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Highlights 

 A dynamic allocation model of flexible resources to streams of objects is studied 

 Allocation probabilities depend on system’s states 

 The model is applied to kidney cross-transplantation 

 Novel measure Expected Value of Transplantation based on human-leukocyte-antigen fit 

 Optimal probabilities of cross-transplantation are calculated 
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Abstract 

 

Two distinct random streams of discrete objects flow into a system and queue in two separate lines. 

Concurrently, two distinct types of resources arrive stochastically over time. Upon arrival, each resource 

unit is matched with a waiting object. One resource type is 'flexible' and can be allocated to either one of 

the object types. However, units of the other, non-flexible, resource type can be allocated only to units of 

one specific object type. The allocation probabilities are not fixed and may depend on both queue sizes of 

the two objects. If a resource unit is not allocated immediately, it is lost. The goal is to find an optimal 

state-dependent probabilistic dynamic allocation policy. We formulate the system as a two-dimensional 

Markov process, analyze its probabilistic behavior, and derive its performance measures. We then apply 

the model to the problem of kidney cross-transplantation and propose a new measure of system 

effectiveness, called Expected Value of Transplantation (EVT), based on the histocompatibility between 

kidneys and candidates. We further show that it is possible to balance the objectives of achieving equity 

in candidates‘ expected waiting times (EW) and maximizing EVT by equating the value of EW/EVT 

between the two groups.  
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1. Introduction 

 

This paper studies a dynamic flexible-resource allocation problem that is encountered in 

numerous operational settings and is particularly salient in the context of live organ transplantation. We 

consider two random streams of discrete objects, denoted    and      which flow into a system and queue 

in two separate lines, denoted    and     respectively. In parallel, two distinct types of discrete 

resources,    and     arrive at the system stochastically over time. A unit of resource type    can only 

be allocated to an   -type object, whereas a unit of resource type    is ‗flexible‘ and can be allocated to 

either one of the two object types: It is allocated to an   -type unit waiting in     (if the queue is not 

empty) with a probability that may depend  on both queue sizes or, with the complementary probability, 

to a unit of  an   -object waiting (if any) in   . An arriving resource unit must be allocated to an object 

upon arrival, or it is lost. Thus, if a unit of resource RB arrives when there are no SB-type objects in   , it 

is discarded and disappears from the system, whereas an RO-type resource is discarded upon arrival only 

when both queues are empty (i.e.,        ). This paper seeks to identify an optimal state-dependent 

probabilistic dynamic allocation policy in the setup described.  

Flexible-resource allocation models characterizing manufacturing systems that can produce 

multiple products simultaneously have been addressed in the literature (see, e.g., Sethi and Sethi 1990; 

Buzacott and Shanthikumar 1993; and Perlman 2013). Additional applications include telecommunication 

networks (Ross 1995), in which incoming calls can be routed to multiple links. Similarly, in computer 

systems with multiple users and multiple servers, users can be dynamically routed to different servers, 

and computing capacity can be shared among different customers. Call centers are another important 

application of resource flexibility. As calls can vary by topic, urgency, duration, and level of difficulty, 

different call center operators may be trained to handle different subsets of call types (Koole and 
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Mandelbaum 2002; Shumsky 2004). Ahghari and Balcioglu (2009) performed extensive numerical 

studies based on realistic call center scenarios and showed that limited cross-training of operators 

(specifically, providing each agent with two additional skills) can considerably enhance the system‘s 

performance. Robbins and Harrison (2010) studied a call center queueing model with two customer types. 

They considered scenarios in which two separate teams were assigned to two different customer types, or 

in which a single cross-trained team could serve both types. They showed that cross-training a small 

number of agents results in substantial benefits as opposed to relying on agents who can only serve one 

type of customer.  

We provide and analyze a general model of the flexible-resource queueing system described 

above, and then focus on its application in the context of live kidney transplantation. Stanford et al. 

(2014) discussed the problem of allocating stochastically-arriving kidneys to random streams of 

transplantation candidates, who form separate queues according to their blood types. Their model 

considers two blood types—type O and type B—where type O kidneys can be given to any candidate, and 

type B kidneys can only be given to candidates with blood type B. The authors propose that it is possible 

to allocate a fixed fraction of blood type O kidneys to blood type B candidates such that the expected 

waiting times (EW) for transplantation for the two different types of candidates are the same. However, 

the fixed probability assumption overlooks the situation in which a type O kidney arrives while there are 

only type O candidates in the system, but no type B candidates. Our model addresses this issue by 

assuming that, in such a situation, an arriving type O kidney is allocated exclusively to a type O 

candidate. More generally, a key contribution of our paper is in letting the probability of cross 

transplantation depend dynamically on the actual number of B candidates present in the system, rather 

than assuming that the probability is fixed. 

Human tissue cells contain antigens that are immunologically relevant to specific candidate and 

donor. The system of these antigens is known as the Human Leukocyte Antigen (HLA) system. HLA 

matching is one of the most important factors when decieding on kidney allocation. A review of the 

determinants of successful kidney transplantation is given in Bendersky and David (2016). Proper HLA 
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matching decreases the risk of graft lost by about 40% (Takemoto et al. 2004). In applying our model to 

the kidney transplantation context, we propose a new means of measuring the effectiveness of the 

allocation system, beyond traditional metrics such as mean waiting times or mean queue sizes. This 

measure, which we refer to as the Expected Value of Transplantation (EVT), takes into account the extent 

to which the candidates and the kidneys they receive are compatible, i.e., matched in terms of their 

Human Leukocyte Antigen (HLA) groups. This measure constitutes another important contribution of our 

study. It is straightforward to generalize this measure to more traditional manufacturing systems, by 

attributing a value to each object-resource pair, representing the utility obtained from that specific pairing.  

In a numerical analysis, we observe that long queues and long waiting times are associated with 

higher EVT values, as they increase the likelihood that an incoming kidney will find a well-matched 

candidate. On the other hand, long waiting times are expected to lead to deterioration in candidates‘ 

health, potentially culminating in death. Thus, we propose an additional measure of system effectiveness: 

the ratio of EW to EVT. The measure EW/EVT quantifies the rate of change in expected waiting time 

attributable to a change in EVT. Thus, this measure balances the two goals of achieving equitable waiting 

times and maximizing the overall quality of transplants. We show that only a small fraction of type O 

blood kidneys should be cross-transplanted to blood type B candidates in order to optimize the 

effectiveness of the system.  

While the importance of having flexible resources or flexible servers in manufacturing and call 

center operations has long been recognized, in this paper we extend the scope of analysis by assuming 

that the number of available servers is not fixed but changes dynamically and randomly. Specifically, 

resources (e.g., kidneys, or servers) do not stay and wait for objects to arrive. Rather, individual resources 

arrive randomly over time, and each one must serve a waiting object (e.g., a transplantation candidate) as 

soon as it arrives; otherwise (i.e., if no appropriate objects are available), it is lost (i.e., disappears from 

the system).   

The remainder of the paper is structured as follows. Section 2 presents the model formulation. In 

Section 3 we define and construct probability-generating functions (PGFs), and calculate the system‘s 
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two-dimensional boundary probabilities, as well as its marginal state probabilities. In Section 4 we 

employ matrix geometric methods to further analyze the system and derive the system‘s stability 

condition and various performance measures. In Section 5 we formulate the EVT as a measure of the 

effectiveness of a system for the dynamic allocation of kidneys for (cross-) transplantation. In Section 6 

we perform numerical analysis and conclude that only a small fraction of the flexible resource should be 

allocated to cross-transplantation in order to optimize the system‘s performance. Section 7 concludes the 

paper.  

 

2. Model formulation 

2.1. Problem description 

Two Poisson streams of discrete objects,    and     flow into a system at rates of    and     respectively, 

and queue in two separate lines,    and   . Concurrently, two types of discrete resources,    and 

    arrive stochastically with Poisson rates    and     respectively. All four processes are mutually 

independent. When a unit of resource    arrives, it is allocated to an    object waiting in     If    is 

empty, the unit is lost. However, an   -type resource can be allocated to an object of either type. The 

probability that a unit of    is allocated to an    object is assumed to depend both on the number of SB 

objects in    and on the number of SO objects in     If both queues are empty, the         is lost.  

Let    and     denote, respectively, the number of    objects and the number of    objects 

present in the system. It is assumed that the number of    objects is bounded such that it cannot exceed a 

given value     Let      (         )                      denote the system‘s steady-

state probabilities, and let     be the probability that an arriving    resource is allocated to an     object 

when the system is in state (         ). We assume that       for all    , since when 

      an    resource is allocated only to an     object. We further set       for          since 

when no    object is present, an arriving    resource is allocated with probability 1 to an    object (if 

present). 
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This process can be formulated as a two-dimensional continuous-time Markov process with a 

state transition-rate diagram as depicted in Figure 1. 

 

 

 

 

 

 

Figure 1: Transition-rate diagram of (     )   

 

2.2. Balance equations 

The set of balance equations for the system‘s state probabilities is constructed below. 

For n = 0: 
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   
   

00 01 10

0 0, 1 0, 1 1 1m

0

1

O B O O B

m O B O m O m O m O B

m P P P

m wP P P P

    

       

     


      

                                                   

(1) 

 

For 1 n N 1   : 

     

     
n0 O B O B n 1,0 A n,1 n1 O n 1,0 O B

nm O B O B n,m 1 O n 1,m B n,m 1 n,m 1 O n 1,m n 1,m O B

m 0 P P P 1 w P

m 1 P P P P 1 w P w

       

        

 

     

         


         
                                                                                                                                                                         

(2) 

For n = N: 

   

   
N0 O O B N,1 N1 O N 1,0 B

Nm O O B N,m 1 O N,m 1 N,m 1 O N 1,m B

m 0 P P 1 w P

m 1 P P P 1 w P

    

     



   

      


      
                                        (3) 

 

We note that the above set of equations cannot be solved analytically in its full general form, 

either by applying a generating functions method or by using a matrix geometric approach. Consequently, 

in what follows we relax the dependence of the probability     on both n and m, and assume that the 

probability of allocating an    resource to an    object depends only on    , the number of    objects 

present in the system. That is, we assume that       for 1,2,..., ;n N       for 1,2,...;m   and  

         otherwise. In the next section we apply a generating functions method (see, e.g., Litvak 

and Yechiali (2003), Perel E. and Yechiali (2008), Perel N. and Yechiali (2014)) to analyze the system's 

probabilistic behavior.  

 

3. Generating functions, boundary and marginal probabilities  

 

Define, for each 0 ≤ n ≤ N, the (partial) PGF 
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  m

n nm

m 0

G z P z




       0,1,2,...,n N  . 

Specifically, for n = 0, we multiply, for each m, the corresponding equation in (1) by 
mz ; by summing 

over all m and rearranging terms, we obtain: 

       0 1 1 00 1 10 0

1 1
1 1 ( ) 1 1 b (z)O B O B O O Oλ z λ μ G z μ w μ G z μ P w μ P

z z

    
              

    
                      (4) 

                                                                                                                                                   

Similarly, using the equations in (2), we obtain, for          

 

         

 

1 1 1

1 1,0 0 n

1
1 1

1
1 ( ) b (z)

n
B n O B A O n A n O n

n
n O n O n

w
λ G z λ z λ μ μ G z μ w μ G z

z

w
= w μ P μ P

z

  

 

   
           

  


  

                    (5)    

Finally, using the equations in (3), we obtain, for n = N: 

     
 

1 0 N

11
1 1 b (z)

NN
B N O B O N O N

ww
λ G z λ z μ μ G z μ P

z z


   
          

  
                (6) 

Let    0

1
1 1O B Od z λ z λ μ

z

 
     

 
,  

and for          let      
1

1 (1 )n
n O A A O

w
d z λ z λ μ μ

z


      . 

Finally, let     
1

1 1 .N
N O B O

w
d z λ z μ μ

z

 
     

 
 

Let   
1 , 0n A n Oc μ w μ         n N    .  

Equations (4), (5) and (6) determine a set of linear equations for the unknown PGFs in the form   

 ( ) ⃗( )   ⃗⃗( )   where 
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  (   ) (   )( ) 

0 0

1 1

2 2

1 1

( ) 0 0

( ) 0 0

0 ( ) 0

( )

0 0 ( )

B

B

B N N

B N

d z c

d z c

d z c

d z c

d z









 

 
 
  

  
 

  
 
 

  
  

  

 ⃗( )  (  ( )   ( )     ( ))
 , and  

 

 ⃗⃗( )  

0 ( )

( )

( )

n

N

b z

b z

b z

 
 
 
 
 
 
 
 
 
 
 

, 

 

where ( )nb z ,  n=0,1,2,…,N, are given in equations (4), (5) and (6).  

To obtain   ( )  we use Cramer‘s rule (see e.g. Perel E. and Yechiali 2008). This leads to an 

expression of   ( ) in terms of the N+1 unknown probabilities {                 }. In order to obtain 

the set *   +, we need to find N+1 equations relating these N+1 unknowns. Since   ( ) is a PGF defined 

for all 1z  , each root of | ( )| in that interval is also a root of |  ( )|           . We claim that  

| ( )| has exactly N+1 roots in         . We will use those roots to 

obtain      (   )               *   +. 

Theorem 1.   The polynomial  | ( )| has  (   ) roots, of which exactly     are in (   ), and the 

additional  N+1 are in the open interval (  ). 

Proof.  See Appendix.  
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Denote by                        the 1N   roots of | ( )| in (   )  The boundary 

probabilities  0 , 0nP n N   are now calculated by using these 1N    roots and by solving the 

following set of N + 1 equations  |  (      )|     |  (      )|     …, |  (        )|     where the 

variables are the 1N   unknown boundary probabilities 00 10 0, ,..., .NP P P   Then, when all boundary 

probabilities are calculated, the set of PGFs   nG z , n 0,1,2,..., N  is completely determined. In 

addition, the marginal probabilities 
nP 

 are given by  

0

(1) 0,1,2,..., .n n nm

m

P G P n N



                                                                        (7) 

With the aid of the boundary probabilities, we obtain the set of N + 1 marginal probabilities  nP  by 

setting 1z   in each of the N equations corresponding to (4) and (5) to obtain  

 1, 1,0 1 1, 1,0 , 0,1,2,..., 1B n B n O n n O n nP P P w P P n N                                          (8)    

Alternatively,  Eq. (8) can be obtained by a horizontal cut between lines n and n + 1 in Figure 1. Finally, 

together with the normalization equation 
0

1,
N

n

n

P 



   the set  nP   is directly calculated.   

The mean number of SB-type objects in the system is given by 

 
N

B n

n 0

E L nP .


                                                               (9) 

In a stable system the effective inflow of SB-type objects is  ( ) (1 ).B B Neff P     Hence, by Little's 

law, the mean sojourn time of an SB-type object is 

[ ]
[ ] .

(1 )

B
B

B N

E L
E W

P 




                                                       (10)                                  
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In the next section, we use matrix geometric analysis to obtain the mean number of SO-type objects in the 

system. 

                                                               

4. Matrix geometric analysis 

Arrange the set of system states as follows: 

      00,10,20,..., 0 , 01,11,21,..., 1 ,..., 0 ,1 ,2 ,..., ,... .N N m m m Nm   

Modifying the balance equations (1), (2) and (3) for the case in which     depends only on n — namely, 

      for 1,2,..., ;n N       for 1,2,...;m   and           otherwise — then the 

generator matrix Q of the resulting level-dependent Quasi Birth and Death  (QBD) process is given by 

   

0 0

2 1 0

2 1 0

0 0

0

0

B A

A A A

A A A

Q

 
 
 
 
 

  
 
 
 
 
 

, 

where 
0 0 1, ,B A A  and 

2A  are each an ( 1N  )-dimensional square matrix. We have: 

0

( ) 0 0 0

( ) 0

0 ( )

( )

O B B

O B O B O B B

O B O B O B B

B

O B O O B

B

  

      

      



    

  
 

     
     
 

  
 
 
 
     

, 

0 OA I  , 
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1

2

1

( ) 0 0

( )

0 ( )

( )

( )

O B O B

O B O B O B B

O B O B O B

O B O B B

N O B O O B

w

w

A

w

   

      

     

    

    

   
 

     
     
 

  
 
 

    
     

 

and 

0

1 0

2 0

2

0

0 0 0

0 (1 ) 0 0

0 0 (1 ) 0

.

(1 )N

w

w

A

w









 
 

 
 
 

  
 
 
 
  

 

 

Let  0 1 2, , ,...,m m m m NmP P P P P  be an ( 1N  )-dimensional row vector, 1,2,3,...m    

Also, set  0 1 2, , ,..., ,...mP P P P P .  The system-state probabilities are calculated by 0PQ    and 

1TPe  , where 0   is a row vector of zeros, and 
Te  is a column vector of ones. Then, the solution (Neuts 

1981; Latouche and Ramaswami 1999) is given by 0 10 2 0P B P A     and 0 ,m
mP P R  1,2,3,...m  , 

where 
1

0[ ] 1TP I R e   and the rate matrix R is the minimal nonnegative solution of the quadratic-

matrix equation 
2

0 1 2 0A RA R A   .  

 

The stability condition of the system is derived as follows:  
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Let 
0 1 2.A A A A    Then,   

 

1 1

2 2

1

0 0 0

( ) 0

0 ( )

( )

( )

B B

O B B O B B

O B B O B B

B N O B B

N O B N O B

w w

w w

A

w

w w

 

     

     

   

   



 
 

    
    
 

  
 
 

   
    

. 

 

The matrix A  expresses the infinitesimal generator matrix of an M/Mn/1/N queue with arrival rate 

, 0,1,2,..., , 1n B n N    , and a state-dependent service rate ,n n O Bw    1,2,..., .n N    

The stationary probability vector  0 1 2, , ,..., N       of this queue is given by 0A    and 

1.
Te     

Let , 1,2,..., .B
i

i O B

i N
w




 
 


  Then, 0

1

, 1,2,..., ,
n

n i

i

n N


 
    

 
  with 

1

0

1 1

1 .
nN

i

n i



 

 
    

 
    The stability condition of the system Q is given by 0 2

T TA e A e    (Neuts, 

1981).     

Now, 0

T

OA e    and 
2 0 0

1 1 1

(1 ) 1 (1 )
nN N

T

O N n O O n i

n n i

A e w w   
  

  
         

  
   .  

Thus, the stability condition becomes:  
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1 1

1 1

1 (1 )

.

1

nN

n i

n iO

nN
O

i

n i

w 





 

 

 
   

 
 

  
 

 

 
                                              (11) 

When 0nw   for all ,n  the system of RO-type resources and SO-type objects is an M/M/1 queue, and the 

stability condition reduces to 1O

O




 . When 1,nw   then , 1,2,..., ,B

i

O B

i N


 
 

  


 and the 

stability condition is 
1

1

1

O

N

O

 

  





. This condition can be explained as follows: Consider an M/M/1/N 

queue with arrival rate 
B  and a service rate 

O B  . Then, the fraction of time the queue is empty is 

1

1

1 N



 




. This is a queue in which, as long as there are SB objects in the system, all resources (type RB 

and type RO) are allocated to SB objects. RO resources are allocated to SO objects only when no SB objects 

are present. The proportion of time the latter event occurs is  
1

1

1 N



 




. Thus, the rate of ‗work‘ attributed 

to SO objects, namely,  ,O

O




 cannot exceed this proportion of time.  

The mean number of SO objects in the system is given by 

  
2

0 1 0

0 1

[ ] T m T T

O m N

m m

E L mP e P mR e P R I R e
 





 

     .                       (12) 

By Little's law, the mean sojourn time of an SO object is 

[ ]
[ ] .O

O

O

E L
E W


                                                        (13)                                  

The mean waiting time for an arbitrary object is  
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     
(1 )

(1 ) (1 )

B N O
B O

B N O B N O

P
E W E W E W

P P

 

   


 


 

   
 .                   (14)  

 

5. Application to kidney transplantation: A new measure - Expected Value 

of Transplantation  

Several studies have addressed various aspects of the kidney allocation problem. David and 

Yechiali (1985) were among the first to model kidney allocation based on HLA considerations. They 

considered a single candidate and a stochastic stream of kidneys, where the decision whether to transplant 

an arriving kidney or reject it is based on the degree of histocompatibility between the candidate and the 

kidney. Those authors further extended the study of dynamic allocation process to parallel streams of 

candidates and offers (1990) and to one attribute sequential assignment match process in discrete time 

(1995). Zenios (1999) was the first to present a queueing model for transplant waiting times and, in a 

subsequent study, carried out simulations on data from kidney transplant waiting lists in the US (Zenios et 

al. 2000). Su and Zenios (2004) extended the kidney allocation problem to take into account the 

possibility that patients might refuse an available kidney in order to hold out for a higher-quality match. 

Bendersky and David (2016) recently studied a flexible single-candidate model for the kidney allocation 

problem based on a broad family of Gamma lifetime distributions. They obtained the optimal critical 

times of acceptance of offers of different qualities.  

As discussed above (see also Stanford et al. 2014), our model assumes that kidneys corresponding 

to blood type O can serve multiple types of candidates, whereas, kidneys corresponding to blood type 

Bcan serve only one type of candidate (i.e., individuals with blood type B). The issue of cross-

transplantation of kidneys corresponding to blood type O has given rise to the so-called ―Blood Type O 

Problem‖, in which too many type O kidneys are cross-transplanted to compatible blood groups, thereby 

diminishing the supply of type O kidneys and causing notably longer waits for candidates with blood type 

O. Queueing models have recently begun to address this problem (see Drekic et al. 2015). 
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In what follows, we propose a new measure for evaluating the performance of an kidney 

transplantation queueing system. First, given that a kidney has been allocated to a particular queue, we 

propose that the specific waiting candidate who receives the kidney should be selected on the basis of a 

best-fit rule. In particular, we suggest that the kidney should be allocated to the candidate with the highest 

level of HLA match. We operationalize the HLA match as follows: When a kidney arrives and is 

allocated to the queue of a particular blood type, it is assigned a level of histocompatibility for each one of 

the waiting candidates, where there are I possible levels. The kidney is then given to the candidate with 

the best fit, independently of his position in line, as defined below. 

Let H be a random variable denoting the number of mismatched HLA characteristics between a 

randomly-arriving kidney and a random candidate. Let     (   )            , be the probability 

that a random candidate and a random kidney have i mismatches; and let  iF P H i  , where 1IF  . 

Let X be a random variable denoting the ‗transplantation value‘ between a random kidney and a random 

candidate. For example, X may denote the probability that the lifetime of the transplanted candidate will 

exceed a given number of years. The value of X for H = i mismatches is denoted by   , where, if      

then        Consequently,  

 (    )   (   )    , and  
0

I

i i

i

f xE X


 . 

Suppose that 1BL n  , and that an arriving kidney is allocated to QB , the queue of 

candidates with blood type B. The X  values corresponding to the n candidates waiting in QB are 

denoted, respectively,
1 2 n, ,...,X X X ; each of these variables is i.i.d. like X . Assuming that the kidney is 

allocated according to the best-fit rule, then the value of the allocation is  

 *
( ) 1 2 nmax , ,...,nX X X X . Now, denoting 1i iF F  , we obtain: 
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   *

( ) 0 0 1

1

1 (1 ) (1 )
I

n n n

n i i i

i
The probability The probability that the candidate with
that at least one thebest match has exactly i mismatches
candidate has
zero mismatches

X F x F F xE 



          .                                  (15) 

We define the EVT obtained from allocating a kidney (type B or type O) to a B candidate, 
BEVT , as 

follows:  

*

( )

0

N

B n n

n

EV ET P X



   ,                                                               (16) 

where 
nP 

 is given by Eq. (7), 
*

(0) 0XE     , and when 1BL  ,  *

(1)

0

I

i i

i

E E xXX f


      . 

Similarly, when an arriving type O kidney is allocated to a candidate with blood type O, the EVT is given 

by 

*

( )

0

,O m m

m

EVT P E X






                                                                  (17) 

where 
T

m mP P e   . 

 

Let 
* *

( ) ( )(1 ) .nm n n n mC w E X w E X          Then, the overall EVT obtained from allocating a kidney 

according to the best-fit rule is given in the following theorem.  

 

Theorem 2.   

* *

0 ( ) 0 ( )

1 1 1 1

N N
OB

best fit B m m n n nm nm

m n n mB O B O

EVT EVT P E X P E X P C


   

 



   

 
             

     

Proof.   

The best-fit EVT equals the sum of two terms: (i) the product of the probability that a randomly-arriving 

kidney is of type B, i.e., B

B O



 
, and 

BEVT ;  and (ii) the product of the complementary probability, 
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O

B O



 
, and the weighted EVT,   * *

( ) ( )

0 0

(1 ) ,
N

nm n n n m

n m

P w E X w E X


 

         resulting from 

allocating an O-type kidney to either a B or an O candidate. The proof is completed by using the specific 

definition of 
nmC  and since

*

(0) 0XE           . 

 

Conventional resource allocation methods are based on a first-come first-serve (FCFS) approach (see a 

detailed discussion and a list of limitations in Thekinen and Panchal (2016)). Under the FCFS rule, an 

incoming kidney that has been allocated to a given queue is assigned to the candidate at the front of the 

queue. Thus, the EVT of the entire system under the FCFS rule equals 

    0 00(1 ) (1 ) .OB
FCFS

B O B O

EVT P E X P E X


   
   

 
                    (18) 

 

This calculation is based on the assumption that a kidney of blood type B is allocated to a candidate with 

blood type B when there is at least one such candidate in the system, whereas a kidney of type O is 

allocated whenever at least one of the candidate queues is not empty. Clearly, best fit FCFSEVT EVT  . 

 

6. Numerical analysis: 
nw  increases with n 

In what follows we carry out a numerical analysis in which we assume that the probability of 

allocating a kidney of blood type O to a candidate of blood type B increases with n, the number of 

candidates of blood type B who are waiting for transplant. Specifically, we define n

n
w

N


  for 

1,2,3,..., ,n N  where 0 1  .   

Since transplant waitlists are almost never empty, it is appropriate to assume that  O

O




 is a value 

close to unity. Hence, we assume that 9O   and 10.O   Adopting the ratio of kidney availability 
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rates presented in Stanford et al. (2014) for blood types B and O, respectively, we set 
9

46
B O  , and 

9
.

46
B O   In addition, we set 40.N   For the EVT calculations we use the following data: I = 4, 

if = 

[0.0094, 0.0941, 0.3134, 0.4073, 0.1758], and 
ix = [0.7, 0.62, 0.49, 0.47, 0.44]  (see David and Yechiali, 

1985).  

Figure 2 depicts the expected sojourn times of type O candidates and type B candidates— 

[ ]OE W  and [ ]BE W , respectively—as a function of   for two different values: 9O   and 9.5O   

(where the value of 
B  in each case is determined according to the ratio of kidney availability rates). 

Clearly, when   increases, more O kidneys are given to B candidates, causing higher values of [ ]OE W . 

Note that when   equals zero, 
1

[ ]O

O O

E W
 




, since the system for the O blood type becomes a 

regular M/M/1 queue. At the same time, [ ]BE W  decreases as   increases.  Denote by 
*  the value of α 

that yields [ ] [ ]O BE W E W . Stanford et al. (2014) assume that this point reflects equity and fairness in 

the allocation process. As depicted in Figure 2, as 
O  increases, the average number (as well as the mean 

waiting time) of O candidates increases, implying that 
* decreases from 

* 0.24   (Figure 2a) to 

* 0.09   (Figure 2b). That is, the probability of allocating an O kidney to a B candidate decreases as 

O  increases.   
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                             a: 9
O
                                                                       b: 9.5

O
                                           

Figure 2: [ ]OE W and [ ]BE W as functions of  for a: 9
O
  , and b: 9.5

O
   

 

Thus, when the decision maker‘s objective is to equate the expected waiting times for the two 

types of candidates, the mean fraction of O kidneys cross-transplanted to B candidates is equal to   

 
* *

*

1

N

n A

n

n
w P E L

N N

 




  . When 9,O   then * 0.013,w   while when 9.5,O   then 
* 0.01w  . 

Note that these small probabilities ensure that cross-transplantation is indeed a rare occurrence, thereby 

preventing the ―blood type O problem‖ in which the average waiting time for transplantation candidates 

with blood type O is much higher than that of candidates with blood type B (Stanford et al., 2014) .  

Next, we consider a case in which the decision maker‘s objective is to maximize the EVT of the 

system. Figure 3 depicts
OEVT , 

BEVT and best fitEVT   as functions of   for the two values of 
O . 

Clearly, as  
O  increases, all EVT values increase, since having more candidates in the system increases 

the probability of attaining a better transplantation fit (HLA match). In addition, when   increases, the 

probability of allocating an O kidney to a B candidate increases, resulting in higher values of  
OEVT , 

since more O candidates accumulate in the queue, resulting  in a higher  probability of attaining a good 

fit. As depicted in Figure 3, best fitEVT    also increases in .  
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                             a: 9
O
                                                                   b: 9.5

O
   

Figure 3: 
best fit

EVT


, 
O

EVT  and 
B

EVT as functions of   for a: 9
O
  , and b: 9.5

O
   
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 We further consider an additional objective measure that combines fairness and equity in 

candidates‘ waiting times with the benefit in terms of transplantation quality reflected in the EVT 

measure. Specifically, we propose the ratio [EW/EVT], which quantifies the rate of change in EW due to 

a change in EVT. We denote the value of   that equates the ratios  
[ ] [ ]O B

O B

E W E W

EVT EVT
  by  .  Figure 4a 

shows that 0.67   for 9O  , and Figure 4b shows that 0.15   for 9.5O  . Let

 
1

N

n A

n

n
w P E L

N N

 




  . When 9O  , then 0.03w   and when 9.5O   then 0.02w  . That is, 

a relatively small fraction of O kidneys are cross-transplanted into B candidates.  

 

 

                       a: 9
O
                                                                            b: 9.5

O
   

Figure 4: 
[ ]

O

O

E W

EVT
  and 

[ ]
B

B

E W

EVT
as a function of   for a: 9

O
  , and b: 9.5

O
   

 

Figures 4 and 2 suggest that   is larger than 
* . That is, taking into consideration the EVT 

measure by employing the ratio EW/EVT results in a higher probability of allocating an O kidney to a B 

candidate. When the objective is to equate the values of [EW/EVT] for the two queues, the waiting time 

of O candidates is longer than that under the policy that equates the values of EW; however, the value of 

best fitEVT   in the former case is greater, as shown in Figure 3.  That is, overall benefit to the system in 
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terms of achieving a high value of EVT may come at a slight cost in terms of type O candidates‘ waiting 

time.  

 

7. Conclusions 

Resource flexibility can be beneficial in that it facilitates efficient resource utilization. Yet, it leads to the 

question: What is the optimal fraction of cross-allocation? To address this problem, we developed and 

analyzed a queuing model based on a dynamic approach, in which the probability of cross-allocation of a 

flexible resource depends on the number of objects waiting in the non-flexible queue. We applied our 

model to the context of kidney transplantation, in which candidates with blood type B can be allocated 

kidneys of either blood type B or type O, but candidates with blood type O can only receive type O 

kidneys. We proposed a measure, EVT, that takes into account the histocompatibility between kidneys 

and transplant candidates, as a new measure for evaluating the effectiveness of the kidney allocation 

system. We further suggest that it is possible to balance different objectives (namely, achieving equitable 

waiting times among different candidates while maximizing EVT) by striving to equate the value of the 

ratio EW/EVT between the two types of candidates. In a numerical analysis we show that, when the latter 

objective is used, only a small fraction of type O kidneys are ultimately allocated to type B candidates, 

and that type O candidates‘ average waiting time only slightly exceeds that of type B candidates.  

 

Appendix  

Theorem 1 is proved using a cascade of supporting lemmas. To this end we define the following.  

Let   ( )     . Define the determinants of the minors of the diagonal of the matrix  ( ), starting from 

the upper left corner, as follows: 

  ( )    ( )                                                                     (A1)                                                                                      

  ( )      ( )    ( )            ( ) (         )               (A2)                       
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Clearly,   ( ) has no roots. Next we find the roots of   ( ).  

 

Lemma 1.   ( ) has one root in (0,1) and another root in (1,). 

Proof. Clearly,     is not a root of   ( ), so that    ( ) is a quadratic function of z having two roots: 

     
         √(        )

       

   
,  and      

         √(        )
       

   
.  Now, since 

        ,  1,1 (0,1)z   while        since           

                                                              

Lemma 2.   ( ) and     ( ) have no common roots   

Proof. By induction. Clearly, for     the claim is true. Assume the lemma holds for           If  

   is a root of both   ( ) and of     ( )  then, by Eq. (A2) and since    is not a function of z,    is also a 

root of     ( ), which  contradicts the induction‘s assumption.          

 

Lemma 3. Given     is a root of     ( ), then sign(    ( 
 )  ( 

 )))=−1. 

Proof. If     ( 
 )    by Eq. (A2),   ( 

 )             ( 
 )  implying that  

sign(    ( 
 )  ( 

 ))) = −1, as claimed.             

 

The following four lemmas follow from Eq. (A2). 

Lemma 4.     ( ) is a polynomial of degree 2n for 0 ≤ n ≤ N+1. 

Lemma 5. q (0 ) ( 1) 0 1n
n n N        

Lemma 6. q ( ) ( 1) 0 1n
n n N        

Lemma 7. q (1) ( ) 0 1n
n B n N      
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Lemma 8. For 1 1n N   ,   ( ) possesses exactly 2n roots from which n roots, denoted by 

              are in (   )  and the other n roots, denoted by               are in (   )   In addition, 

1 ,(q (z )) ( 1)n i
n n isign 
     and  

1
1 ,(q ( )) ( 1)i

n n isign y 
   for i=1,…,n.  

Proof. By induction. For n=1, by Lemma 1,   ( ) has exactly two roots, 1,10 1z  and 1,11 y   . 

Since   ( )    for all z, then evidently,   (    )    and   ( 1,1y )     

 

For n = 2, by Lemma 5,   ( 0 )     By Lemma 7,   ( )     Since   ( )       then by Lemma 3, 

  (    )    and   ( 1,1y )   . By Lemma 6,   ( )     Therefore,   ( ) has exactly 2 roots in (0,1) 

denoted by      and      and exactly 2 roots in (1,) denoted by      and        Hence,  the claim is true 

for n=2. For these roots,                                      In addition,   ( )    in 

(       )        (      ),   ( )    in (    ,     )  Therefore,   (    )        (    )       (    )  

    (    )   , showing that 

1 ,(q (z )) ( 1)n i
n isign     and  

1
1 ,(q ( )) ( 1)i

n n isign y 
   holds for n=2. 

We assume that the Lemma holds for n-1 and prove for n.  

By Lemma 5, q (0 ) ( 1)n
n

    and by the induction assumption and Lemma 3 1,(q (z )) ( 1)n i
n n isign 

    

for i=1,…,n-1. Now, by Lemma 4, q (1) 0n  . Therefore,   ( ) changes it‘s sign n+1 times in (0,1) and 

the roots satisfy                                        Since we know all the roots of   

    ( ) and     ( )    and since     ( 0 )  
1( 1)n      then 1 ,(q (z )) ( 1)n i

n n isign 
    

i=1,…,n. Similarly, the same holds for the roots in (1,∞) and the proof is complete.                
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