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Abstract
This paper considers an unobservable two-site tandem queueing system attended by
an alternating server. We study the strategic customer behaviour under two threshold-
based operating policies, applied by a profit-maximizing server, while customers’
strategic behaviour and server’s switching costs are taken into account. Under the
Exact-N policy, in each cycle the server first completes service of N customers in
the first stage (Q1), then switches to the second stage (Q2) and then serves those N
customers before switching back to Q1 to start a new cycle. This policy leads to a
mixture of Follow-the-Crowd and Avoid-the-Crowd customer behaviour. In contrast,
under the N-Limited policy, the server switches from Q1 to Q2 also when the first
queue is emptied, making this regime work-conserving and leading only to Avoid-
the-Crowd behaviour. Performance measures are obtained using matrix geometric
methods for both policies and any threshold N , while for sequential service (N = 1)
explicit expressions are derived. It is shown that the system’s stability condition is
independent of N , and of the switching policy. Optimal performances in equilibrium,
under each of these switching policies, are analysed and compared through a numerical
study.
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Queueing Systems

1 Introduction

This study analyses a queueing systemwhere customers are served in two phases by the
same server. There is a separate queue for each phase, and the server alternates between
the two queues. The server incurs a switching cost for every change in the queue
being served.1 Arriving customers are strategic and act to maximize their utility. Their
decision to join or not is based on the system’s known parameters, while the system’s
state is unobservable. Customers are homogeneous; they incur a waiting cost which is
linear in their sojourn time in the system and gain a fixed value upon service completion
in the second phase. Both queues are first-come first-served (FCFS),whereas the server
determines the operating policy (that is, when to serve in each queue).

We consider two common threshold-based operating policies (regimes): (i) Exact-
N and (ii) N-Limited. The first is a strict policy in which the server switches the
queue operated only after the number of customers served reaches a fixed threshold.
The second is a more adaptable policy, where the server switches when reaching the
threshold or when the first queue is emptied, whatever occurs first.

A simple example for such a model is a food stand where a single operator serves
each arriving customer at two tandem stations. First is receiving an order from the
customer, and second is processing the order. Obviously, accumulating several orders,
and then serving these customers, can be more efficient. This attribute is expressed as
a switching cost in our model. Another example is a safety-concerned double system
of gates, as operated in a safari or in high-security establishments, where at most one
gate can be open concurrently.

Observing these examples or similar ones, intuition may consider the N-Limited
policy as a superior regime, due to its work-conserving quality, where the server never
idles when the system is not empty, in contrast to the Exact-N policy. However, the
latter may be justified when a significant switching cost is incurred. For example, in
an industry where a product is processed at two tandem stations operated by the same
machinery but under different setups.

Our model belongs to the strategic queueing literature which has been studied
extensively since Naor’s pioneering work [22], where server and customer strategies
werefirst considered in anobservable classicalM/M/1 system.Yechiali [27] studied the
observable GI/M/1 queue and showed that, among all randomized customers’ joining
policies, the non-randomized threshold policy of Naor is indeed optimal. Edelson
and Hilderbrand [11] examine the unobservable case of Naor’s model, and further on
numerous extensions of this idea have been published. Hassin and Haviv [15] and
Hassin [14] provide surveys of this field. Queueing systems with an alternating server
(also known as ‘polling systems’) have been studied extensively in the literature (for
example, Boxma et al. [9], Takagi [25] and Yechiali [28]). For a survey of this subject,
see Boon et al. [6].

Arachenkov et al. [5] and Perel and Yechiali [24] present a two-queue system
when an alternating server uses a threshold-based switching policy. Jolles et al. [17]
extend the model to include switchover times. Similarly, we define our model as a

1 Often a switch is accompanied by a switching time. We simplify the model by assuming that it can
practically be substituted by an appropriate switching cost.
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three-dimensional Markovian process, examine both non-work-conserving and work-
conserving policies and use matrix geometric techniques and probability generating
functions as the main mathematical methods to derive the multi-dimensional probabil-
ity distribution function of the system’s states in stationarity, from which the system’s
performance measures are obtained.

The topic of tandem queues is well studied. Usually, there is a server at each stage.
Nair [21] and Taube-Netto [26] introduced the idea of two queues in tandem where
a single alternating server operates both queues. There are several subsequent works
(for example, Katayama [18] and Iravani et al. [16]), where mostly the optimization
problem considered is minimizing the server’s expenses.

Additional closely related works are Bountali and Economou [7] and Bountali and
Economou [8], where strategic behaviour in a two-stage service system with batch
processing is studied. Their methods and results have some resemblance to ours.

As perceivable from this literature review,manyworks have considered the subjects
of alternating servers, tandem queues or strategic behaviour in queueing systems.
Furthermore, there are examples for equilibrium strategies in tandem queues (for
example,D’Auria andKanta [10] andAllon andBassamboo [2]) and in polling systems
(for example,Altman andShimkin [3],Atar andSaha [4] andAdan et al. [1]).However,
in spite of the extensive study in these fields we are not aware of a paper considering
all three subjects combined. This is where our work is positioned.

In this work, we study the equilibrium behaviour under steady-state conditions of
the system in the strategic game among the agents (the customers and the server).
The server determines the operating policy, threshold and price, in order to maximize
profit (net income). Our goal is to compute, for given price and policy, the equilibrium
effective arrival rate, and then, using this information, to compute the maximal profit
and the corresponding price and threshold level, and compare the outcomes for the
two policies (Exact-N and N-Limited).

The structure of the paper is as follows: In Sect. 2, themodel is described and defined
as a three-dimensional continuous-time Markov chain (CTMC) and formulated as a
two-dimensional quasi birth-and-death (QBD) process, and the strategic aspect is
explained. In Sect. 3, a matrix geometric approach is employed to derive the system’s
steady-state probabilities by which the expected sojourn time for each of the above-
mentioned policies is obtained. In Sect. 4, customers’ strategic behaviour is analysed
and possible equilibria are detailed. In Sect. 5, the special case of sequential service
(when the threshold is N = 1) is explored and analytical results are derived. Section 6
presents extensive numerical study and its inferences are discussed. Finally, main
conclusions along with suggestions for further research are provided in Sect. 7.

2 Themodel

2.1 Model description

We study a two-site tandem queueing system, where a single server alternates between
the two queues. Each site Qi is a FCFS queue with an exponential service time with
rateμi (i = 1, 2). Customers are served one by one in each site.A customer first arrives
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Fig. 1 A flow diagram of the system

at queue Q1, which has an unlimited buffer, and is requested to pay p, a service fee
(price) determined and collected by the server. Upon service completion at Q1, the
customer immediately proceeds to Q2. There, the customers await for the server to
switch over from Q1 and are then served in the order of arrival. A customer who
completes service at Q2 obtains a fixed reward V (the service value) and leaves the
system. When Q2 is emptied, the server switches back to Q1 and so forth. Customers
incur a cost of CW per unit time they spend in the system (waiting or being served).
The server incurs a switching cost of CS for every double switch (from Q1 to Q2 and
back) between the queues.

Customers are homogeneous and the potential Poisson arrival rate� is greater than
the server can handle. Both queues are unobservable, and arriving customers decide
to either join the system or balk, based on the server’s policy and price. We denote
the joining rate or the effective arrival rate, by λ. See Fig. 1 for an illustration of the
system.

We study two operating policies (regimes):

1. Exact-N : The server attends Q1 until exactly N customers are served, then switches
to Q2 and serves continuously the N customers accumulated there. Upon service
completion at Q2, the server switches back to Q1, resides there until exactly N
customers are served, switches again to Q2, and so forth. Note that this is a non-
work-conserving regime.

2. N-Limited: The server switches to Q2 after serving continuously up to a maximum
number of N customers at Q1 or when Q1 is first depleted (in any case, at least
one customer is served). After switching to Q2, the server serves the customers
accumulated there and then switches back. This is a work-conserving regime.

2.2 Setting as a QBD process

Denote by Li (t) the number of customers in Qi at time t , and let I (t) = i if at time t
the server attends Qi (i = 1, 2). The triple (L1(t), L2(t), I (t)) defines a irreducible
continuous-time quasi birth-and-death (QBD) process. Let Li = limt→∞ Li (t) (i =
1, 2) and I = limt→∞ I (t). A transition-rate diagram for the Exact-N policy is
depicted in Fig. 2 and for the N-Limited policy in Fig. 3. The numbers within each
node indicate (L1, L2), while the queue the server is operating at, i.e. I , is marked by
the shape and colour of the node, a blue circle for I = 1 and red rectangle for I = 2.
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Fig. 2 Transition rate diagram for the Exact-N policy, with N = 4

Further on we use the notation P(i)
nj for the steady-state probability that the system

is in the state (L1 = n, L2 = j, I = i), n = 0, 1, 2, . . .; j = 0, 1, . . . , N ; i = 1, 2.

2.3 Strategic view

In the game among the customers and the server, players maximize their own bene-
fit. We denote a customer’s expected utility by U (N , p) and the server’s expected
profit by r(N , p), when the decision variables determined by the server are the
operating policy, which is a tuple of the threshold and the queue principle, (N ∈
N) × {Exact − N , N − Limited} and the price p ∈ R+. Customers make one
decision—whether or not to join the system. Customers join if their expected util-
ity is positive, balk if it is negative and are indifferent if it is zero. The joining rate is
denoted by λ(N , p). A customer’s expected utility is a function of the price and mean
sojourn time in the system, W = W (N , λ(N , p)). To simplify notation, we omit the
decision variables (N , p) when no ambiguity arises.
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Fig. 3 Transition rate diagram for the N-Limited policy, with N = 4

A customer’s expected utility from joining the system is

U = V − p − CWW . (1)

Notice that

V − p − CW

(
1

μ1
+ 1

μ2

)
> 0 (2)

has to hold for customers’ utility to be positive (otherwise, under any positive joining
rate, the customers’ revenue from the service minus the price is not worth the cost of
their own service time).

Since customers are homogeneous, there exists a symmetric equilibrium where all
customers expect equal utility. Because of our assumption that the potential arrival
rate is higher than the server can handle, necessarily some customers balk. Thus, the
common expected utility in equilibrium is U = 0.
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In many simple queueing systems, a growth in customer expected utility U moti-
vates an increase in joining rate, resulting in an increase in expected sojourn time and
therefore in a decrease in expected utility. This is an outcome of negative externalities
caused by a customer when joining. Similarly, a reduction in customer expected utility
causes a decrease in joining rate, followed by a decrease in expected sojourn time and
therefore an increase in expected utility. Such a progression around equilibriummakes
it stable.

However, as will be elaborated in Sect. 4, this behaviour does not happen in every
point where U = 0. In the Exact-N Scenario, it is possible that a more congested
system will lead to a decrease in waiting time and then to an increase in the expected
utility, making this equilibrium unstable. This is a consequence of the coexistence of
positive and negative externalities inflected by customer behaviour under this policy.
We show that in the case of multiple equilibria with positive arrival rate only one of
them is stable and denote the joining rate in this equilibrium by λe. If there is no such
equilibrium, λe = 0 . We analyse the system in a stable equilibrium with positive
arrival rate.

The profit of the server is the revenue minus the expenses, which are calculated
differently for each of the scenarios. In the Exact-N scenario, the server incurs a
switching cost, CS, for every N arrivals. Therefore, the server’s expected profit per
unit time is

r = λp − CS
λ

N
= λ

(
p − CS

N

)
. (3)

In the N-Limited scenario the switching expenses (per customer) are not exclusively
dependent on N . It is possible to calculate the average number of switches executed
by the server per unit time by looking at either one of the two directions of switching.
The first option is by multiplying the proportion of time the server spends in the states
leading from I = 1 to I = 2 by the transition rate μ1, the second is by multiplying
the proportion of time the server spends in the states leading from I = 2 to I = 1 by
the transition rate μ2. Then (see Fig. 6)

r = λp − CSμ1

⎛
⎝∑

j<N

P(1)
1 j +

∑
n>1

P(1)
n,N−1

⎞
⎠ = λp − CSμ2

∑
n

P(2)
n1 . (4)

Weconsider amonopolistic profit-maximizing server.As inEdelson andHildebrand
[11], the profit-maximizationpolicy leads to social optimization,where the server gains
all the welfare.

Given the parametersμ1, μ2,CS,CW, and V , our goal is to find the maximal profit
r∗ and the corresponding optimal values for the decision variables N∗, p∗ and the
operating policy. This requires a few steps for each of the policies:

1. Calculation ofW (N , λ(N , p)). This step is achieved by using thematrix geometric
method to obtain the system’s steady-state probabilities.

2. Finding the equilibrium effective arrival rate λe(N , p) for any pair (N , p) of policy
and price.
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Fig. 4 Transition rate diagram for the Exact-N policy

3. Finding the maximal profit r∗ and the matching optimal pair (N∗, p∗).

For the sequential service case (when N = 1), we obtain a closed-form solution of
the expected sojourn time while using the probability generating functions (PGF)
method, by which we manage to reach a close-form solution for the optimal price and
corresponding effective arrival rate and profit.

3 Performancemeasures

3.1 Exact-N scenario

The triple (L1, L2, I ) defines a QBD process at stationarity, where L1 denotes the
‘level’ and the pair (L2, I ) indicates the ‘phase’ of the process. In Fig. 4, we provide
an alternative (traditional) representation of the transition rate diagram of the process.
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The infinite-state space S is ordered as follows: We start with column L1 = 0 and go
down the boxes from L2 = 0 to L2 = N , where, in each box, we specify first the state
(if any) associated with I = 1 (marked by a blue round dot at the upper-left corner),
and then the state (if any) associated with I = 2 (marked by a red square dot at the
lower-right corner). We proceed similarly with columns L1 = 1, 2, . . . , n, . . . . Thus,
the state space is

S = {(0, 0, 1), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2), . . . , (0, N − 1, 1), (0, N − 1, 2), (0, N , 2);
(1, 0, 1), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), . . . , (1, N − 1, 1), (1, N − 1, 2), (1, N , 2); . . .

(n, 0, 1), (n, 1, 1), (n, 1, 2), (n, 2, 1), (n, 2, 2), . . . , (n, N − 1, 1), (n, N − 1, 2), (n, N , 2); . . .} .

The generator matrix Q is given by

Q =

⎛
⎜⎜⎜⎝
B0 A0 0 · · · · · · · · ·
A2 A1 A0 0 · · · · · ·
0 A2 A1 A0 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ ,

where 0 is a matrix of zeros and B0, A0, A1, A2 are the following matrices, all of size
(2N ) × (2N ), with α1 = λ + μ1 and α2 = λ + μ2 :

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 0 0 0 · · · · · · · · · 0 0 0
0 −λ 0 0 0 · · · · · · · · · 0 0 0
μ2 0 −α2 0 0 · · · · · · · · · 0 0 0
0 0 0 −λ 0 · · · · · · · · · 0 0 0
0 0 μ2 0 −α2 · · · · · · · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 · · · · · · · · · −λ 0 0
0 0 0 0 0 · · · · · · μ2 0 −α2 0
0 0 0 0 0 · · · · · · · · · 0 μ2 −α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 = λI ,

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1 0 0 0 0 · · · · · · · · · 0 0 0
0 −α1 0 0 0 · · · · · · · · · 0 0 0
μ2 0 −α2 0 0 · · · · · · · · · 0 0 0
0 0 0 −α1 0 · · · · · · · · · 0 0 0
0 0 μ2 0 −α2 · · · · · · · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 · · · · · · · · · −α1 0 0
0 0 0 0 0 · · · · · · μ2 0 −α2 0
0 0 0 0 0 · · · · · · · · · 0 μ2 −α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ1 0 0 0 · · · · · · · · · 0 0 0
0 0 0 μ1 0 · · · · · · · · · 0 0 0
0 0 0 0 0 · · · · · · · · · 0 0 0
0 0 0 0 0 μ1 · · · · · · 0 0 0
0 0 0 0 0 · · · · · · · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 · · · · · · · · · 0 0 μ1
0 0 0 0 0 · · · · · · · · · 0 0 0
0 0 0 0 0 · · · · · · · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let A = A0 + A1 + A2 , Then

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ1 μ1 0 0 0 0 · · · · · · · · · 0 0 0 0
0 −μ1 0 μ1 0 0 · · · · · · · · · 0 0 0 0
μ2 0 −μ2 0 0 0 · · · · · · · · · 0 0 0 0
0 0 0 −μ1 0 μ1 · · · · · · · · · 0 0 0 0
0 0 μ2 0 −μ2 0 · · · · · · · · · 0 0 0 0
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

0 0 0 0 0 0 · · · · · · · · · 0 −μ1 0 μ1

0 0 0 0 0 0 · · · · · · · · · μ2 0 −μ2 0
0 0 0 0 0 0 · · · · · · · · · 0 0 μ2 −μ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the states are the phases of the process (L2, I ). The underlying process defined
by A is a cyclic-state process, as depicted in Fig. 5.

Let �π =
(
π

(1)
0 , π

(1)
1 , π

(2)
1 , . . . , π

(1)
N−1, π

(2)
N−1, π

(2)
N

)
∈ [0, 1]2N be the stationary

probability vector of the matrix A, i.e. it satisfies

{
�π A = �0
�π · �e = 1

.

Then, �π = (θ2, θ2, θ1, θ2, θ1, . . . , θ2, θ1, θ1), i.e., the first element is θ2, the last ele-
ment is θ1, and in between there are N − 1 pairs of (θ2, θ1), where θ1 = μ1

N (μ1+μ2)

and θ2 = μ2
N (μ1+μ2)

. Following Neuts [23], the stability condition �π A0�e < �π A2�e
becomes

0,1

1,1
μ1

2,1
μ1 ..........μ1

N -1,1

N ,2

μ1

N -1,2

μ1

μ2

.......... μ2
2,2

μ2
1,2

μ2

μ2

Fig. 5 The underlying process defined by A
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λ <
μ1μ2

μ1 + μ2
,

which is equivalent to

1

λ
>

1

μ1
+ 1

μ2
. (5)

Notice that this condition is independent of N and requires that the mean inter-
arrival time should be greater than the mean total service time given to each individual
customer.

Denote the proportion of time the server is busy by ρ = λ( 1
μ1

+ 1
μ2

). The number
of states where the server is idle is N and the sum of their stationary probabilities is
P(1)
0• = ∑N−1

j=0 P(1)
0 j = 1−ρ . When N increases, the probability that at least one new

customer arrives while the server serves the N customers at Q2 increases accordingly.
Thus, when N → ∞ the probability that no new customers will join tends to 0, so
P(1)
00 → 0 , and the probability that the server is idle while there are customers in the

system is P(1)
0• − P(1)

00 → 1 − ρ .
Next, we calculate the stationary probability of each state. Define the steady-state

probability vector �P = ( �P0, �P1, . . . , �Pn, . . .
)
, satisfying

�PQ = �0, (6)

�P · �e = 1, (7)

where �0 is a vector of zeros, �e is a vector of ones and the 2N -dimensional probability
vectors are

�Pn =
(
P(1)
n0 , P(1)

n1 , P(2)
n1 , P(1)

n2 , P(2)
n2 , . . . , P(1)

n,N−1, P
(2)
n,N−1, P

(2)
nN

)
, n ≥ 0 . (8)

Now we rewrite the balance equations (6) as a set of matrix equations:

�P0B0 + �P1A2 = �0, (9)

�Pn−1A0 + �Pn A1 + �Pn+1A2 = �0 , n ≥ 1 . (10)

As in Neuts [23] we recursively express �Pn in terms of �P0 and a matrix R:

�Pn = �P0Rn , ∀n ≥ 0 , (11)

where R is the minimal non-negative solution of the matrix quadratic equation

A0 + RA1 + R2A2 = 0 ,

or,

R = −(R2A2 + A0)A
−1
1 . (12)
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The matrix R is calculated via a successive-substitutions algorithm (see, for exam-
ple, Harchol-Balter [13], Section 21.4.3, page 370). We note that there are occasions
where R can be determined explicitly (Latouche and Ramaswami [20] for special
cases, and Hanukov and Yechiali [12] for more general cases). The next step is find-
ing the vectors

( �P0, �P1, . . . , �Pn, . . .
)
. The cornerstone is reaching �P0 and onward, by

using (11), every �Pn can be calculated. There are two equations involving �P0: The first
is

�P0(B0 + RA2) = �0 , (13)

which is obtained by substituting (11) into the first matrix balance equation (9), and
the second is the normalizing equation (7), that can be rewritten as

∞∑
n=0

�Pn�e = 1 . (14)

Substituting (11) in (14) results in

�P0
( ∞∑
n=0

Rn

)
�e = �P0(I − R)−1�e = 1 . (15)

We find �P0 by solving the set of equations (13) with (15), and from there, by using (11)
we can calculate every �Pn . For further details turn to Appendix 1. The mean queue
sizes are given by

E[L1] =
∞∑
n=0

n �Pn�e =
∞∑
n=1

n �P0Rn�e = �P0R(I − R)−2�e , (16)

E[L2] =
∞∑
n=0

�Pn �Z , �Z = (0, 1, 1, 2, 2, . . . , N − 1, N − 1, N ). (17)

Placing the sum of those two equations in Little’s Law, we can obtain W (N , λ),
and by using Eq. (1) calculate U .

3.2 N-Limited scenario

For the N-Limited scenario, we use the same triple (L1, L2, I ) to define the QBD
process, but the state space changes. The sole difference is the removal of the boundary
states (0,m, 1),m > 0, as is seen in Fig. 6. The resulting state space is

S = {(0, 0, 1), (0, 1, 2), (0, 2, 2), . . . , (0, N − 1, 2), (0, N , 2);
(1, 0, 1), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), . . . , (1, N − 1, 1), (1, N − 1, 2), (1, N , 2); . . .

(n, 0, 1), (n, 1, 1), (n, 1, 2), (n, 2, 1), (n, 2, 2), . . . , (n, N − 1, 1), (n, N − 1, 2), (n, N , 2); . . .} .
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Fig. 6 Transition rate diagram for the N-Limited policy

The corresponding generator matrix Q is

Q =

⎛
⎜⎜⎜⎜⎜⎝

B0 C1 0 · · · · · · · · · · · ·
B1 A1 A0 0 · · · · · · · · ·
0 A2 A1 A0 0 · · · · · ·
0 0 A2 A1 A0 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

where thematrices 0, A0, A1, A2 are as in theExact-N scenario. B0 is different and now
of size (N+1)×(N+1). There are two additional matrices: B1 of size (2N )×(N+1)
and C1 of size (N + 1) × (2N ):
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B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 0 · · · · · · · · · 0 0
μ2 −α2 0 · · · · · · · · · 0 0
0 μ2 −α2 · · · · · · · · · 0 0
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

0 0 0 · · · · · · μ2 −α2 0
0 0 0 · · · · · · · · · μ2 −α2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ1 0 · · · · · · · · · 0 0
0 0 μ1 · · · · · · · · · 0 0
0 0 0 · · · · · · · · · 0 0
0 0 0 μ1 · · · · · · 0 0
0 0 0 · · · · · · · · · 0 0
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

0 0 0 · · · · · · · · · 0 μ1

0 0 0 · · · · · · · · · 0 0
0 0 0 · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 0 0 0 · · · · · · · · · 0 0 0
0 0 λ 0 0 · · · · · · · · · 0 0 0
0 0 0 0 λ · · · · · · · · · 0 0 0
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

0 0 0 0 0 · · · · · · · · · 0 λ 0
0 0 0 0 0 · · · · · · · · · 0 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since A0,A1,A2 are identical to the Exact-N case, it follows that the underlying
process defined by A = A0 + A1 + A2 is the same (Fig. 5) and so is �π , the stationary
probability vector of A. Therefore, we conclude that the stability condition in the N-
Limited Scenario is the same as in the Exact-N [Eq. (5)]. This is in spite of the fact
that N-Limited is a work-conserving regime and Exact-N is not. Note that, in contrast
to the Exact-N scenario, in the N-Limited case the server can be idle only when there
are no customers in the system. Hence, P(1)

00 = 1 − ρ for every N .
The steady-state probability vectors �Pn for n ≥ 1 are the same as in Eq. (8), but �P0

changes to

�P0 = (P(1)
00 , P(2)

01 , P(2)
02 , . . . , P(2)

0,N−1, P
(2)
0N ) . (18)

The matrix equation (9) is replaced by two new equations (19) and (20):

�P0B0 + �P1B1 = �0, (19)

�P0C1 + �P1A1 + �P2A2 = �0 , (20)

while the matrix equation (10) holds for n ≥ 2, namely,

�Pn−1A0 + �Pn A1 + �Pn+1A2 = �0 , n ≥ 2 . (21)

In this scenario �Pn = �Pn−1R holds for n ≥ 2 and, instead of (11), we get

�Pn = �P1Rn−1 , ∀n ≥ 1 , (22)

while R is calculated by successive substitutions as in Sect. 3.1 [Eq. (12)]. The vectors( �P0, �P1, . . . , �Pn, . . .
)
are calculated by the samemethod used in theExact-N scenario.
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Placing (22), first in the second balance matrix equation (20), we get

�P0C1 + �P1(A1 + RA2) = �0 , (23)

and second, in the normalization equation (14), we get

�P0�e +
∞∑
n=1

�P1Rn−1�e = �P0�e + �P1(I − R)−1�e = 1 . (24)

(Notice that the first �e is of size N + 1 and the second is of size 2N .) The procedure
to calculate �P0 is specified in Appendix 1. By using (22) one can calculate any �Pn .

The calculation of the expected queue sizes is similar to the Exact-N case:

E[L1] =
∞∑
n=0

n �Pn�e =
∞∑
n=1

n �P1Rn−1�e = �P1(I − R)−2�e , (25)

E[L2] = �P0 �Z0 +
∞∑
n=1

n �Pn �Z ,
�Z0 = (0, 1, 2, . . . , N ),

�Z = (0, 1, 1, 2, 2, . . . , N − 1, N − 1, N ).
(26)

Finally, W (N , λ) and U are obtained in the same way as in the Exact-N scenario.

4 Utility analysis

In order to determine the effective arrival rate in equilibrium, we analyse the utilityU
as a function of the effective arrival rate λ. From Eq. (1), U (N , λ) is a linear function
of the expected sojourn timeW (N , λ), and therefore, analysing the latter would apply
immediate conclusions on the former. Due to intricate, direct and indirect, dependence
of W on N , there is no closed formula of W for every N . However, as specified in
Sect. 3, one can numerically calculate W for any given N and λ. Thus, by numeric
methods, we are able to provide evidence of the convexity of W (λ) for every N . In
Sect. 5, we present an analytical proof of the convexity of W (λ) for the sequential
service (N = 1).

The mean waiting times in Q1 and Q2 as a function of λ are depicted in Fig. 7 for
the Exact-N scenario, and in Fig. 8 for the N-Limited case.

Figure 7 demonstrates that in the Exact-N Scenario the expected sojourn time in
the first queue, W1, is a convex increasing function of the effective arrival rate, and
in the second queue the expected sojourn time, W2, is a convex decreasing function
of the effective arrival rate (where, for the N = 1 case, W2 is constant). Figure 8
demonstrates that in the N-Limited Scenario the expected sojourn time in both queues
is a convex increasing function of the effective arrival rate (and again, when N = 1,
W2 is constant). An extensive numerical study verifies that these properties are kept
for larger values of N . We conclude that in both scenarios the expected total sojourn
time in the system is a convex function of the effective arrival rate. Hence, from (1),
the expected utility is a concave function of the effective arrival rate. In the Exact-N
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Fig. 7 Exact-N Mean sojourn timeWi in each queue as a function of the effective arrival rate λ for different
values of N , where μ1 = 1 and μ2 = 1 (ρ = 2λ)

scenario for N ≥ 2, U (λ) is unimodal with a maximum, whereas in the N-Limited
scenario, or under the sequential service (when N = 1), it is monotone decreasing
and concave. As explained in Sect. 2.3, customers’ expected utility in equilibrium is
zero. We identify a few options for each of the two possible patterns (unimodal or
monotone decreasing) of U (λ):

1. The Exact-N (Unimodal) Case:

(a) One Equilibrium When the maximum expected utility is negative, the only
equilibrium is when no customers join the system, i.e. λe = 0 (interpreted as a
scenario where the server decides not to operate the system). This equilibrium
is stable, in the sense that if a positive fraction of the customers change their
strategy and join, the individual’s expected utility is still negative and therefore
such a change will not affect the strategy of the rest of the customers. Notice
that this equilibrium always exits.

(b) Two EquilibriaWhen the maximum expected utility is exactly zero, we get an
additional equilibrium. This equilibrium is stable in the positive direction (an
increase in the joining rate leads to a utility diminution which leads back to a
decrease in the joining rate) and unstable in the negative direction (a decrease in
the joining rate leads to a utility diminution which leads to a growing decrease
in the joining rate). Hence, the only stable equilibrium is λe = 0.
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Fig. 8 N-Limited Mean sojourn time Wi in each queue as a function of the effective arrival rate λ for
different values of N , where μ1 = 1 and μ2 = 1 (ρ = 2λ)

(c) Three Equilibria When the maximum expected utility is positive there are
two equilibria, λ2 > λ1 > 0, in addition to the equilibrium at λ = 0. In
the neighbourhood of λ1, the utility is increasing in the joining rate, and thus
every drift is sharpened and this equilibrium is unstable. For λ2, the utility is
decreasing in the joining rate, and therefore the effect is restraining and this
equilibrium is stable. Thus, in this case we denote λe = λ2.

2. The N-Limited/Sequential (Monotone-Decreasing) Case:

(a) A Positive EquilibriumWhen V − p−CW( 1
μ1

+ 1
μ2

) > 0 [see (2)] there exists
λe > 0 where U (λe) = 0. Similar to λ2 in the previous case, this is a stable
equilibrium. λ = 0 is not an equilibrium, because an individual would gain a
positive utility from deviating from it and therefore will do so.

(b) The Zero Equilibrium When V − p −CW( 1
μ1

+ 1
μ2

) ≤ 0 the individual gains
no profit from joining the service even when there is no queueing time. That
is, ∀λ > 0 : U (λ) < 0 and the only equilibrium is when λe = 0.

Figure 9a shows two examples of the Exact-N case. For p = 10 there are three
equilibria (marked with a circle or a square), as in case (1c), and for p = 29 there
is one equilibrium (marked by a square), as in case (1a). In Fig. 9b, there are two
examples of the N-Limited case. For p = 10 the “positive” equilibrium (marked with
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Fig. 9 U (λ) in the different scenarios with N = 5, μ1 = 1, μ2 = 1, CW = 1, V = 30 and p = 10 or
p = 29

Fig. 10 The best response versus the joining probability

a circle), as in case (2a) and for p = 29 the “zero” equilibrium (marked with a square),
as in case (2b).

Let q ∈ [0, 1] be the probability of joining the service chosen as a strategy by all
customers. The best response (BR(q) ∈ [0, 1]) is the best strategy for an individual,
assuming all other customers execute joining strategy q. An individual who expects
positive utility U > 0 joins the system, i.e. BR = 1, and one who expects negative
utilityU < 0 does not join, so BR = 0. IfU = 0, the individual is indifferent between
joining and baulking. In Fig. 10, we display two examples of a best-response graph
as a function of the common joining probability: In Fig. 10a, an example that fits the
unimodal case of U (λ), and in Fig. 10b an example that fits the monotone decreasing
case (in both ∃λ : U (λ) > 0). Customers are homogeneous and therefore equilibrium
is reached when all execute the same strategy, thus, the equilibrium strategies are at
the values where the graph meets the 45° line.
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Notice that in the monotone-decreasing case there is one equilibrium, which is
typical to anAvoid-the-Crowd (ATC) situation. Compared to the unimodal case, where
there are multiple (three) equilibria, which is typical to a Follow-the-Crowd (FTC)
situation. However, as implicit from Fig. 10a, for small values of q FTC is indeed the
case, but for large values, it is an ATC situation (unlike typical FTC cases, the third
equilibrium is not q = 1).

5 Sequential service

An elementary special case is the sequential service, i.e. when N = 1. In this case,
the Exact-N and N-Limited scenarios coincide.

Denote by Xn the number of customers in the system (in fact, at Q1) at the instant
of the nth customer’s end of service at Q2 (there are no customers in Q2 and the server
switches back to Q1). The law of motion is

Xn+1 =
{
Xn + ξ − 1 + η , Xn ≥ 1 ,

1 + ξ − 1 + η = ξ + η , Xn = 0 ,
(27)

where ξ denotes the number of customers who joined the system (at Q1) during the
service of the customer in Q1 and η is the number of customers who joined (at Q1)
during the service of the customer in Q2.

Denote by Bi the service duration of a customer in Qi (i = 1, 2) with Laplace-
Stieltjes Transforms (LST) B̃i (s) ≡ E[e−sBi ] (note that in this section Bi is a random
variable, not thematrix appearing in Sect. 3). Then the probability generating functions
(PGFs) of ξ and η are given, respectively, by (as in Kleinrock [19] 5.46):

ξ̂ (z) = E[zξ ] = B̃1[λ(1 − z)] , η̂(z) = E[zη] = B̃2[λ(1 − z)] .

L1
L2

0 1 2 · · · n · · ·

0

1

λ λ

μ1

λ

μ1

· · · λ

μ1

· · ·

λ

μ2

λ
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λ

μ2

· · · λ

μ2

· · ·

Fig. 11 The transition rate diagram for N = 1
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Equation (27) resembles the law of motion of the classical M/G/1 queue, leading
to the PGF of the steady-state number of customers in the system, X :

X̂(z) = (1 − ρ)
1 − z

ξ̂ (z)η̂(z) − z
ξ̂ (z)η̂(z) , (28)

where

ρ = λ(E[B1] + E[B2]) = λ

(
1

μ1
+ 1

μ2

)
< 1 . (29)

Clearly, condition (29) is identical to the stability condition (5) we have found in
Sect. 3 for general N . When μ1 = μ2 = μ, this condition becomes λ <

μ
2 .

By manipulating the usual balance equations for the probabilities P(i)
nj , n =

0, 1, 2, . . .; j = 0, 1; i = 1, 2 corresponding to Fig. 11, we obtain recursive for-
mulas for the stationary probability for every state of the system as a function of the
boundary probability P(1)

00 :

P(1)
10 = λ + μ2

μ1

λ

μ2
P(1)
00 ,

P(2)
01 = λ

μ2
P(1)
00 ,

P(1)
n0 = 1

μ1

[
(λ + μ2)P

(2)
n−1,1 − λP(2)

n−2,1

]
, ∀n ≥ 2 ,

P(2)
n1 = 1

μ2

[
(λ + μ1)P

(1)
n,0 − λP(1)

n−1,0

]
, ∀n ≥ 1 .

(30)

Our next goal is to find an expression for the expected number of customers in the
system, E[X ] ≡ E[L]. This is possible by setting z = 1 in the derivative of X̂(z)
[Eq. (28)], or by exploiting the Partial Generating Functions method to calculate
separately the two queue sizes, while using the balance equations (as in Yechiali and
Naor [29]). But, due to the resemblance to the M/G/1 case, this result can be obtained
also by using the Khinchine–Pollaczek formula:

E[L] = ρ + λ2E[B2]
2(1 − ρ)

= ρ

1 − ρ
− λ2

μ1μ2(1 − ρ)
, (31)

where ρ = λ( 1
μ1

+ 1
μ2

), B = B1 + B2 and E[B2] = 2( 1
μ2
1

+ 1
μ1μ2

+ 1
μ2
2
).

From Eq. (31), it follows that the expected number of customers in the system is
smaller than in a corresponding standard M/M/1 queue (E[LM/M/1] = ρ

1−ρ
). This

deserves further examination. In our case, the service time for a customer is composed
of two independent lengths, each distributed exponentially, B1 with mean 1

μ1
and B2

with mean 1
μ2
. Consider an M/M/1 queue with arrival rate λ and exponential service
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time Bexp with mean E[Bexp] = 1
μ1

+ 1
μ2
. Clearly, these two systems have the same

work rate ρ = λ( 1
μ1

+ 1
μ2

) and the same mean service time

E[B1 + B2] = 1

μ1
+ 1

μ2
= E[Bexp] .

However,

Var[B1 + B2] = 1

μ2
1

+ 1

μ2
2

<

(
1

μ1
+ 1

μ2

)2

= Var[Bexp] ,

thus, E[L] in (31) is smaller than E[LM/M/1] .

Applying Little’s Law, we obtain the expected sojourn time of a customer in the
system:

W = μ1 + μ2 − λ

μ1μ2(1 − ρ)
. (32)

Proposition 1 In the N=1 case, while the stability condition holds, the expected
sojourn time is an increasing and convex function of the effective arrival rate.

Proof The claim follows since, under the stability condition, the function’s first and
second derivatives are positive:

W ′(λ) = μ2
1 + μ1μ2 + μ2

2

(μ1μ2(1 − ρ))2
> 0 , (33)

W ′′(λ) = 2(μ2
1 + μ1μ2 + μ2

2)(μ1 + μ2)

(μ1μ2(1 − ρ))3
> 0 . (34)


�
Nowwe are able to express the effective arrival rate in equilibrium, λe, as a function

of the parameters and the decision variable p. As explained in Sect. 2.3, in equilibrium
U = 0 for all customers; hence, by substituting (32) in (1) we get

V − p = CWW (λe) = CW
μ1 + μ2 − λe

μ1μ2

[
1 − λe

(
1
μ1

+ 1
μ2

)] ,

and isolating λe:

λe = CW(μ1 + μ2) − μ1μ2(V − p)

CW − (μ1 + μ2)(V − p)
. (35)
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As derived from Proposition 1, and elaborated in Sect. 4, Case 2a, when condition
(2) holds, there exits one positive value of λe, and indeed, the expression in (35) is
positive.

Our ultimate goal is to find the maximal profit for the server, r∗(p), and the corre-
sponding optimal price p∗. For N = 1 Eq. (3) is

r = λe(p − CS) ,

and its derivative with respect to p is

r ′(p) = λ′
e(p)p + λe(p) − CSλ

′
e(p)

= λe(p) + λ′
e(p)(p − CS)

= CW(μ1 + μ2) − μ1μ2(V − p)

CW − (μ1 + μ2)(V − p)
+ CW[μ1μ2 − (μ1 + μ2)

2]
[CW − (μ1 + μ2)(V − p)]2 .

From r ′(p∗) = 0, we eventually get two solutions:

p∗
1,2 = V − CW

μ1 + μ2
±

√
[ (μ1+μ2)2

μ1μ2
− 1][CW(μ1 + μ2)(V − CS) − C2

W]
μ1 + μ2

. (36)

Notice that

(μ1 + μ2)
2

μ1μ2
− 1 > 0 , (37)

which is the same as

1

μ1
+ 1

μ2
>

1

μ1 + μ2
.

Using the above and the fact that in a positive equilibrium condition (2) holds, we get

p∗ < V − CW

(
1

μ1
+ 1

μ2

)
< V − CW

μ1 + μ2
,

so we conclude that there is one possible optimal price:

p∗ = V − CW

μ1 + μ2
−

√
[ (μ1+μ2)2

μ1μ2
− 1][CW(μ1 + μ2)(V − CS) − C2

W]
μ1 + μ2

. (38)

From (37), the discriminant for (38) is non-negative when

CW(μ1 + μ2)(V − CS) − C2
W ≥ 0 ,
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that is,

V ≥ CW

μ1 + μ2
+ CS . (39)

The meaning of Eq. (39) is that for a set of parameters which would not satisfy this
condition the system is not profitable for N = 1.

Finally, the optimal profit can be calculated by using Eq. (35):

r∗ = CW(μ1 + μ2) − μ1μ2(V − p∗)
CW − (μ1 + μ2)(V − p∗)

(p∗ − CS) , (40)

where p∗ is given in (38). The next proposition specifies the sufficient (and for N-
Limited also necessary) conditions on the parameters for the optimal threshold to be
N∗ = 1.

Remark 1 Proposition 3 in Iravani et al. [16] provides a more general sufficient con-
dition than stated in Proposition 2 below. We provide it here for completeness.

Proposition 2 For all values of V such that λe > 0 ,

1. For the N-Limited policy: N∗ = 1 if and only if μ1CS
CW

≤ 1 .

2. For the Exact-N policy: N∗ = 1 if μ1CS
CW

≤ 1 .

Proof We have already argued that the monopolistic policy is socially optimal. Hence,
when the cost of switching is smaller than the cost of waiting for one service (CS ≤
CW
μ1

), itwill always be better to switch after one service andnotwait formore customers.

This explains why μ1CS
CW

≤ 1 is a sufficient condition for N∗ = 1 for both policies.
Notice that the only states where the N = 1 policy and the 2-Limited policy yield

different actions by the server are the states of the type (L1 > 0, L2 = 1, I = 1). In
this situation, by applying the 2-Limited policy rather than the N = 1 policy, the server
saves one switching cost CS while the customer in Q2 will incur an additional cost of
CW
μ1

. All other costs are similar (all customers incur CW
μ1

+ CW
μ2

for each customer that

has come before them and for themselves). So, if CS = CW
μ1

the server is indifferent

between the two policies with respect to social welfare. For CS = CW
μ1

− ε the optimal

policy is N∗ = 1 and for CS = CW
μ1

+ ε it is not, because 2-Limited yields a higher

social welfare. Therefore, if CS > CW
μ1

then N∗ �= 1, which proves that CS ≤ CW
μ1

is a
necessary condition for N∗ = 1. 
�

Remark 2 Proposition 2 does not depend on the arrival distribution or the service
time distribution as long as the stability condition (5) holds (where 1

λ
is the mean

inter-arrival time and 1
μi

(i = 1, 2) is the mean service time at Qi ).
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6 Numerical results for optimal values

In this section,we present numerical results and shed light on the systembehaviour. For
different sets of parameters, we calculate the optimal values of the objective function
(the server’s profit) and the corresponding decision variables (the price and threshold)
under each of the operating policies. To reduce the number of free parameters, we
assume the same service rate for both of the phases, i.e. μ1 = μ2 = μ (ρ = 2 λ

μ
).

As long as a positive profit is reachable, we assume a positive stable equilibrium has
been reached (see Sect. 4). Where no positive profit is possible, there is no service,
the system is not operating, and the optimal profit is r∗ = 0 (an exception takes place
in § 6.1, where a negative profit is displayed to illustrate the behaviour of the profit’s
function).

Following Naor [22], we normalize monetary values by setting the unit to be the
expected cost of waiting for a single service-phase completion, i.e. CW

μ
. We show the

optimal values achieved as a function of the normalized service value V̂ = μV
CW

and the

normalized switching cost ĈS = μCS
CW

. Consequently, the profit and the price presented
in this section are normalized in the samemanner. Computationally, this normalization
is equivalent to assuming μ = 1 and CW = 1.

6.1 Equilibrium effective arrival rate �e and profit r̂ as functions of price p̂when
threshold N is fixed

We gain several insights based on graphs like those in Figs. 12 and 13 (note that a
change in the value of the switching cost parameter does not affect the equilibrium
arrival rate for a fixed N ):

1. As expected, the equilibrium joining rate is a decreasing function of the price and
of N . Furthermore, for the Exact-N policy, except for the case of N = 1, this
function has a point of discontinuity where λe drops down to zero (Fig. 12a). For
the N-Limited policy, the function is continuous for all values of N (Fig. 13a). The
reason for this difference lies in the form of theU (λ) function, as we now explain.
Denote by λ̄( p̂) the maximizer of the function U (λ) for a certain p̂ (while N is
fixed). As p̂ increases, the function’s maximal value U (λ̄( p̂)) decreases. In the
unimodal case, as it is possible to see in Fig. 9a, there exists p̂max such that for all
p̂ < p̂max the maximal value U (λ̄) is positive; for p̂ = p̂max it is exactly zero; for
all p̂ > p̂max it is negative. As explained in Sect. 4, as long as p̂ < p̂max there are
three equilibria, where one, λ2 > λ̄, is a positive stable equilibrium, and therefore,
the equilibrium joining rate is λe = λ2. So, on the one hand, λe ↓ λ̄ as p̂ ↑ p̂max.
On the other hand, when p̂ ≥ p̂max, the only stable equilibrium is λ = 0, so
λe = 0 and hence the discontinuity of λe( p̂) at p̂max. In the monotone decreasing
case, as illustrated in Fig. 9b, there is a positive equilibrium when p̂ < p̂max and
a zero equilibrium otherwise. In this case, λe ↓ 0 as p̂ ↑ p̂max, and λe = 0 when
p̂ ≥ p̂max. Hence, there is no point of discontinuity.

2. The server’s net income for p̂ = 0, presuming the system is operating, is of
course negative, and for p̂ > 0 it is an increasing function of the price until
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a local maximum point (for example, all the graphs in Figs. 12b and 13b, the
graphs for 3 ≤ N ≤ 6 in Fig. 12c and for N ≥ 3 in Fig. 13c), or, if it
comes first, until the equilibrium joining rate becomes zero, and therefore also
the profit (as in the graphs for N ≤ 2, N ≥ 7 in Fig. 12c and for N ≤ 2 in
Fig. 13c). It is not assured that for every set of parameters there exists p̂ such that
the net income is positive. In general, the profit grows slowly with an increase
in p̂ until the maximum point and decreases fast. Considering this, it is better
for the server to make an under-assessment of the optimal price than to guess
too high. This conclusion is enhanced in the Exact-N case where the profit may
decrease to zero by any small deviation from the optimal value (as brought out in
Fig. 12b).

3. Intuitively, an increase in the value of N (while p̂ is fixed) decreases the join-
ing rate, but there is a salient difference between the two policies. For the
N-Limited regime, increasing N has a minor effect on both functions λe( p̂)
and r̂( p̂) (Fig. 13). Furthermore, the larger the value of N , the smaller the
effect. In contrast, due to the Exact-N regime’s strictness, the impact of increas-
ing N is much stronger under this policy. There are two main outcomes for
this phenomenon (both are noticeable in Fig. 12). The first is that the maximal
profit is achieved with a significantly lower price with any increase of N , and
the second is that the maximal price allowing a profitable service decreases as
well.

6.2 Maximal profit r̂∗ as a function of threshold N

The empirical results indicate that for the Exact-N policy the optimal profit r̂∗, while
positive, is a unimodal concave function of N with one maximal point, followed by a
decrease, until it is no longer profitable to operate the system.

Observing the N-Limited policy, we find a similar behaviour for small values of
N , but with a more moderate slope around the maximal point, such that adjacent
values of N yield approximately the same earnings. Also for the latter policy, after
the peak, while N grows r̂∗ decreases, but the decrease is convex and converges
to a value not much smaller than the maximal value. This matches our conclusion
from the previous subsection, that under the N-Limited policy, a change in the chosen
threshold has a negligible effect on the profit for large values of N . The intuitive
explanation for this phenomenon (as elaborated in § 6.4), is that as N increases, the
probability that this threshold will be reached decreases. Notice that for N → ∞
this policy is in fact the well-studied Exhaustive regime (see, for example, Yechiali
[28]).

Some intuitive conclusions, as illustrated in Fig. 14:

1. The choice of N is much more critical for the Exact-N policy.
2. An over-assessment of the optimal threshold under the N-Limited policy has minor

consequences.
3. For the same values of the parameters, the optimal value N∗ under the N-Limited

policy is at least as large as the N∗ under the Exact-N policy.
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Fig. 12 λe( p̂) and r̂( p̂) for N = 1, 2, . . . , 10, V̂ = 20, under the Exact-N policy
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Fig. 13 λe( p̂) and r̂( p̂) for N = 1, 2, . . . , 10, V̂ = 20, under the N-Limited policy
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Fig. 14 r̂∗(N ) under each operating policy for V̂ = 50 and various values of ĈS

4. As proved in Proposition 2, when ĈS ≤ 1 the optimal threshold is N∗ = 1 and
the two policies are identical. Generally speaking, for a fixed value of V̂ , small
values of ĈS yield a higher maximal profit r̂∗ under the N-Limited policy while
large values of ĈS yield a higher maximal profit r̂∗ under the Exact-N policy. In
the next subsection, we explore this property, elaborate on it and identify some
exceptions.
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Fig. 15 �r̂∗(ĈS) for different values of V̂

6.3 Maximal profit r̂∗ as a function of service value V̂ and switching cost ĈS

In this subsection, we analyse and compare the maximal profit under the two operating
policies. Let �r̂∗ denote the difference between r̂∗ under the Exact-N and under the
N-Limited regimes. Figure 15 confirms Conclusion 3 from Sect. 6.2, that for smaller
values of ĈS theN-Limited regime is more profitable, and for larger values theExact-N
regime is more profitable. In fact, we can divide each graph into 3–5 parts, the first
two and the last one exist for all values of V̂ and the third and fourth are not found for
small values of V̂ (approximately, V̂ < 10) :

A. �r̂∗ = 0: Here 0 < ĈS ≤ 1, N∗ = 1 for both policies (see Proposition 2) and
therefore they are identical.

B. �r̂∗ < 0: The values of ĈS where the N-Limited policy is more profitable than
Exact-N.

C. �r̂∗ > 0 and increasing: Both policies are profitable but Exact-N is more prof-
itable.

D. �r̂∗ > 0 and decreasing: Only Exact-N is profitable.
E. �r̂∗ = 0: ĈS is very large, preventing both of the policies profiting.

The larger V̂ , the larger |�r̂∗| gets at its extrema points (while the maximal advan-
tage of applying Exact-N is always larger than the maximal advantage of applying
N-Limited), and these points are reached at a larger ĈS (parts 2–4 are wider). The
meaning of this is that large values of V̂ lead to large differences in potential profit
and intensify the importance of choosing the right policy. Furthermore, Fig. 15 con-
firms the intuitive insight that for every value of V̂ there exits a sufficiently large
value of ĈS denying both of the regimes the potential to be profitable. We provide an
analytical proof for this claim:
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Proposition 3 For every value of V̂ , there exists a corresponding value of ĈS such
that the system is not profitable under any operating policy, and when μ1 = μ2 this
value is smaller than: V̂ 2 − 3V̂ + 2 .

Proof Denote by Ñ the average number of customers served at Q1 before the server
switches to Q2 (under the Exact-N regime Ñ = N ). The server earns p and incurs an
average cost of CS

Ñ
for each served customer, so for the service to be profitable it must

be that [the second inequality is from Eq. (2)]

CS

Ñ
< p < V − CW

(
1

μ1
+ 1

μ2

)
,

yielding a lower bound for Ñ :

Ñ >
CS

V − CW

(
1
μ1

+ 1
μ2

) . (41)

Suppose that for a certain operating policy the threshold for an arbitrary event of
switching queues is M , so the expected sojourn time WM of the nth customer in that
cycle (1 ≤ n ≤ M) satisfies

WM >
M − n + 1

μ1
+ n

μ2
,

and, when μ1 = μ2 = μ,

WM >
M + 1

μ
.

Since, by definition, the average M is Ñ , we get for the general case that the mean
sojourn time satisfies

W >
Ñ + 1

μ
.

Using Eq. (41) we get

W >

CS

V− 2
μ
CW

+ 1

μ
= μV − 2CW + μCS

μ2V − 2μCW
. (42)

For customers to join the service, the next condition must hold [using (42)]:

V > CWW >
μCWV − 2C2

W + μCWCS

μ2V − 2μCW
.

123



Queueing Systems

We multiply by the positive denominator (V > CW( 1
μ1

+ 1
μ2

)), divide by C2
W and

rearrange:

μCS

CW
<

(
μV

CW

)2

− 3
μV

CW
+ 2 ,

which is

ĈS < V̂ 2 − 3V̂ + 2 . (43)

This upper bound for ĈS implies that for every set of parameters which do not agree
to this term (43) the system is not profitable. 
�
Remark 3 By Condition (2), V̂ > 2 when μ1 = μ2, and therefore the upper bound in
(43) is always positive.

Remark 4 Proposition 3 does not depend on the arrival distribution or the service
time distribution as long as the stability condition (5) holds (where 1

λ
is the mean

inter-arrival time and 1
μi

(i = 1, 2) is the mean service time at Qi ).

Figure 16 shows which policy is better for each set of (normalized) parameters
and how much more profitable it is. Using the same partition as defined with regard to
Fig. 15, we label segmentsA–E in the next figure. For better intelligibility, segment ‘D’
is coloured red and segment ‘E’ yellow, while the upper bound in Eq. (43) is marked
by a dashed line inside the yellow area. This figure provides a graphical illustration of
our findings, from which we make several observations:

1. For small switching costs ĈS and value of service V̂ , the N-Limited policy is more
profitable compared to the Exact-N policy, as long as the system can be profitable.
Interestingly, it shows that there is an additional segment where only N-Limited is
profitable (the small area, around 6 ≤ V̂ ≤ 10 and 4 ≤ ĈS ≤ 9, which is coloured
blue and labelled ‘F’ in Fig. 16).

2. As displayed in Fig. 15, it is also noticeable in Fig. 16 that for a fixed value of V̂ ,
increasing the value of ĈS will eventually lead to a better result applying the Exact-
N policy, then to a situation where only Exact-N is profitable, a further increase
would lead to a non-profitable system. In Fig. 16, it is also shown that increasing
V̂ , while ĈS is fixed, will eventually lead to a better result applying the N-Limited
policy.

3. For V̂ > 10 (approximately) there is a relation between V̂ and ĈS, which is the
upper line marked with zeros, that separates the values of the parameters where
the N-Limited policy is more profitable (section ‘B’) from those where the Exact-N
policy is more profitable (section ‘C’). It is recognizable that a linear function can
be a good fit for this relation. We find that (approximately) below the line

ĈS = 0.24V̂ + 8.49 (44)

the N-Limited policy is more profitable, whereas above it the Exact-N policy is
more profitable.
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Fig. 16 �r̂∗(V̂ , ĈS) and profitability segmentation

4. There is another relation between these parameters, which is the border of the
yellow coloured area (section ‘E’), that distinguishes between a profitable system
and a futile one. In this case, a quadratic function is a decent fit for that relation, so
in the same manner, below (i.e. to the right of) the curve

ĈS = 0.14V̂ 2 − 0.79V̂ + 3.24 (45)

the system is profitable, and above (i.e. to the left of) it, the system is not profitable.

Remark 5 Due to the use of normalized parameters, Fig. 16 contains the entire set of
possibilities for thismodel (with the restrictionμ1 = μ2). Because of the interpretation
of this normalization, the range considered, between the values 0–150 for both axes, is
a satisfying scope for the majority of real world applications. We measure the value of
service and the switching cost in units of customers’ mean cost while waiting for one
service. For example, the meaning of V̂ = 150 is that the value a customer benefits
from the service is equal to the cost of waiting for 150 services, that is, a queue of 75
customers.
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6.4 Optimal threshold N∗ as a function of service value V̂ and switching cost ĈS

In the next two subsections,we discuss the optimal values for the decision variables, the
threshold N∗ and the price p̂∗. From our empirical study, we extract several inferences,
as reflected in the example in Table 1:

1. The optimal value for N depends almost solely on the value of ĈS, while the
magnitude of V̂ mainly determines whether the system can be profitable for the
given ĈS (an empty cell in the table represents a non-profitable system).

2. Of course, for both policies, N∗ increases in ĈS, but the changes under N-Limited
are faster. Notice that an N-Limited server does not always wait for the number of
customers in Q2 to reach N and that the bigger this N the bigger the gap between
it and Ñ , the average number of customers in Q2 when switching. As seen from
comparing the left third of Table 1 with the middle third, N∗ is larger under N-
Limited compared to under Exact-N. However, as noticeable in the right third of
the table, Ñ∗ under the N-Limited policy is generally smaller than N∗ under the
Exact-N policy for the same parameters (with exceptions for small values of ĈS).

3. Even though N∗ under the N-Limited policy is a non-increasing function of V̂ , Ñ∗
does increase in V̂ . This is because Ñ , the average number of customers served
between every two consecutive switches under this policy, clearly increases in the
equilibrium effective arrival rate, and the latter grows in the normalized value of
service, as we show in Sect. 6.6.

6.5 Optimal price p∗ as a function of service value V̂ and switching cost ĈS

From the empirical results (for example, Figs. 17, 18) we see that the dependence of
p̂∗ on V̂ is much stronger than the dependence of p̂∗ on ĈS. p̂∗(V̂ ) is approximately
linear (with a slope between 0.85 and 0.9 for both policies and all different values of
ĈS) with discontinuities at the values of V̂ where N∗ changes. Consider, for example,
Fig. 17 with ĈS = 50. Between V̂ = 33 and V̂ = 33.5 there is a point of discontinuity
where the value of the optimal price p̂∗ decreases, while at the same time the optimal
threshold N∗ increases from 5 to 6. Our interpretation of this phenomenon is that, from
the server’s point of view, the aggravation in customers’ utility caused by the increase
in N∗ is compensated by a decrease in the service fee. Because N∗ increases with
ĈS, this can also explain the decrease of p̂∗ while ĈS increases. Another interesting
observation is that the optimal prices are similar under the two policies, as long as the
systems are profitable.

6.6 Optimal equilibrium effective arrival rate �∗
e as a function of service value V̂

and switching cost ĈS

The equilibrium effective arrival rate under the optimal price and threshold, denoted
λ∗
e , is more strongly affected by V̂ than by ĈS (mainly for low values of V̂ ), but a

more prominent difference is the direction.
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Fig. 17 p̂∗(V̂ ) for various values of ĈS, under the Exact-N policy

Fig. 18 p̂∗(V̂ ) for various values of ĈS, under the N-Limited policy

For both policies, as V̂ grows λ∗
e naturally increases (see, for example, Figs. 19, 20).

When the reward to the customers grows infinitely, the equilibrium joining arrival rate

grows to the edge of stability: V̂ → ∞ �⇒ λ∗
e = ρ∗

e
2 → 1

2 . However, for a fixed

V̂ , when ĈS grows, the tendency is opposite under the two policies. Under Exact-N
λ∗
e is generally decreasing (as in Fig. 19) and under N-Limited it is increasing (as in

Fig. 20). That is, the bigger ĈS the bigger the difference in λ∗
e under the two regimes.

The reason for this phenomenon is not intuitive and we suggest the following
speculation: We have seen that N∗ increases with ĈS (see Sect. 6.4) and that p̂∗
decreases with ĈS (see Sect. 6.5). Hence, there are two opposing effects on the optimal
equilibrium joining rate λ∗

e . On the one hand, an increase in λ∗
e due to the decrease

in p̂∗ and on the other hand a decrease in λ∗
e because of the increase in waiting

time that accompanies the increase in the selected threshold N∗. Our numerical study
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Fig. 19 λ∗
e (V̂ ) for various values of ĈS, under the Exact-N policy

Fig. 20 λ∗
e (V̂ ) for various values of ĈS, under the N-Limited policy

concludes that under theExact-N policy the effect of changing the threshold is stronger
compared to that of changing the price, while under the N-Limited policy the leverage
of the threshold is much smaller, due to the policy’s adaptability.

7 Summary

Thepresent paper considers anunobservable, two-phase, tandemqueueing systemwith
an alternating server. We study the strategic customer behaviour under two threshold-
based policies, applied by a profit-maximizing server, while waiting and switching
costs are taken into account. Optimization performances in equilibrium, under each
of these regimes, are analysed and compared.
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By defining the system as a QBD process, we derive the system’s steady-state
probabilities and obtain the mean sojourn time for each policy. Interestingly, the sta-
bility condition of the system is independent of the switching policy and/or the chosen
threshold N and requires that the mean inter-arrival time should be greater than the
mean total service time given to each individual customer.

Next, we analyse the equilibrium behaviour. We learn that under the N-Limited
policy, or a sequential service (N = 1), the system is in a typical Avoid-the-Crowd
(ATC) situation with one equilibrium. In contrast, under the Exact-N policy (for N ≥
2), the system is in a Follow-the-Crowd (FTC) situation for low joining rates and ATC
for high joining rates, with one, two or three equilibria. We see this kind of behaviour
in Bountali and Economou [7,8] in tandem two-node assembly service systems with
batch features.

Delving deeper into the sequential policy, we prove that the necessary condition
for the optimal threshold to be N∗ = 1 is μ1CS

CW
≤ 1. Under the N-Limited policy this

is also a sufficient condition.
From an extensive numerical study, we learn about behaviours of the optimal profit,

the optimal equilibrium joining rate and the optimal decision variables. Here are some
of the more conspicuous ones:

1. The server exploits an increase in the (normalized) service value V̂ to directly raise
the optimal (normalized) price p̂∗. An increase in the (normalized) switching cost
ĈS leads to an obvious increase in N∗ (to minimize expenses), and a compensating
decrease in p̂∗.

2. Seemingly, under the N-Limited policy, the optimal threshold, determined by the
server, increases faster with the switching cost. However, the expected number of
customers served between every two adjacent switches (which we denote by Ñ ) is
mostly smaller than the optimal threshold under the Exact-N policy for the same
case (with exceptions for small values of ĈS).

3. The equilibrium joining rate increases with the service value, limited only by the
stability of the system. An increase in switching cost yields contrasting behaviours
under the different policies: a decrease in equilibrium joining rate under theExact-N
policy and an increase under N-Limited.

This empirical study also yields managerial implications for the strategic calibra-
tion of the decision variables. For instance, concerning the service fee determined by
the server, an under-assessment of the optimal price is better than over-assessment,
particularly under the Exact-N policy where a slightly excessive price leads to an
immediate halt of the joining rate. Another prominent example is that the choice of
the threshold is less crucial for theN-Limited policy, due to a minor deterioration asso-
ciated with exceeding the optimal value. A very interesting question is which policy
is more profitable. The answer depends on the parameters: A sufficiently large value
of service will lead the server to prefer the N-Limited policy, whereas a sufficiently
large switching cost will divert the server to the Exact-N policy. An excessive value
of switching cost would preclude the system from being profitable. In fact, there is a
certain relation of the switching cost to the value of service that determines the regions
in which one policy is superior to the other. Another relation between these parameters
distinguishes a profitable system from a non-profitable one. Approximated functions
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are fitted for this relations, linear for the first and quadratic for the second (Eqs. (44),
(45), respectively).

This work intends to fill the gap in the literature on strategic behaviour in tandem
queueing systems with an alternating server. Subsequent research is desired in many
interesting courses. Here are some primary leads:

1. While a model that considers switching cost is a good foundation, subsequent
research applying switching time is needed for a better fit to many real-life appli-
cations.

2. Our numerical study is focused on the elementary case where the service rates and
waiting costs are the same for both service phases. Relaxing this constraint may
lead to additional interesting conclusions.

3. Further work should consider other operating policies. An especially captivating
policy to consider is an extension of N-Limited regime where a threshold for a
minimal number of services before switching is added. This addition would pre-
sumably improve its performances dealing with high switching cost. In [16] Iravani
et al. presented the Triple-Threshold (TT) policy, which is a similar, more general,
idea. They show that this relatively simple switching policy yields near-optimal
performance.

4. Of course, studying the model under different levels of information, where arriving
customers are fully informed or partially informed about the state of the system, is
also a required sequel. In D’Auria and Kanta [10] there are some good examples
for different levels of information that can be considered.

Appendix A: Calculating �Po
In this appendix, we elaborate the process of calculating �P0 by replacing one of the
non-repeating matrix balance equations with the normalizing equation and by that
obtaining a system of equations with a unique solution.

A.1 Exact-N scenario

For notational simplicity let

φ = B0 + RA2,

ψ = (I − R)−1�e ,

where φ is a matrix of size (2N ) × (2N ) and ψ is a column vector of size (2N ).
Thus (13) and (15) become

{ �P0φ = �0
�P0ψ = 1

.
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Denote φ j as the j th column of the matrix φ and expand the first equation:

�P0
[
φ1 φ2 . . . φ2N

]
= 〈0, 0, . . . , 0〉 .

Now replace the first column of the matrix φ by the second equation:

�P0
[
ψ φ2 . . . φ2N

]
= 〈1, 0, . . . , 0〉 .

This system has a unique solution for �P0.

A.2 N-Limited scenario

The notation in this case is as follows:

φ =
(
B0 C1
B1 A1 + RA2

)
,

ψ = 〈�e, (I − R)−1�e〉 ,

where φ is a matrix of size (3N + 1) × (3N + 1) and ψ is a column vector of size
3N + 1, in which the first N + 1 entries are ones. Similarly to the Exact-N scenario,
(19), (23) and (24) become

{
〈 �P0, �P1〉φ = �0,
〈 �P0, �P1〉ψ = 1,

and with a similar outcome:

〈 �P0, �P1〉
[
ψ φ2 . . . φ2N

]
= 〈1, 0, . . . , 0〉 .

This gives a solution for �P0 and �P1.
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