented.

Keywords Delayed information; Intermediate buffers; Multi-server queues.

Mathematics Subject Classification Primary 60K25; Secondary 60M20, 90B22.

1. INTRODUCTION

The goal of this work is to construct, analyze and solve a model for
reducing servers (and customers) idle (and waiting) times in multi-server
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queues with delayed information on service completion. This model
extends previous works (Refs.'?!) by introducing an intermediate buffer
between the controller and the servers. In general, analysis and control
of queuing system with delayed information, either on service completion
or on arrivals, are complex issues that have been studied very little in the
literature. These issues are critical in high-speed networks where routing
decisions have to be made based on delayed information on the actual
state of down stream nodes. The lack of full information makes the
problem of optimal routing of jobs extremely difficult.

The “delayed information” phenomenon is also common to many real
life situations at large waiting rooms in public offices where a “delay” is
equivalent to the time it takes for a customer to walk from her/his seating
location to the server’s window.

Another practical example for intermediate buffer is the loading
process of a certain commodity on trucks in time of a relatively high load.
A fleet of trucks is waiting outside the warehouse and in order to save time,
a few trucks wait near the loading platform.

Consider a network with ¢ parallel channels (servers) and a single
controller. Variable-length messages (jobs) arrive randomly, and the
controller has to route them to the various channels. If the controller
has full information on the state of each server, then holding a central
common buffer for all queues and assigning a job to a server as soon as the
latter becomes available, is the best policy in terms of minimizing queue
lengths and waiting times. However, if the information about the actual
state of each queue reaches the controller only after some considerable
delay, then the problem of optimal management of the queue becomes
much more complex.

Suppose, indeed, that the information about each service completion
reaches the controller only after some random delay. To improve the
performance of such systems we consider a finite-size intermediate buffer
in front of the servers, such that, whenever a service is completed, a waiting
job in this buffer can enter service with no further delay. In this case,
if there are jobs in the intermediate buffer, a server can start serving
immediately without waiting for the controller to dispatch a job (which
will be done only after the delay time). In such a way the server’s idle
time, as well as customers sojourn times, are reduced. A server will be
idle only in the event when the intermediate buffer is empty. Clearly, if
the intermediate buffer size becomes unlimited, the model reduces to a
regular c-server.

The underlying queueing model in this work is the M/M/c queue,
where the information on each service completion reaches the controller
only after exponentially distributed time. In Litvak and Yechiali®! two
routing policies by the controller were studied: (i) the controller
dispatches jobs as soon as they arrive, in a round-robin mechanism, to the
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various down-stream servers, without knowledge of the actual queue size in
front of each server. This implies that the controller maintains no buffer
and all buffers are in front of the servers. (ii) the controller holds all
arriving jobs in its buffer and dispatches a job to a server only when the
information about service completion by that server reaches the controller.
It has been shown in Litvak and Yechiali® that the former policy is better
if the mean delay on service completion is greater than some (calculated)
threshold, and vise versa. We propose in this work an improvement on the
above policies by introducing an intermediate buffer in front of the group
of servers and show, by a numerical example (based on our analytical
results) that this policy leads to a significant improvement.

The structure of the work is as follows: in Section 2 we present
the general description of the model, along with a set of assumptions,
definitions and notation used throughout the work. In Section 3 we
analyze the model with only a single server. We derive closed-form
expressions for the so called “boundary” probabilities determining the
probability generating functions (PGFs) of the system states. In addition,
we directly derive the stability condition of the system. Furthermore, we
use a Matrix-Analytic method to derive the same stability condition. In
Section 4 we study the two-server case and present a numerical example,
showing the reduction in the mean queue size (compared to the result
in Ref.P!). In Section 5 we analyze the general model with ¢ > 2 servers.
The stability condition is derived by using matrix—-geometric analysis. A
relationship to a machine-repair problem is indicated.

2. THE MODEL

Consider an M /M /c-type queue with Poisson arrival rate /4, exponential
service times with parameter u, and a controller with an unlimited
buffer. However, in contrast to a regular M /M /¢ queue, the information
on each service completion reaches the controller only after some
random duration, exponentially distributed with parameter y. There is an
intermediate buffer of size ¢ in front of the ¢ servers. When the controller
gets the (delayed) information that a service has been completed, and
there are less than ¢ waiting customers in the intermediate buffer, s/he
dispatches a waiting customer (if any) from its buffer to the intermediate
buffer. When a server completes service of customer and the intermediate
buffer is non-empty, it starts serving one of the customers there with
no further delay. We denote such a system by M (4)/intermediate : M(u) +
M(y)/c. As indicated in the Introduction, the purpose of having an
intermediate buffer is to reduce the idle time of the servers so as to
reduce queue sizes and customers waiting times. We define the state of the
system as a triplet (N, ], X) where N denotes the number of customers
waiting in the controller’s overall buffer, X counts the combined number
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Delay ~ Exponential (y)
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FIGURE 1 M/M/1-type queue with an intermediate buffer of size = 1.

of customers in intermediate buffer or in service, and J denotes the total

number of customers ‘satellite’, i.e. customers whose service has already

been completed, but this information hasn’t reached the controller yet.
The system is depicted in Figure 1.

3. THE SINGLE SERVER CASE

We start our analysis with the single server M/M/1-type queue with
an intermediate buffer of size ¢ = 1. This implies the following: x =0
denotes an idle server; x = 1 indicates that the server is busy giving service;
when x = 2, one customer is being served and another is waiting in the
intermediate buffer. Note, that the controller always knows the sum X +
J < 2, but without precise knowledge of the specific values of X or J.

3.1. Balance Equations

Investigating the structure of the transition rate diagram (Figure 2) we
see that, for each n > 0, the 3 states for which x + j = 2 (namely, (%,2,0),
(n,1,1) and (n,0,2)) repeat themselves. The states, (0, 0, 0), (0, 0, 1) and
(0, 1, 0) together with the state (0, 2, 0) are different and denoted as
“boundary states”.

Let P,j. =Prob(N =n,] =j,X=x),n=0,1,2,3,...;=0,1,2; x =
0,1,2. Then, for each value of N = n, the set of balance equations is the
following:

For n = 0, the equations involving the first 3 boundary states are
given by
P00 = 7Py (J=x=0),
A+ wWPoo1 = AP0+ P11 (G=0,x=1), (3.1-1)
(24+DPoro = puPoor +29Posy (G=1,x=0).
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2 0

FIGURE 2 Transition rate diagram for the single server case.

Forn=0and j+ x =2,

(A +29) P20 = uloia (G=2,x=0),
A4+ u+Poy = AP+ uPyos +2yPioy (G=1,x=1), (8.1-2)
(A+ who2 = APyo1 + 7Pi1a (G=0,x=2).

In general, for N =n > 1 (where j + x = 2),

(A4 29)P,o0 = APy_190 + WPy 11 (G=2,x=0),
A+ u+ 9Py =P 111+ uPo2 +29P100 (j=1,x=1), (3.13)
(A+ WP, oo =P, 199+ VP11 (J=0,x=2).

3.2. Partial Generation Functions

For each level of the satellite customers |/ =0,1,2 we define the
corresponding (partial) generating function (PGF) as follows:

Go(2) = (Popo + Poo1)z” + Z P, 02", (3.2-1)

n=0



Downloaded By: [Tel Aviv University] At: 17:26 28 May 2008

Multi-Server Queues 217

Gi(2) = Py’ + Z P,iq2", (3.2-2)
n=0
G?(Z) = ZPVL,Q,OZn- (32'3)
n=0

Now, from the balance equations, for j = 2, we obtain
(A+2y) Z P,ooz" = iz Z P,ooz" + 1 Z P,.2", (3.24)
n=0 n=0 n=0
implying that
HGi(z) — (1 = 2) + 29) Go(2) = uPy 1. (3.2-5)
Similarly, when j = 1, we get

(}v + U + 'y)Z Z Pn,l,lz" = ),Z? ZP""]’]Z" + MZZPH,O,QZn
n=0

n=0 n=0

+2y Z Poooz" —29Pyog + AzPy 1. (3.2-6)

n=0

That is,

— uzGy(z) + (A(1 = 2) + p+ )26 (2) — 29Go(2)
=(A+p+)2Porg — 225 Poro — pz(Pooo + Poor) — 29Pogo + Azl .
(3.2-7)

Finally, for j =0,

(A+ Wz Z P,o9z" = 12° Z Poooz" + 7y Z Poaaz" — Py + APy,
n=0 n=0 n=0
(3.2-8)
leading to
(21 = 2) + W26y (z) — 7Gi(2)
= (A1 = 2) + wWz(Pooo + Poor) + AzPoor — 7(Poro + Porr). (3.2-9)

Equations (3.2-5), (3.2-7) and (3.2-9) define a set of linear equations
with unknowns Gy(z), G(z) and Gy(z), depending on the 3 “boundary”
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probabilities as well as the probabilities Fyo and F; ;. Knowledge of these
probabilities fully determines the PGFs.

We proceed now to calculate the above five probabilities.

Consider the state where j+ x =2. Then for every j=0,1,2 we
defined, respectively, the following probabilities:

PO = iP,,,o,g, Pl = iPn,l,l, P2 = ipn,g’o. (3.2-10)
n=0 n=0

n=0

Clearly, the sum of those “total” probabilities and the 3 “boundary”
probabilities equals 1.
That is,

PO+P1+P2+P0,0’0+P0,0’1+P0,1’0=1. (32-11)

We now have 8 unknown probabilities: the 6 probabilities appearing in
equation (3.2-11) together with Pyoy and Py ;.

We’ll create a set of 8 independent linear equations in those 8
unknowns probabilities.

We use a “diagonal” cut in Figure 2 between the states n and n + 1,
where j + x = 2, to get

(Pooo+ Puag + Puog) = 2yPi100 + 9Piyian (n=0,1,2,...). (3.2-12)
Summing over n we obtain
;»(PQ + P1 + PO) = 2'})P2 + '))Pl — 2'}7P0’2)0 — '}7P0’1)1. (32-13)
Now “cutting” between levels / =1 and | = 2 we get
2yP2 = uP1. (3.2-14)
Similarly, “cutting” between levels / = 0 and J = 1 yields
P10+ yPL = uPypoy + pPO. (3.2-15)
Clearly, equations (3.2-14) and (3.2-15) can be directly obtained by setting
z =1 in equations (3.2-5) and (3.2-7), respectively.
Equations (3.2-11), (3.2-13), (3.2-14) and (3.2-15) together with
the 3 boundary equations defined in (3.1-1) and the equation (4+

29)Pyoo = nPy11 comprise a set of 8 equations in the probabilities
PO, P1, P2, Py, Poo, P, Poso and Poqa.
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3.3. Explicit Solution

Using the 2 equations from (3.1-1) for which j 4+ x = 1, together with
equation (3.2-11), and substituting in (3.2-13), we get, after some algebra,

29P2 4+ yP1l = A — 24Py 0+ vPo10 = A — P10, (3.3-1)

where the last step follows by using the first equation of (3.1-1).
Now, substituting equation (3.2-14) in (3.3-1) we get

i 4= 7Py10

Pl and (3.3-2)
Ay
A —yP,
_ HA=7hao) (8.3-3)
2y(u+7)

Substituting the value of P1 from (3.3-2) into (3.2-15) yields

Ay = () Poor + 1yPoa

PO
pulp+ )

(3.3-4)

Substituting (33-2), (33-3), (33-4) n (32-11) and using jup()’()’() = VP(),l,()
we get

2y(u+y)(u—2A) — Ay’
W2y (p+y) + Au+2y)}

(3.3-5)

P(),(),() =

and

M2+ ) (u—2A) — Iu?
{2y (u+y) + Au+ 29}

01,0 = (3.3-6)
It remains to find Py ;.

Using the equation from (3.1-2) for which j=2,x=0, and
substituting in (3.1-1) for j =1, x = 0, we get

2uyPoqa

—_ 3.3-7
A4 2y ( )

WPy o1 = (A+7)Py1o —

Using the equation from (3.1-1) for which j = 0, x = 1, and substituting in
(3.3-7) we obtain

2u(Z+ W Poor — AP0
42y '

1Poo1 = (2 + ) Poro — (3.3-8)
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Now, substituting the equation APyoo = yPy 1,0 in (3.3-8) we get, after some
algebra,

Po1o(2% 4+ 30y + 2uy + 29%)

P —
001 1(35+ 2u + 2y)

(3.39)

Finally, substituting (3.3-6) in (3.3-9) we obtain

P M2 A= A) = ) (2 B0y + 2 + 2))
0.01 = 5 . (3.3-10)
12 {2y(u + ) + A+ 29)} (34 + 21 + 2y)

Clearly, the values of P1,P2, and PO are now explicitly derived from
(3.3-2), (3.3-3) and (3.34).

Finally, Py9o and F,,;; are obtained from the 2 boundary equations
(3.1-1) for which j+ x =1.

The above “direct” solution holds only for the single server case. For
models with ¢ > 1 servers we need a more elaborate approach, which we
present in the next section.

3.4. Matrix Representation

The set of equations (3.2-5), (3.2-7) and (3.2-9) can be represented in
a matrix form as

(A1 —2)+ )z —y 0
—uz (Al =2)+pu+yz —2y
0 u —(A(1=2)+2y)
Go(2) bo(z)
X |G| =], (3.4-1)
Go(2) bo(2)

ie.,, A(2)G(z) = b(z), where G(z) = (Gy(z), Gi(2), Go(2))T and b(z) =
(by(2), b1 (2), bo(2))T are column vectors for which
bo(z) = (A1 = 2) + Wz(Pooo + Poo1) — AzPoo1 — 7(Poso + Por)s (3.4-2)
bi(2) = (4 p+7)zPoro — A2°Poro
— pz(Pooo + Pooa) — 2yPog0 + A2P10, (3.4-3)
where by (z) = uPy1y- (3.4-4)

The PGFs G(z),j =0, 1,2, are positive and bounded for 0 < z < 1.
By Cramer’s rule

(3.4-5)



Downloaded By: [Tel Aviv University] At: 17:26 28 May 2008

Multi-Server Queues 221

where A;(z) is obtained from A(z) by replacing the jth column with the
vector b(z).

After tedious calculations of the various determinants involved we
derive explicit solution for the PGF’s in terms of the probabilities Py,
Poo1, Poio and the expressions by(z), bi(z), b.(z). The results are the
following:

22by(2)(1 — 2) + Al + 1) bo(2) + 2Apbe(2)
+2292Po.10 — 21y* (Pooo + Poo)

—Awy + A32(1 — 2)2 + 22uz(1 — 2)

27*2(Pooo + 1;0,0,1) — 229*Pog1 + Ay 4 4 1) Poso
n —25yPo10 — Ay (Pooo + Pooa) (3.4-6)
222(u+ )1 —2) + Ap(p + )z
229Py10 — 2uy(A(1 — 2) + ) (Pogo + Poo) — 2417 P,
2/292(1 — 2) + 229 (u + )z — 2up(u +7) ’
Gi(2) = —22pby(2) + Aubo(z) + 22(1 — 2) by (2) + Apbi (2) + 249 (2)
—Auy 4+ A3z(1 — 2)2 + 22uz(1 — z) + 22z2(u+ p)(1 — 2)
2pp{2z(Pooo + Poos + Poao) — (A+u+7y)Poio — 2Pooa}
A+ )z + 222p2(1 — 2) + 249 (p + )z — 2uyp(u+9)
Auby (z) — by(2)22*(1 — 2) — Abo(2)z(p + ) — Auby(2)z + pyby(2)
—Auy + A32(1 — 2)2 + 22uz(1 — 2) + 222(u+ p)(1 — 2)
120y (2) + p*{Az(Pogo + Poor + Poio) — (A4 i+ 9)Poro— APooa}
A+ )z + 222p2(1 — 2) + 20y (p + )z — 2uy(u+9)
(3.4-8)

Go(z) =

. (8.4-7)

Go(z) =

Note that |[A(z)| is a polynomial of degree 5. Nevertheless, it can be shown
that in the interval z € [0, 1], |A(z)| = 0 only for z = 0 and z = 1. This is in
fact the reason why we were able to obtain a direct explicit solution for the
above-unknown probabilities. The case with ¢ > 1 will require finding the
roots of |A(z)| = 0.

3.5. E[J], EIX] and Stability Condition
for the Single Server Model
The marginal distribution of J is derived as follows:

For | =0,

P(] =0)=Gy(1) = Fooo+ Poo1 + an,og = Pooo + Poo1 + PO.

n=0
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Using (3.3-4), (3.3-5) and (3.3-10) we derive P(J = 0):

[P0 0(A(A+ 1) = 29(u+7))  29(p+79) — A4+

o= ME+2p(u+NG—© 20+ 22+ A 55D
For | =1,
P(J=1)=G(1) =Py + iPn,u = Py + P1.
=0
Utilizing (3.3-6) and (3.3-2) yields
Gi(1) = pPoro(Ap —2y(u+7)) _ A2y(u+7) — A (3.5:2)

MEH 29+ )G =) 2+ 7y) + 24y + Ap)

Finally, for ] =2, P(J =2) = Gy(1) = Y 0" P,oo = P2. Substituting
(3.3-6) in (3.3-3) we obtain the value of P(J = 2):

— APy 1 o(p+7) _ 2Z2(u+7)
A? 429 (u+ ) (4 — ) P2y (H+ ) + 24y + Ap)

Ge(1) = (3.5-3)

Clearly, EU] = Z;Z':ojp(] :])

The distribution of X is derived with the aid of Figure 2. Examining
the state points there, we readily write

P(X=0)=P(J =2)+ Pooo+ Poro;
P(X=1)=P(J =1) = Pyro+ Pooy, (3.54)
P(X = 2) = P(] = 0) - P(),o,o - P(),O,l-

Clearly, 1 =" P(X=x)=Y,P( =).

=
Finally, E(X) = Y>_, xP(X = ).
Next we derive the stability condition for the system.
Since Gy(1) > 0 we must have
M+ 2y(u+ ) (4 — ) < 0. (3.5-5)
This implies, from (3.5-3), that
1P 10 (A = 2y(p+ 7)) <0 (3.5-6)
and, from (3.5-2),

1P o (A4 + 1) — 29(u+7)) < 0. (3.5-7)
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Since Py > 0, equation (3.5-5) implies that
29(p+7y) — Au > 0. (3.5-8)
Similarly, from (3.5-6),
29(p+7y) — A(A+p) > 0. (3.5-9)
Clearly, (3.5-8) implies (3.5-7).
We now show that condition (3.5-4) implies condition (3.5-8).

From (3.5-4) it follows that 4 < u and 2y(u+7y) > :%2)
The last inequalities leads to (3.5-8) since

P 13
W(u+7) — 2+ > 0= = 0.
u— A u— 2
That is, the condition for stability is
29 (u+ ) (u—2A) — Au® > 0. (3.5-10)

Define p = ﬁ and 0 = . Then, from (3.59), by dividing by 1, we get, after
some calculations,

1 1
p<le— =1 ————— . (3.5-11)
1+ 20 + 207 1+2ﬁ+2(ﬁ)2

That is, 4 < p is in sufficient for stability.

For the case when y — o0, i.e. % — 0 (no delay), the above condition

reduces to the usual M/M/1 stability condition p = % < 1.

Moreover, if y — oo, then PFy;9— 0. That is, there is never a
satellite customer. Also, P9 — =4 — 1% and Poo1 — p(1 —p), giving
the fraction of idle time and the probability of a single customer present,
respectively, in the regular M/M/1 queue.

In case u — oo, X — 0 and the system converges to a M/M/2-type
queue with arrival rate 4 and ‘service’ rate y. The non-zero states are (0, 0,
0), (0, 1, 0) and (n,2,0) for n > 0.

A straight calculation of the M /M /2 queue leads to Py = 3 +j ﬁ
for p = &

In the case where the mean delay gets large, it is clear that the
intermediate buffer will be empty most of the time and the controller’s
queue will behave close to a M/G/1 (M/G/c) queue with service time
equal to the sum of ; + 1. Suppose y = au with o < 1. Then the stability

conditionis p < 1 — 7 +212 = f. Clearly, f — 0 when a — 0, implying that
the system becomes unstable for any positive 4.
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3.6. A Matrix-Geometric Approach

The QBD queing system with intermediate buffer and delayed
information can also be analyzed via Neuts’s matrix-geometric approach.
We define a two-dimensional continuous-time Markov chain with
state space (n,(j,x)). We arrange the states in the following order:
{(0,(0,0)),(0,(1,0)), (0, (0, 1)}, ..., {(n, (2,0)), (n, (1,1)), (n, (0,2))},
where n =0,1,2,... This order yields a block-diagonal transition matrix
(see Chap. 6, in Latouche and Ramaswami!*!), as follows:

B B, 0 0
Ay Ay Ay O

0 0 A A

where each block is of dimension 3 x 3, and

[—J 0 ) 0 0 0 0 2y 0
B=|7y —-(U+Yy 0 , Bp=|[0 4 0|, A,=]0 0 9],
0 W O+ 00 4 0 0 0
[— (A +2y) 0 0 20 0
A= u —(A+u+7y) 0 , Ag=1[0 42 0
i 0 U —(A+w 0 0 2
The stability condition for such a system is given in Neuts® as
TAse > mAge, (8.6-1)

where ¢ is the unit column vector, 7 is the stationary probability vector of
the matrix

—2y 27 0
A=A +A+A=| 0 —(@+y) 7y |, and 7= (7,7, 7).
0 2 —u

The vector 7 satisfies

A =0,
(3.6-2)
Ty + m + o = 1.
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It then follows that, setting 0 = %,

, Tcl = —, 7'[2 = — and S = 1 + 20 + 202 (3.6'3)

Ty =

1 20 26?

s

Now, mAse = y(2my 4+ my), mAge = A. Substituting this expression into
(3.6-1), the stability condition is 4 < 22+0)

14204202
Dividing by u and setting p = /% leads to

0 + 20° 1
20200 1 (3.6-4)

P =TT 20+202 "~ 1+20+20

Indeed, condition (3.6-4) is nothing but condition (3.5-11).

4. THECASE c=2

In this section we analyze the two-server M/M/2-type queue with
intermediate buffer of size ¢ = 2.

The model is depicted in Figure 3.

Again, the state space is {N,J, X} with the following interpretation:

x = 0 denotes idle servers; x = 1 indicates that only one server is busy;
x = 2 indicates that both servers are busy; when x =3, two customers
are being served and another is waiting in the intermediate buffer; when
x =4, two customers are being served and two are waiting. Note, that
the controller only knows the sum X 4 J < 4, without having a precise
knowledge of the specific values of X or J.

A transition-rate diagram is depicted in Figure 4.

Controller

A Intermediate
—— N buffer with
Unlimited Buffer size =2

21

FIGURE 3 A two-server model with intermediate buffer of size = 2.
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FIGURE 4 Transition-rate diagram for the two-server case.

4.1. Balance Equation

Investigating the structure of the transition-rate diagram we
see that, for each n >0, the 5 states for which x+j =4 (namely,
(n,0,4),(n,1,3),(n,2,2),(n,3,1),(n,4,0)) repeat themselves. The
10 states (0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 0), (0, 1, 1), (O, 1,
2), (0, 2, 0), (0, 2, 1) and (0, 3, 0) are different. Together with (0, 4, 0)
are denoted as ‘boundary states’.

Let P,;, =Prob(N =n,] =j,X = x),
n=20,1,2,3...; y=0,1,2,3,4;, x=0,1,2,3,4.

Then, for each value of N (N =0,1,2,...,n,...), the set of balance
equations is the following:



Downloaded By: [Tel Aviv University] At: 17:26 28 May 2008

Multi-Server Queues

For n = 0, the equations for the first 10 boundary states satisfy

4Po00 = 7Po10

(A+ who1 = AP0 + 7P

(A+2)Poo2 = APoor + 72

(A+21)Poos = APoo2 + 7Fos

(A+7)Poro = 1Poor + 27Pogo

(A4 u+ )Py = APy1o+2uPyps + 29Py o
(A4+2u+)Poro=APy11 +2uPyos + 29Py 00
(24 29)Pogo = uloi1 + 37Ps0
(A+u+2)Pg1 = APogo + 2112 + 39Posa
(A+3)Poso = uPog1 + 4y7Po0

j=x=0,

j=0,x=1,
j=0,x=2,
j=0,x=3,
j=1Lx=0,
j=x=1,

j=lLx=2,
j=2,x=0,
j=2,x=1,
j=3,x=0.

227

(4.1-1)

Note that all equations in (4.1-1) include only probabilities for which n =

0 in both sides of each equation. Such property holds also fore the last

equation in the following set (4.1-2).
For n =0 and j + x = 4,

(A+2W P04 = 2Poos + 7Pi1s
(A+2u+7y)Pos = APo1g + 2pPops + 29Pr g2
(A+2u+2y)Pogo = APogy + 2P0 3 + 3yPis)
(A4 pu+3y)Pysy = APyso + 2uPys0 + 49P 40
(A+4y)Poao = pho3,

In general, for N = n > 1 (where j + x = 4),

(A+2W)P, 04 = APy_104+ VPui113

(A+4Y)P,ao = APy_140 + 1Py 31

j=0,x=4,
j=1x=3,
j=x=2,
j=3,x=1,
j=4x=0
j=0,x

(A+2u+)Puis =P 113+ 2uPos +29P122 J=1,x
(A+2u+29)Poo = APy 190+ 24P, 15+ 39Pis1 J=x=2,
(A+u+3y)P,s1 = AP, 131+ 2uP, 00 +49P, 1140  J=3,x

(4.1-2)
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4.2. Partial General Functions

For each level of the satellite customers /| = 0,1, 2, 3,4, we define the

corresponding (partial) generating function (PGF) as follows:

Go(z) = Popo + Pooi + Poos + Poos + Z P, 42"

n=0

G(z) =FPoio+Poia+FPois+ ZPn,l,?,Z"-

n=0

Go(z) = Pooo + Poon + an,zgzn-

n=0

Gs(z) = Pyso + an,3,1Z"~

n=0

Gi(2) = ) Poaor".
n=0
Now, for j = 0 and x = 4, we obtain from the balance equations

A i . = TN ]
(A+2uw) Z P, o4z" = iP5+ A Z Poaz" + . Z P,,32".

n=0 n=0 n=0
This implies
2(A(1 = 2) + 2u) Gy (2) — 7Gi(2)
= 2(Poo,0 + Poo1 + Poos + Poos) (A1 — z) +2u)
+ Az2Pops — Y(Poso + Poig + Poag + Poas).

Similarly, when j =1 and x = 3, we get

GA2u+7) Y Puist”

n=0

= )VP()’]’Q + y) Z Pn,l’gszrl + 2,“ Z Pn,()AZn + 2')) Z Pny212zn71‘

n=0 n=0 n=1

That is,

—2uzGy(z) + (A1 = 2) + 2u+ )26 (2) — 2y Ge(2)
= 2(Po1o+ Pory + Poro) (A1 —2) +2u+y) + AzPy 1 0

—2uz(Pooo + Poor + Pooo + Poos) — 29(FPooo + Pooi + Poge).

(4.2-1)

(4.9-9)

(4.2-3)

(4.24)

(4.2-5)

(4.2-6)

(4.2-7)

(4.2-8)

(4.29)
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When j =2 and x = 2, we obtain

(o421 +27) Y Pugor”

n=0

229

= ip(),g,l + ;u Z Pn’g,gzn_H =+ Q‘U Z Pn,l,gz" =+ 3'}) Z Pn’g,lzn_l . (42-10)

n=0 n=0 n=1

The above leads to

—2uzGi(z) + (A1 — 2) + 21 + 2y)2Go(2) — 37Gs(2)
= 2(Pyo0 + Poo1) (A1 — 2) + 2u+ 2y) + AzP s
—2uz(Poio+ Poig + Porg) — 3y(Pogso + Pos)-

When j =3 and x = 1, we get

(/1 + 2,& + 3))) Z Pn,g,lz"

n=0

= )»Po,:%,o + A Z Pn,S,lZn+1 +2u Z Pn,2,2zn + 4y Z Pn,4,0Zn_1,

n=0 n=0 n=1

leading to

—2uzGo(2) + (A(1 — 2) + p + 39)2G3(2) — 4YGy(2)
= 2Py 30(A(1 — 2) + u+ 3y) + AzPo 30
—2uz2(Pooo + Poo1) — 49 Fo40-

Finally, for j = 4, we obtain

(A+4y) Z P, 402" =4 Z Pz 4+ 1 Z P,s12".

n=0 n=0 n=0

That is,

—1G3(2) + (A1 — 2) + 4y) Gu(2) = —pPos.

(4.2-11)

(4.2-12)

(4.2-13)

(4.2-14)

(4.2-15)

Equations (4.2-7), (4.29), (4.2-11), (4.2-13) and (4.2-15) define a set
of linear equations with unknowns Gy(z), Gi(z), G(z), Gs(z) and Gy(z),
depending on the 11 boundary probabilities as well as on the probabilities
Py1s, Pooo and Fys;. Knowledge of these 14 probabilities fully determines

the PGFs.
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However, we have only 11 equations in those 14 probabilities: 10
equations are given by the set (4.1-1) and the 11th by the 5th equation in
(4.1-2).

In order to solve for the unknown probabilities we proceed, similarly
to Sections 3.2 and 3.3, as follows:

It can be shown that repeating the ‘cutting’ method used successfully
in Sections 3.2 and 3.3 yields only 17 equations with 19 unknown
probabilities, implying that a closed form result is un-attainable for the case
of ¢ > 2 servers, when using this method. We therefore turn to utilize the
set of 5 equations derived for the PGFs G;(z) for j =0, 1,2, 3, 4.

4.3. Matrix Representation

Considering the right-hand side of (4.2-7) we define

bo(z) = 2(Po0 + Poo1 + Poos + Poos) (A1 — z) +2u)
+ AzPyos — 7(Pogo + Poan + Pore + Pois). (4.3-1)

Using (4.2-9) we define

bi(z) = 2(Po1o+ Poag + Porg) (A1 —2) +2u+7) — 29(Pogo + Pogi + Poge)
+ Az2Py 10 — 2uz(Pooo + Pooi + Poos + FPoos)- (4.3-2)

From (4.2-11) we have

bo(z) = 2(Pooo + Poo1) (A1 — 2) + 21+ 2y) — 3y(Poso + Pos)
+ AzPyoy — 2uz(Poio+ Poig + Poio). (4.3-3)

From (4.2-13)

bs(2) = 2Py s0(A(1 — 2) + u =+ 3y) + 22Py 30 — 2uz2(Poo + Poo1) — 47 Po40-
(4.3-4)

Finally, from (4.2-15)
by(z) = —pPysy. (4.3-H)

Combining equations (4.2-7), (4.2-9), (4.2-11), (4.2-13) and (4.2-15) with
(4.3-1) to (4.3-5), we obtain the following system of linear equations in the
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unknowns G;(z):

2(A(1 = 2) + 21 Gy (2) — 7Gi(2) = by(2),

—2p2Gy(2) + (A1 — 2) + 2 + 9)2G1(2) — 2)Ge(2) = bi(2),

—202G1(2) + (A1 = 2) + 2 + 27)2Ge(2) — 3y Gs(2) = e (2), (4.3-6)
—202Gy(2) + (A1 — 2) + i+ 39)2G3(2) — 49Gu(2) = b3(2),

—uGs(2) + (A1 = 2) + 49) Gu(z) = bu(2).

For compactness we set

a(z) = (1 — z) + 2u, (4.37)
a(z) =21 —2)+2u+7, (4.3-8)
a(z) = A(1 — 2) + 2u + 2y, (4.39)
ay(2) = (1 — 2) + i+ 3, (4.3-10)
ay(z) = A(1 — z) + 4y. (4.3-11)

The system (4.3-6) can now be presented in a matrix form, similarly to

(3.4-1), as

zay(z) -7 0 0 0 Go(2) bo(z)
—2uz  za(z) =2y 0 0 Gi(z) bi(z)
0 —2uz  zag(z) —3y 0 G(z) | =] &(z)]|. (4.3-12)
0 0 —2uz  za3(z)  —4y Gs(2) bs(2)
0 0 0 —u ay(z)) \Gu(2) by(2)
Define
zap(z) =y 0 0 0
—2uz  zai(z) =2y 0 0
A(z) = 0 —2uz  zax(z)  —3y 0 . (4.3-13)
0 0 —2uz  zas(z) —4y
0 0 0 —u as(2)

Then (4.3-12) is written as A(z) G(z) = b(z), where G(z) and b(z) are each
a 5-dimensinal column vector. By Cramer’s rule we can write

for j=0,1,2,3,4, (4.3-14)

where, as before, A;(z) is obtained from A(z) by replacing the jth column
by b(z).
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Therefore, if there exists z, € [0, 1] such that |A(z)| = 0, then |Ay(z)],
141 ()1, [A2(20)], [A3(2)] and |A4(z)| must equal 0 as well.

A very tedious determinant’s calculations, together with an interlacing
analysis of the roots of

|A(z)| shows that there exists a unique solution z € (0, 1)
for which |A(z)|=0 (4.3-15)
(see also Section 5 where ¢ > 2).
Hence, |Aj(%)| =0 yields an additional equation in the unknown
probabilities. Note that, the equations |[A;(%)|=0,7=0,1,2,3,4, are

linearly dependent (Levy and Yechiali *!), and therefore yield only one
equation.

Going back to |A(z)|, it can be shown that |[A(z)| = (1 — 2)2°D(z),
(4.3-16)

where D(z) is the following polynom of degree 6 (calculated with the aid
of Maple8).
D(z) = — 20221°2° 4+ 2022 1° 22 4 8ap*2* — 32utyz + 182°3 22t — 72 u’

+ 3523922 — 48uyty — 1441°%y% 2 — 210  uz® 4 2429* 2% 4 504%9%2*

— 16002932 + 72 uz® + 360u%y° — 70239%2% 4+ 1823 2% + 351%9%%?

— 304"z 4+ 304"zt — 504%)°2° + 210zt + 104%y2* — 362717

Y Y Y H Y u

—10A*2° — 42°2° — 42°2% + 489 4+ 64u*y® + 62°2* + 2020 + 2722

— 18823 uyz® — 13222 1%y2> — 17422 1y°2° + 612° uyz* + 280/u2y?22

+ 1164u7p22 4+ 19822 uy2® + 26222 uy*2* + 1804uy°2* + 937° uyz?

— 26841%y% 2 — 84515 yz — 6622 1%z — 8872 uy?z — 132Auy° 2 — 1622 uyz.

(4.3-17)

Clearly, |A(z)| has a root at z =1 and double roots at z = 0. Therefore,

according to (4.3-14), there exist polynoms D;(z), j=0,1,2,3,4,
satisfying

14;(2)] = (1 — 2)22D;(2). (4.3-18)

Considering |Ayp(z)|, we write Aj(z) = 'Z‘??(fz))‘ = zDy(z). Now, for z =0,

zDy(z) = 0, so that A}(z)].—o= 0. Calculating A}(z), it follows that A}(0) =0
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if and only if the following condition holds:

—212yPy 31 — 3/12P0,3,1 —124yPy91 + 3)~2P0,3,0 — 4Py 9,
— 33uPy 51 + 10AuPy oo + 81 Pygs — 81 Po1s + 129°Py 15
+249*Pygs — 120pPos — 1247Po 12 + 32upPogs = 0. (4.3-19)

Clearly, result (4.3-19) gives another equation in the unknown
probabilities.

4.4. Solving the Model

We now have 13 equations in the 14 unknown probabilities, where
10 equations are given by the set (4.1-1); the 11th is the 5th equation in
(4.1-2) where n = 0,j = 4 and x = 0; the 12th is given by (4.3-19); and the
13th is |A;(%)| = 0. Adding the ‘total probability’ equation Z% Gi(1) =1,

j=0
A1 . .
where G;j(1) = %, we have a set of 14 linear equations as follows:

APoo0 = 7Po10,

(A +w)Poos = APyoo + 7Poo,

(A +21)Poo2 = APyor + 7Po 2,

(A+2w)Poos = APoog + VP03,

(24 Poro = uPoo1 + 27Pogo,

(A+u+) Py = AP0+ 2P0 + 29Po2,

(A+2u+ ) Pag = APy + 2uP0s + 29 P22,

(4 +29)Pooo = ubo11 + 37Pos0,

J (A+p+2y)PRg1 = APogo + 2uPo12 + 37 P31, (4.41)

(A+ 39 Poso = 121 + 47 Poao,

(A +4y)Poao = 1los1,

—210yPy 31 — 34°Posy — 124y Pogy + 322 Pogo — 4P,
— 3AuPos1 + 10AuPo s,

+8* Py — 814° Poy s + 129 Py s + 249* Poge — 1229Po s
—124yPy 19 + 32uyPyee = 0,

|40 (20)[= 0,

1 4
L ] =
=0
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Note that |A(1)] contains only parameters (see (4.3-13)) while the [A;(1)]
determinants contain the unknown probabilities appearing in the first
11 equations in (4.4-1).

4.5. A Matrix-Geometric Representation

Similarly to Section 3.6 the stability condition is mAse > nAje. The
matrix A is given by

—4y 4y 0 0 0

po —(u+3y) 3y 0 0

A= 0 2u —(2u+2y) 2y 0
0 0 20 —Qu+y) vy

0 -2

0 0 2u U

The stationary vector 7 is given by

1 40 60? 66° 36*

YR ™= - g = ——, T3 = ——, Ty = ——,
M M M M M

M =1+ 40+ 60° + 60° 4 30".

Ty = where
Then the stability condition wAse > wAye results in

(4 + 12p + 12p* 4 6p°)
v .

A < y(4ny + 37y + 279 + Tg) = (4.5-1)

4.6. Numerical Example

We take 4 =1,u =1,y = 2 (which satisfy (4.5-1)).
Substituting the above values in (4.3-17) yields

2% — 312" + 3672* — 25072° + 54202 — 5500z + 848 = 0. (4.6-1)
Solving equation (4.4-3) by using Maple8 gives 6 roots:

z = 0.1859203482, z = 1.983296038, 2z = 4.504664998,
7 = 6.386321371, z, = 8.249933184, 2z = 9.6898606. (4.6-2)
Substituting z = 0.1859203482 in the next to last equation of the system

(4.4-1), we obtain the set of equations leading to the following explicit
solution:

Pooo = 0.2011092708, Pyo; = 0.2013286358, Py, = 0.1005546354,
Py11 = 0.1007740004, Pygs = 0.1009616386, Py, = 0.05077814,
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Pyo1 = 0.02515452226, Pyoo = 0.0250838176, Pyps = 0.05074499283,
Py1s = 0.02563666995, Pys, = 0.00404783935, Pys, = 0.0041075146,
Pyao = 0.0004497599277,  Pyyy = 0.0129066784. (4.63)
Substituting (4.4-5) in (4.3-21) and using Gj(z) = 11))’((;) (see (4.3-16) and
(4.3-18)) we get Go(1) = 0.6019, Gy(1) = 0.3040, Gy(1) = 0.0800, Gs(1) =
0.0130, G4(1) = 0.0011.

4
Clearly, ¥ " G(1) = 1. (4.6-4)
j=0

The above yields the expected number of satellite customers

4
E[J1=_jGi(1) = 0.5064. (4.6-5)
j=0

Let I denote the number of customers in the intermediate buffer.
Then (Figure 2),

E(I) = 1(130,0,3 + Gl(l) - PO,],O - PO,l,l - PO,],Q)
+ Q(Gﬁ(l) - PO,O,O - PO,O,I - P0,0,2 - PO,O,S)-

This follows since, when X = 3 (X = 4) only one (two) customer(s) stay(s)
in the intermediate buffer.
Thus, using (4.4-5) and (4.4-6) we get

E(I) = 0.1981509. (4.6-6)

The expected number of jobs in the controller’s buffer is given by

4
E(N) =Y _EIN|J =jIP(J = ).
j=0

£(G(2) ]

Since E[N|] =j] = G
j

, we have

4

d
EINI =} | —(Gi(2))].21= 0.143.

=0

Thus, the total number of waiting jobs, either in the controller’s buffer
or in the intermediate buffer, is E[L,] = 0.143 4 0.198 = 0.341.

This numerical example demonstrates the reduction in the mean queue
size accomplished by our ‘intermediate buffer’ model, as compared to the



Downloaded By: [Tel Aviv University] At: 17:26 28 May 2008

236 Kitsio and Yechiali

system analyzed in Litvak and Yechiali P!, where no intermediate buffer is
used. Using the same values for the parameters /4, and y, and applying
the equation for the mean queue size E[L,] given there (page 156), we get
E[L, = 1.49. (Litvak and Yechiali P!) Clearly, this last value is much larger
than 0.341.

5. THE ¢-SERVER MODEL

In this section we analyze the c—server M/M/c-type queue with
intermediate buffer of size = ¢. The model is depicted in Figure 5.

Again, the state space is {N,J, X} with the following interpretation:

x = 0 denotes that all servers are idle; 1 < x < ¢ indicates that exactly
x servers are busy.

When x = ¢ + k, ¢ customers are being served and another k customers

are waiting, k =1,2,...,¢. Note, that the controller only knows the sum
X + ] < 2¢ without having a precise knowledge of the specific values of X
or J.

Transition-rate diagrams for N =0 and for N =n (n =1,2,3,...) are
depicted in Figures 6 and 7, respectively.

Delay ~ exponential (y)

Controller

A N le ! | Intermediate
—* Unlimited buffer buffer with
””” size=c

FIGURE 5 A c¢server model with intermediate buffer of size = c.
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5.1. Balance Equations

Define P, ;. = Probability (N =n,/ =j,X =x), where n=0,...00,
j=0,...2¢c,x=0,...,2¢c.

For each value of N (N =0,1,2,...,n,...) we write, for J+X < 2¢—1,
the set of corresponding balance equations, as follows. Consider Figure 6,
then

Py = P00,

(A+wPoo1 = AP0 + VP11,

(A+21)Pooe = AP0y + P12 (5.1-1)
(A+ c)Poo,c = APog.c-1 + 7 Po1.cs

(Z+ c)Pog, i1 = APooc + P41 J=0N=0

(A4 e Popge—1 = APopgc—2 + 7 P21 0 < X <2¢—1

(A+7)Poro = 1Poor + 27Pogo,

(A+u+ )Py = APo1o + 2uPog2 + 29Py 2.1,

(A+2u+y)Porg = APo11 + 3ubPoos + 29P 29,

‘ (A4 cp+ )Py = APo1 1 + cpuPop1 + 29P s, J=1LN=
(A+ e+ )Pt = APy + cuPop o + 29 Pog et 0<X=<2c-2
(A+ e+ ) Poroc—o = APy19c—s + cpiPog 201 + 27 Pog9c—2. ( )

5.1-2

2c-14¢

cq

c-14

24

FIGURE 6 Transition-rate diagram for the ¢-server case, N = 0.



Downloaded By: [Tel Aviv University] At: 17:26 28 May 2008

238 Kitsio and Yechiali

(24 e))Poo = uPy 11+ (¢ + 1)yPo 1105
(AF+pu4 )Py = APy o+ 2uPy 19+ (¢ + 1)yPy i1,
(A+2u+c))Pyjo = APyc1 + 3uPy 13

+ (¢ + D)y Pocir2, J=¢N=0
(4 (c=Dpu+ )Py = APy oo+ cuPy 1,
+ (c+ DyPoq1-1- 0<X<c¢—-1
(5.1-3)

(4 (2c—=2)))Pygc—90 = UPp2c-3,1
+(2c — DyPogc-1.0, J=2c—2,N=0

ﬂ (5.1-4)
(A4 u+(2c—2)))Pogc—91 = APys—ap
+2uPy 9,39 + (2¢ — 1)yPyoc—1,1. 0<X<l1
(A+Qc=1)P)Pooc—10 = uPooc—01+2¢yPoocy. J =2¢c—1,N=0,X=0
(5.1-5)

The points on the ‘diagonal’ where N =0, ] + X = 2¢ yield the following:

(24 cp)Popoe = 2Pyggc—1 + VPr1gc—1, J+ X =2c,
(Z+cep+9)Poroc = APy19c—9 + cuPogo. +29Prioo, 9, N =0
(A4+2¢))Pooco = UPpoc—11-

(5.1-6)

We define the set (5.1-1)—(5.1-5) together with the last equation of (5.1-6)
as the “boundary equations”.
Consider now Figure 7. For N = n > 1 we have

(A4 c)Pyoge = APu109c + VPus1120-15
(A+cu+y)Puige—1 = APu1190-1 + cluPygoc + 29Pi129.-9,
(A4 cu+2y)P, 29,9 = APy 1992 + Py 12,1
+3yPu1320-3, J+ X =2¢
(A+cep~+ )Py = APy 1 oo+ Py 101
1 t+DyPiiciie1, N =mn,
(A+(c—=Du+ (c+ D) Pucirc = APy cp101 + P,
+(c+2)yPui1c42.0-2, n=1,2,3,...
(A+2u+(2¢=2)y) Proc—99 = APy_12-290F31P, 9033+ (2¢—1)yPy19.-11,
(A+u+ 2c— 1)) Proc1y = APy 9011 + 2UPy 0002 + 20 Py 900,
(A+2¢9)Pooco = APy 1900 + WPy oc—11-

(5.1-7)
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FIGURE 7 Transition-rate diagram for the ¢server case, N = n > 0.

5.2. Partial Generating Functions

For each level of the satellite customers | =0,1,2,...,2¢, we define
the corresponding (partial) generating function (PGF) as follows:

2c—1

Go(z) = ZPOOx + ZPHOM ,
Gi(z) = i: Py + Z P,ioc12",
x=0 n=0
c—1 o0
GL‘(Z) = Z PO,c,x + Z Pn,c,(zzn’

x=0 n=0

Goc(2) = ) Poaco?”.
n=0

(5.2-1)
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To illustrate how one obtains the set of equations relating the G;(z) to each
other we take j = ¢. We write

(A+cu+ce)Po. = APy o1 + Py 1 o1

+(c+ DyProyrca from (5.1-6),
(A+ep+ e))Precz = APy oz + Py 10412

+(c+ DyPocy112 from (5.1-7),n =1,
(A4 cp+ cp)Po2® = APy 2" + cuPo 1 c117°

+(c+ D)ypPs 1,017 from (5.1-7),n = 2,
(A+cep+ )Py 2" = APy 102" + ciPy 1,01 2"

+(c+ DyPuiyeqr,0-12" from (5.1-7),

Summing the above equations over n we obtain

Z(}"(l - Z) + cH + CV) Z Pn,c,czn — CUz Z Pn,c—l,c-HZn

n=0 n=0

- (C + 1)’)) Z Pn,chl,ﬁlen = }LZPO,c,ﬁfl - (C + I)VPO,Hrl,cfl-

n=0

This equation may be written in terms of the generating functions as
2AL = 2) + cp+ ep)(Ge(z) = (Poco + Poen + -+ + Poee1))
—cuz(Geo1(2) = (Poe—10 + Poera + -+ Po1,0))
—(e+Dy(Ge1 (2) = (P err0t - - FPoer1,0-2)) = AzPo o1 — (c+1)pPo 101

That is,
2(A(1 = 2) + e+ ¢9) G(2) — cuzG_1(2) — (¢ + 1)y Gy1(2)
= A2ly 1 — (¢ + DyPo e + 2(A(1 = 2) + cu+ ¢y)
X (Poco+ Pocy+ -+ Poee1) = (¢ + D)p(Boerr0+ -+ Poerre—2)
— cuz(Poc-10+ Poc—11+ -+ Poe—1.0)- (5.2-2)
Define the right hand side of (5.2-1) as b,(z). That is,
A2Py 1 — (¢ + 1)y Py y1,e-1 + 2(A(1 — 2) + e+ ¢))
X (Poco+ Pocy+ -+ Poee1) = (¢ + D)p(Boer10+ -+ -+ Pojerie-2)
—cuz(Poc1o+ Poeora + -+ FPoo1.0) = b(2). (5.2-3)
Also, let a,(z) = A(1 — z) + cit + ¢y. Then, (5.2-3) can be written as
2a,(2)G,(z2) — cuzG,_1(z) — (¢ + 1)yG41(z) = b.(2). (5.2-4)
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Similarly, define

ap(z) = (1 — 2) + ep,

m(z)=A1 —2)4+cu+y,

a(z) = A(1 — z) + cu+ 2y,

a.(z) =M1 —z) + cu+ ¢y,
a41(z) = A1 —2) + (¢ — Dp+ (¢ + D)y,
age1(z) = A1 —2) + u+ (2¢ — 1)y,

. (z) = A(1 — z) + 2¢.

Proceeding in a similar manner the sets of equations (5.1-6) and (5.1-7)
are transformed into the matrix representation A(z)G(z) = b(z), where
A(z) is given in Figure 8, G(z) is the vector of PGFs and b(z) is the (2¢ + 1)
vector of right-hand side values b;(z).

We note that the determinant of A(z) can be calculated recursively as
follows:

Defining B, (z) = ay.(2),

Bi(z) = {Z“?“(Z) —20) } Then , |Bo(2)] = 20,1 (2)] By (2)|—2¢1y.

—u aQﬂ(Z)
zag—9(z) —(2¢ — 1)y 0

By(z) = { —cuz zap.—1  —2¢y ¢ Then,
0 —Hu @c(z)

0 1 2 3 ... c¢2 c-1 c ctl ... 2¢2  2c-1 2c
zay(z) -y 0 0o .. 0 0 0 0 . 0 0 0
—cuz  za(z) -2y o .. 0 0 0 0 . 0 0 0

0 —cuz za,(z) -3y .. O 0 0 0 . 0 0 0

A4,(2) = 0 0 0 0 .. —cuz za_(z) -cy 0 . 0 0 0

0 0 0 o .. 0 —cuz  za(z) —(c+ly .. O 0 0

0 0 0 o .. 0 0 0 0 v —cz za, (z) -2cy

0 0 0 0o .. 0 0 0 0 . 0 —-u a,,(z)

FIGURE 8 A(z) for the c¢server case.
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|B3(2)| = z{ap.—2(2)|Bo(2)|—c(2¢ — 1) puy| By (2)[}.

By.y1 = A(z). Now |A(z)] is calculated recursively:

|A(2)| = [Beet1(2)| = z[ao(2)|Bec (2) | = cpty| Boe—1(2)]]. (5.2-5)

5.3. Procedure for Solving the General c-Server Model

For the general c¢-server case, proceeding in a similar method as for
the special cases ¢ =1 and ¢ =2, presented in previous sections, we
can write W —2c=2¢"4 ¢+ 1 equations for the corresponding
“boundary probabilities” (Figure 6). The boundary probabilities are those
for which n =0 and their balance equations involve only probabilities
for which n =0. Indeed, for single-server case we have 4 boundary
probabilities, and for the case ¢ =2 there were 11 such probabilities.
On the other hand, 2¢? + ¢ + 1 boundary equations contain Z“DEZH2)
1 = 2¢* 4+ 3¢ different unknown probabilities. This implies that we need
additional 2¢ — 1 equations in order to solve the model. For ¢ = 1 the extra
equation was the ‘total probability’ equation, while for ¢ = 2 we generated
3 additional equations, one of which is the ‘total probability’ equation. (see
last 3 equations in (4.4-1)). For the general case we utilize the properties
of the determinant of the matrix A(z) which is a polynomial of degree
4c + 1 (as.(2) has degree 1 and za;(z) has degree 2, for j =0,1,...,2¢ —1).
Indeed, for ¢ = 1, the degree of |A(z)]| is 5, while for ¢ = 2 it is 9. We have
the following:

Theorem 5.3.1.  The polynomial |A(z)| has a root of multiplicity ¢ at = = 0;
¢ — 1 distinct roots in (0,1); a single root at z = 1; and 2¢ + 1 roots in (1, 00).

Proof. From the recursive equation (5.2-5) it is easy to see that each of
the polynomials |By;1(z)| and |By;9(2)|, for j =1,2,...,¢ — 1 has a root of
multiplicity j at z = 0. Also, |Bs.4+1(2)|= |A(z)| has a root of multiplicity ¢
at z = 0. The rest of the proof is similar to that of Theorem 3.1 in Litvak
and Yechiali ®! since the matrix A(z) here has exactly the same structure
as the matrix A(z) there, where the only real difference is that the size of
A(z) here is 2¢ + 1 compared to ¢ 4 1 there (another insignificant change
is that p and 7y switch their positions in the matrix). ([l

The solution procedure is now concluded by deriving ¢—1
independent equations from the ¢ — 1 distinct roots in (0, 1), additional
¢ — 1 equations from the ¢ roots at z =0 (note that for ¢ =1 there was
a single root at z = 0, but no additional equation could be derived from
this fact, and for ¢ =2 there where two roots at z =0, but only one
additional equation could be derived). To summarize, together with the
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‘total probability’ equation, we obtain the required 2¢— 1 additional
equations. Adding the 2¢* 4+ ¢+ 1 boundary equations we get a set of
2¢? 4+ 3¢ equations in the 2¢2 + 3¢ unknown probabilities.

Note:  When p — oo, the system converges to a M/M/2¢-type queue
with arrival rate A and ‘service’ rate y for each individual server.

5.4. Matrix Geometric Approach

For the general case of ¢ > 2 the block-diagonal transition matrix Q
looks the same as in Section 3.6, but Ay, A; and A, are of order 2¢ + 1.
Specifically, with I being the unit diagonal matrix,

0 2¢y 0 0 0 0 0 0 07
0 0 2c—1)y ... 0 0 0 ... 0 0 O
0 0 0 0 0 0 ... 0 0 O
0 0 (c—i-.l)y 0 0 0 0 0
Ay = 0 0 0 0 cy 0 ... 0 0 0 |,
0 0 0 0 0 (¢—1y ... 0 0 O
0 0 0 0 O 0 0 2y 0
0 0 0 0 0 0 0 0
i 0 0 0 0 0 0o 0 0 |
Ay = Al
[ =+ 2¢p) 0 0
U —(A+u+QRc—1)y) ... 0
A 0 0 .. —(A+(C—=Dpu+(c+1Dy)
L=
0 0 cl
0 0 0
i 0 0 0
0 0 0 ]
0 0 0
0 0 0
—(A+cu+cey) ... 0 0
0 ceo —(AH+cu+y) 0
0 cu —(A+ep) |
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The dimension of the vector 7 is 2¢ + 1 and the solution of

1A =0,
Mo+ 7+ 7o + -+ + Moy + 7o, = 1

is given by
T = 2607[(),
2¢\
T = . 0ny for 0 <k <ce,
TE6+1 = 97'56,

_ c! 0\" _ 2¢! o o\"
nHm_(c—m)! ¢ 7tC_c!(c—m)! c)’

for 0 <m <e.
The stability condition mAse > wAge is translated into

A <y2emy+ (2¢ — Dy + -+ + (2¢ — k)7 + 2799 + Toe—1). (5.4-1)

It is interesting to note that the probabilities {r; : 0 < j < 2¢} are the steady
state solution of a machine-repair model with 2¢ identical machines, and
¢ servers. The time until breakdown of a machine and the repair time are
exponentially distributed with parameters y and pu, respectively. 7; denotes
the probability that j machines undergo repair.

6. CONCLUSION

In this work we have analyzed multi-server queues with intermediate
buffer and delayed information on service completions. We used two
methods of analysis: (1) via probability generation functions, which leads
to calculating roots of a certain polynomial and using the roots in
order to find the values of what we call ‘boundary probabilities’. (2) via
matrix—geometric approach, which enabled us to specifically calculate the
stationary condition of the system for any number of servers ¢ > 1. It is
shown that by using an intermediate buffer in front of the servers, queue
sizes (and waiting times) are reduced.
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