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a b s t r a c t 

Two distinct random streams of discrete objects flow into a system and queue in two separate lines. Con- 

currently, two distinct types of resources arrive stochastically over time. Upon arrival, each resource unit 

is matched with a waiting object. One resource type is ʻflexible’ and can be allocated to either one of 

the object types. However, units of the other, non-flexible, resource type can be allocated only to units of 

one specific object type. The allocation probabilities are not fixed and may depend on both queue sizes 

of the two objects. If a resource unit is not allocated immediately, it is lost. The goal is to find an optimal 

state-dependent probabilistic dynamic allocation policy. We formulate the system as a two-dimensional 

Markov process, analyze its probabilistic behavior, and derive its performance measures. We then apply 

the model to the problem of kidney cross-transplantation and propose a new measure of system effec- 

tiveness, called Expected Value of Transplantation (EVT), based on the histocompatibility between kidneys 

and candidates. We further show that it is possible to balance the objectives of achieving equity in can- 

didates’ expected waiting times (EW) and maximizing EVT by equating the value of EW/EVT between the 

two groups. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

This paper studies a dynamic flexible-resource allocation prob-

em that is encountered in numerous operational settings and is

articularly salient in the context of live organ transplantation. We

onsider two random streams of discrete objects, denoted S B and

 O , which flow into a system and queue in two separate lines, de-

oted Q B and Q O , respectively. In parallel, two distinct types of dis-

rete resources, R B and R O , arrive at the system stochastically over

ime. A unit of resource type R B can only be allocated to an S B -

ype object, whereas a unit of resource type R O is ‘flexible’ and can

e allocated to either one of the two object types: It is allocated

o an S B -type unit waiting in Q B (if the queue is not empty) with a

robability that may depend on both queue sizes or, with the com-

lementary probability, to a unit of an S O -object waiting (if any) in

 O . An arriving resource unit must be allocated to an object upon

rrival, or it is lost. Thus, if a unit of resource R B arrives when there

re no S B -type objects in Q B , it is discarded and disappears from

he system, whereas an R O -type resource is discarded upon arrival
∗ Corresponding author. 
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nly when both queues are empty (i.e., Q B = Q O = 0 ). This paper

eeks to identify an optimal state-dependent probabilistic dynamic

llocation policy in the setup described. 

Flexible-resource allocation models characterizing manufactur- 

ng systems that can produce multiple products simultaneously

ave been addressed in the literature (see, e.g., Buzacott & Shan-

hikumar, 1993; Sethi & Sethi, 1990 ; Perlman, 2013 ). Additional

pplications include telecommunication networks ( Ross, 1995 ), in

hich incoming calls can be routed to multiple links. Similarly, in

omputer systems with multiple users and multiple servers, users

an be dynamically routed to different servers, and computing ca-

acity can be shared among different customers. Call centers are

nother important application of resource flexibility. As calls can

ary by topic, urgency, duration, and level of difficulty, different

all center operators may be trained to handle different subsets of

all types ( Koole & Mandelbaum, 2002; Shumsky, 2004 ). Ahghari

nd Balcioglu (2009) performed extensive numerical studies based

n realistic call center scenarios and showed that limited cross-

raining of operators (specifically, providing each agent with two

dditional skills) can considerably enhance the system’s perfor-

ance. Robbins and Harrison (2010) studied a call center queue-

ng model with two customer types. They considered scenarios in

hich two separate teams were assigned to two different customer

http://dx.doi.org/10.1016/j.ejor.2017.07.068
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.07.068&domain=pdf
mailto:yael.perlman@biu.ac.il
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types, or in which a single cross-trained team could serve both

types. They showed that cross-training a small number of agents

results in substantial benefits as opposed to relying on agents who

can only serve one type of customer. 

We provide and analyze a general model of the flexible-

resource queueing system described above, and then focus on its

application in the context of live kidney transplantation. Stanford,

Lee, Chandok, and McAlister (2014) discussed the problem of allo-

cating stochastically-arriving kidneys to random streams of trans-

plantation candidates, who form separate queues according to their

blood types. Their model considers two blood types—type O and

type B—where type O kidneys can be given to any candidate, and

type B kidneys can only be given to candidates with blood type B.

The authors propose that it is possible to allocate a fixed fraction

of blood type O kidneys to blood type B candidates such that the

expected waiting times (EW) for transplantation for the two differ-

ent types of candidates are the same. However, the fixed probabil-

ity assumption overlooks the situation in which a type O kidney

arrives while there are only type O candidates in the system, but

no type B candidates. Our model addresses this issue by assuming

that, in such a situation, an arriving type O kidney is allocated ex-

clusively to a type O candidate. More generally, a key contribution

of our paper is in letting the probability of cross transplantation

depend dynamically on the actual number of B candidates present

in the system, rather than assuming that the probability is fixed. 

Human tissue cells contain antigens that are immunologically

relevant to specific candidate and donor. The system of these anti-

gens is known as the Human Leukocyte Antigen (HLA) system.

HLA matching is one of the most important factors when decid-

ing on kidney allocation. A review of the determinants of suc-

cessful kidney transplantation is given in Bendersky and David

(2016) . Proper HLA matching decreases the risk of graft lost by

about 40% ( Takemoto, Port, Claas, & Duquesnoy, 2004 ). In apply-

ing our model to the kidney transplantation context, we propose a

new means of measuring the effectiveness of the allocation sys-

tem, beyond traditional metrics such as mean waiting times or

mean queue sizes. This measure, which we refer to as the Ex-

pected Value of Transplantation (EVT), takes into account the ex-

tent to which the candidates and the kidneys they receive are com-

patible, i.e., matched in terms of their Human Leukocyte Antigen

(HLA) groups. This measure constitutes another important contri-

bution of our study. It is straightforward to generalize this measure

to more traditional manufacturing systems, by attributing a value

to each object-resource pair, representing the utility obtained from

that specific pairing. 

In a numerical analysis, we observe that long queues and long

waiting times are associated with higher EVT values, as they in-

crease the likelihood that an incoming kidney will find a well-

matched candidate. On the other hand, long waiting times are ex-

pected to lead to deterioration in candidates’ health, potentially

culminating in death. Thus, we propose an additional measure of

system effectiveness: the ratio of EW to EVT. The measure EW/EVT

quantifies the rate of change in expected waiting time attributable

to a change in EVT. Thus, this measure balances the two goals of

achieving equitable waiting times and maximizing the overall qual-

ity of transplants. We show that only a small fraction of type O

blood kidneys should be cross-transplanted to blood type B candi-

dates in order to optimize the effectiveness of the system. 

While the importance of having flexible resources or flexi-

ble servers in manufacturing and call center operations has long

been recognized, in this paper we extend the scope of analysis

by assuming that the number of available servers is not fixed

but changes dynamically and randomly. Specifically, resources (e.g.,

kidneys, or servers) do not stay and wait for objects to arrive.

Rather, individual resources arrive randomly over time, and each

one must serve a waiting object (e.g., a transplantation candidate)
s soon as it arrives; otherwise (i.e., if no appropriate objects are

vailable), it is lost (i.e., disappears from the system). 

The remainder of the paper is structured as follows.

ection 2 presents the model formulation. In Section 3 we

efine and construct probability-generating functions (PGFs), and

alculate the system’s two-dimensional boundary probabilities, as

ell as its marginal state probabilities. In Section 4 we employ

atrix geometric methods to further analyze the system and

erive the system’s stability condition and various performance

easures. In Section 5 we formulate the EVT as a measure of the

ffectiveness of a system for the dynamic allocation of kidneys

or (cross-) transplantation. In Section 6 we perform numerical

nalysis and conclude that only a small fraction of the flexible

esource should be allocated to cross-transplantation in order to

ptimize the system’s performance. Section 7 concludes the paper.

. Model formulation 

.1. Problem description 

Two Poisson streams of discrete objects, S B and S O , flow into

 system at rates of λB and λO , respectively, and queue in two

eparate lines, Q B and Q O . Concurrently, two types of discrete re-

ources, R B and R O , arrive stochastically with Poisson rates μB 

nd μO, respectively. All four processes are mutually independent.

hen a unit of resource R B arrives, it is allocated to an S B object

aiting in Q B . If Q B is empty, the unit is lost. However, an R O -type

esource can be allocated to an object of either type. The probabil-

ty that a unit of R O is allocated to an S B object is assumed to de-

end both on the number of S B objects in Q B and on the number

f S O objects in Q O . If both queues are empty, the R O unit is lost. 

Let L B and L O denote, respectively, the number of S B objects and

he number of S O objects present in the system. It is assumed that

he number of S B objects is bounded such that it cannot exceed

 given value N. Let P nm 

= P ( L B = n, L O = m ) , n = 0 , 1 , . . . , N; m =
 , 1 , 2 , . . . denote the system’s steady-state probabilities, and let

 nm 

be the probability that an arriving R O resource is allocated

o an S B object when the system is in state ( L B = n, L O = m ) . We

ssume that w 0 m 

= 0 for all m ≥ 1 , since when L B = 0 , an R O re-

ource is allocated only to an S O object. We further set w no = 1 for

 = 1 , . . . , N, since when no S O object is present, an arriving R O re-

ource is allocated with probability 1 to an S B object (if present). 

This process can be formulated as a two-dimensional

ontinuous-time Markov process with a state transition-rate

iagram as depicted in Fig. 1 . 

.2. Balance equations 

The set of balance equations for the system’s state probabilities

s constructed below. 

For n = 0: 
 

m = 0 P 00 ( λO + λB ) = P 01 μO + P 10 ( μO + μB ) 
m ≥ 1 P 0 m 

( λO + λB + μO ) = P 0 ,m +1 μO + P 0 ,m −1 λO 

+ P 1 m 

( w 1 m 

μO + μB ) 
(1)

For 1 ≤ n ≤ N − 1 : 
 

 

 

 

 

m = 0 P n 0 ( λO + λB + μO + μB ) = P n −1 , 0 λA + P n, 1 ( 1 − w n 1 ) μO 

+ P n +1 , 0 ( μO + μB ) 
m ≥ 1 P nm 

( λO + λB + μO + μB ) = P n,m −1 λO + P n −1 ,m 

λB 

+ P n,m +1 ( 1 − w n,m +1 ) μO + P n +1 ,m 

( w n +1 ,m 

μO + μB ) 

(2)

For n = N : 
 

m = 0 P N0 ( λO + μO + μB ) = P N, 1 ( 1 − w N1 ) μO + P N−1 , 0 λB 

m ≥ 1 P Nm 

( λO + μO + μB ) 
= P N,m −1 λO + P N,m +1 ( 1 − w N,m +1 ) μO + P N−1 ,m 

λB 

(3)
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Fig. 1. Transition-rate diagram of ( L B , L O ) . 
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We note that the above set of equations cannot be solved an-

lytically in its full general form, either by applying a generating

unctions method or by using a matrix geometric approach. Con-

equently, in what follows we relax the dependence of the prob-

bility w nm 

on both n and m, and assume that the probability

f allocating an R O resource to an S B object depends only on L B ,

he number of S B objects present in the system. That is, we as-

ume that w n 0 = 1 for n = 1 , 2 , ..., N; w 0 m 

= 0 for m = 1 , 2 , ... ; and

 nm 

= w n ≥ 0 otherwise. In the next section we apply a generating

unctions method (see, e.g., Litvak and Yechiali, 2003 ; Perel and

echiali, 2008 ; Perel and Yechiali, 2014 ) to analyze the system’s

robabilistic behavior. 

. Generating functions, boundary and marginal probabilities 

Define, for each 0 ≤ n ≤ N , the (partial) PGF 

 n ( z ) = 

∞ ∑ 

m =0 

P nm 

z m n = 0 , 1 , 2 , ..., N. 

Specifically, for n = 0, we multiply, for each m , the correspond-

ng equation in ( 1 ) by z m ; by summing over all m and rearranging

erms, we obtain: 

λO ( 1 − z ) + λB + μO 

(
1 − 1 

z 

))
G 0 ( z ) − ( μB + w 1 μO ) G 1 ( z ) 

= μO 

(
1 − 1 

z 

)
P 00 + ( 1 − w 1 ) μO P 10 ≡ b 0 (z) (4) 

Similarly, using the equations in ( 2 ), we obtain, for 1 ≤ n ≤ N −
 : 

λB G n −1 ( z ) + 

[ 
λO ( 1 − z ) + λB + μA + μO 

(
1 − 1 − w n 

z 

)] 
G n ( z ) 

−( μA + w n +1 μO ) G n +1 ( z ) 

= ( 1 − w n +1 ) μO P n +1 , 0 − μO ( 
1 − w n 

z 
) P n 0 ≡ b n (z) (5) 

Finally, using the equations in ( 3 ), we obtain, for n = N : 

λB G N−1 ( z ) + 

[ 
λO ( 1 − z ) + μB + μO 

(
1 − 1 − w N 

z 

)] 
G N ( z ) 

= −μO 
( 1 − w N ) 

z 
P N0 ≡ b N (z) (6) 

Let d 0 (z) = λO ( 1 − z ) + λB + μO ( 1 − 1 
z ) ,and for 1 ≤ n ≤ N − 1 ,

et d n (z) = λO ( 1 − z ) + λA + μA + (1 − 1 −w n 
z ) μO . 

Finally, let d N (z) = λO ( 1 − z ) + μB + ( 1 − 1 −w N ) μO . 
z 
Let c n = μA + w n +1 μO , 0 ≤ n ≤ N. 

Eqs. (4) –( 6 ) determine a set of linear equations for the un-

nown PGFs in the form A (z) � G (z) = 

�
 b (z) , where 

 ( N+1 ) × ( N+1 ) ( z ) 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

d 0 (z) −c 0 0 · · · · · · · · · 0 

−λB d 1 (z) −c 1 0 · · · · · · 0 

0 −λB d 2 (z) −c 2 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . −λB d N−1 (z) −c N−1 

0 · · · · · · · · · 0 −λB d N (z) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

�
 

 ( z ) = ( G 0 ( z ) , G 1 ( z ) , . . . , G N ( z ) ) 
t 
, 

nd 

 

 ( z ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

b 0 (z) 
. . . 
. . . 

b n (z) 
. . . 
. . . 

b N (z) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

here b n (z) , n = 0,1,2,…, N , are given in Eqs. (4) –( 6 ). 

To obtain G n (z) , we use Cramer’s rule (see e.g. Perel & Yechiali,

008 ). This leads to an expression of G n (z) in terms of the N + 1

nknown probabilities { P n 0 , 0 ≤ n ≤ N}. In order to obtain the

et { P n 0 } , we need to find N + 1 equations relating these N + 1

nknowns. Since G n (z) is a PGF defined for all | z| ≤ 1 , each root of

 A (z) | in that interval is also a root of | A n (z) | , 0 ≤ n ≤ N. We

laim that | A (z) | has exactly N + 1 roots in 0 < z < 1 . We will

se those roots to obtain the ( N + 1 ) probabilities { P n 0 } . 
heorem 1. The polynomial | A (z) | has 2( N + 1 ) roots, of which ex-

ctly N + 1 are in ( 0 , 1 ) , and the additional N + 1 are in the open

nterval ( 1 , ∞ ) . 

roof. See Appendix. �

Denote by z N+1 , 1 , z N+1 , 2 . . . , z N+1 ,N the N + 1 roots of | A (z) |
n ( 0 , 1 ) . The boundary probabilities { P n 0 , 0 ≤ n ≤ N } are now

alculated by using these N + 1 roots and by solving the fol-

owing set of N + 1 equations : | A 0 ( z N+1 , 1 ) | = 0 , | A 1 ( z N+1 , 2 ) | =
 , …, | A N ( z N +1 ,N +1 ) | = 0 , where the variables are the N +
 unknown boundary probabilities P 00 , P 10 , ..., P N0 . Then, when

ll boundary probabilities are calculated, the set of PGFs

 G n (z) , n = 0 , 1 , 2 , ..., N } is completely determined. In addition, the

arginal probabilities P n • are given by 

 n • = G n (1) = 

∑ 

m =0 

P nm 

n = 0 , 1 , 2 , ..., N. (7)

With the aid of the boundary probabilities, we obtain the set of

 + 1 marginal probabilities { P n • by setting z = 1 in each of the N

quations corresponding to ( 4 ) and ( 5 ) to obtain 

B P n • = μB P n +1 , • + μO P n +1 , 0 + w n +1 μO ( P n +1 , • − P n +1 , 0 ) , 

 = 0 , 1 , 2 , ..., N − 1 (8) 

Alternatively, Eq. (8) can be obtained by a horizontal cut be-

ween lines n and n + 1 in Fig. 1 . Finally, together with the nor-

alization equation 

N ∑ 

n =0 

P n • = 1 , the set { P n •} is directly calculated. 
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The mean number of S B -type objects in the system is given by

E [ L B ] = 

N ∑ 

n =0 

n P n •. (9)

In a stable system the effective inflow of S B -type objects is

λB (e f f ) = λB (1 − P N•) . Hence, by Little’s law, the mean sojourn

time of an S B -type object is 

E [ W B ] = 

E [ L B ] 

λB (1 − P N•) 
. (10)

In the next section, we use matrix geometric analysis to obtain

the mean number of S O -type objects in the system. 

4. Matrix geometric analysis 

Arrange the set of system states as follows: 

{ ( 00 , 10 , 20 , ..., N0 ) , ( 01 , 11 , 21 , ..., N1 ) , ..., 

( 0 m, 1 m, 2 m, ..., Nm ) , ... } . 
Modifying the balance equations (1) –( 3 ) for the case in which

w nm 

depends only on n — namely, w n 0 = 1 for n = 1 , 2 , ..., N;
w 0 m 

= 0 for m = 1 , 2 , ... ; and w nm 

= w n ≥ 0 otherwise — then the

generator matrix Q of the resulting level-dependent Quasi Birth

and Death (QBD) process is given by 

Q = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

B 0 A 0 0 0 · · · · · · · · ·
A 2 A 1 A 0 0 · · · · · ·

. . . 

0 A 2 A 1 A 0 · · · · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where B 0 , A 0 , A 1 and A 2 are each an ( N + 1 )-dimensional square

matrix. We have: 

B 0 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−( λO + λB ) λB 0 

μO + μB −( λO + λB + μO + μB ) λB 

0 μO + μB −( λO + λB + μO + μ
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

A 0 = λO I, 

A 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−( λO + λB + μO ) λB 0 

w 1 μO + μB −( λO + λB + μO + μB ) λB 

0 w 2 μO + μB −( λO + λB + μ
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 

. . . 
. . . 

. . . 

. . . 
. . . 

. . . 
0 · · · · · · 0 

0 · · · · · ·
. . . 

λB · · · · · ·
. . . 

. . . 
. . . · · ·

. . . 
. . . 

. . . · · ·
. . . 

. . . 
. . . · · · λB 

. . . 
. . . μO + μB −( λO + μO + μB ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

· · · · · · 0 

· · · · · ·
. . . 

 μB ) · · · · · ·
. . . 

. . . · · ·
. . . 

. . . · · ·
. . . 

. . . −( λO + λB + μO + μB ) λB 

. . . w N μO + μB −( λO + μO + μB ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

nd 

 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

μ0 0 0 0 · · · · · · · · ·
0 (1 − w 1 ) μ0 0 0 · · · · · ·

. . . 

0 0 (1 − w 2 ) μ0 0 · · · · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . · · ·
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . (1 − w N ) μ0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Let 
−→ 

P m 

= ( P 0 m 

, P 1 m 

, P 2 m 

, ..., P Nm 

) be an ( N + 1 )-dimensional row

ector, m = 1 , 2 , 3 , ... 

Also, set 
−→ 

P = ( 
−→ 

P 0 , 
−→ 

P 1 , 
−→ 

P 2 , ..., 
−→ 

P m 

, ... ) . The system-state prob-

bilities are calculated by 
−→ 

P Q = 

−→ 

0 and 

−→ 

P e T = 1 , where 
−→ 

0 is

 row vector of zeros, and e T is a column vector of ones. Then,

he solution ( Latouche & Ramaswami, 1999; Neuts, 1981 ) is given

y 
−→ 

P 0 B 0 + 

−→ 

P 1 A 2 = 

−→ 

0 and 

−→ 

P m 

= 

−→ 

P 0 R 
m , m = 1 , 2 , 3 , ... , where→ 

P 0 [ I − R ] −1 e T = 1 and the rate matrix R is the minimal nonnega-

ive solution of the quadratic-matrix equation A 0 + R A 1 + R 2 A 2 = 0 .
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The stability condition of the system is derived as follows: 

Let A = A 0 + A 1 + A 2 . Then, 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−λB λB 0 0

w 1 μO + μB −( λB + w 1 μO + μB ) λB 0

0 w 2 μO + μB −( λB + w 2 μO + μB ) λ
. . . 

. . . 
. . . 

.

. . . 
. . . 

. . . 
.

. . . 
. . . 

. . . 
.

. . . 
. . . 

. . . 

The matrix A expresses the infinitesimal generator matrix of an

/Mn/1/N queue with arrival rate λn = λB , n = 0 , 1 , 2 , ..., , N − 1 ,

nd a state-dependent service rate μn = w n μO + μB , n = 1 , 2 , ..., N.

he stationary probability vector 
−→ 

� = ( �0 , �1 , �2 , ..., �N ) of this

ueue is given by 
−→ 

�A = 

−→ 

0 and 

−→ 

� e T = 

−→ 

1 . 

Let ρi = 

λB 
w i μO + μB 

, i = 1 , 2 , ..., N. Then, �n = ( 
n ∏ 

i =1 

ρi ) �0 , n =

 , 2 , ..., N, with �−1 
0 

= 1 + 

N ∑ 

n =1 

( 
n ∏ 

i =1 

ρi ) . The stability condition of the

ystem Q is given by 
−→ 

�A 0 e 
T < 

−→ 

�A 2 e 
T ( Neuts, 1981 ). 

Now, 
−→ 

�A 0 e 
T = λO and 

−→ 

�A 2 e 
T = �0 μO + 

N ∑ 

n =1 

�N (1 − w n ) μO =

0 μO [ 1 + 

N ∑ 

n =1 

(1 − w n )( 
n ∏ 

i =1 

ρi ) ] . 

Thus, the stability condition becomes: 

λO 

μO 

< 

1 + 

N ∑ 

n =1 

(1 − w n ) 

(
n ∏ 

i =1 

ρi 

)
1 + 

N ∑ 

n =1 

(
n ∏ 

i =1 

ρi 

) . (11) 

When w n = 0 for all n, the system of R O -type resources and S O -

ype objects is an M/M/1 queue, and the stability condition reduces

o 
λO 
μO 

< 1 . When w n = 1 , then ρ = ρi = 

λB 
μO + μB 

, i = 1 , 2 , ..., N, and

he stability condition is 
λO 
μO 

< 

1 −ρ
1 −ρN+1 . This condition can be ex-

lained as follows: Consider an M/M/1/N queue with arrival rate

B and a service rate μO + μB . Then, the fraction of time the queue

s empty is 1 −ρ
1 −ρN+1 . This is a queue in which, as long as there are

 B objects in the system, all resources (type R B and type R O ) are al-

ocated to S B objects. R O resources are allocated to S O objects only

hen no S B objects are present. The proportion of time the lat-

er event occurs is 1 −ρ
1 −ρN+1 . Thus, the rate of ‘work’ attributed to S O 

bjects, namely, 
λO 
μO 

, cannot exceed this proportion of time. 

The mean number of S O objects in the system is given by 

[ L O ] = 

∞ ∑ 

m =0 

m 

−→ 

P m 

e T = 

−→ 

P 0 

∞ ∑ 

m =1 

m R 

m e T N+1 = 

−→ 

P 0 R [ I − R ] 
−2 e T . (12)

By Little’s law, the mean sojourn time of an S O object is 

 [ W O ] = 

E [ L O ] 

λO 

. (13)

The mean waiting time for an arbitrary object is 

 [ W ] = 

λB (1 − P N•) 
λB (1 − P N•) + λO 

E [ W B ] + 

λO 

λB (1 − P N•) + λO 

E [ W O ] . (14)
· · · · · 0 

· · · · ·
. . . 

· · · · ·
. . . 

 . . · · ·
. . . 

 . . · · ·
. . . 

 . . −( λB + w N−1 μO + μB ) λB 

. . . w N μO + μB −( w N μO + μB ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

. Application to kidney transplantation: a new measure –

xpected Value of Transplantation 

Several studies have addressed various aspects of the kidney

llocation problem. David and Yechiali (1985) were among the

rst to model kidney allocation based on HLA considerations. They

onsidered a single candidate and a stochastic stream of kidneys,

here the decision whether to transplant an arriving kidney or

eject it is based on the degree of histocompatibility between

he candidate and the kidney. Those authors further extended the

tudy of dynamic allocation process to parallel streams of candi-

ates and offers ( David and Yechiali, 1990 ) and to one attribute

equential assignment match process in discrete time ( David and

echiali, 1995 ). Zenios (1999) was the first to present a queueing

odel for transplant waiting times and, in a subsequent study,

arried out simulations on data from kidney transplant waiting

ists in the US ( Zenios, Chertow, & Wein, 20 0 0 ). Su and Zenios

2004) extended the kidney allocation problem to take into ac-

ount the possibility that patients might refuse an available kid-

ey in order to hold out for a higher-quality match. Bendersky and

avid (2016) recently studied a flexible single-candidate model for

he kidney allocation problem based on a broad family of Gamma

ifetime distributions. They obtained the optimal critical times of

cceptance of offers of different qualities. 

As discussed above (see also Stanford et al., 2014 ), our model

ssumes that kidneys corresponding to blood type O can serve

ultiple types of candidates, whereas, kidneys corresponding to

lood type B can serve only one type of candidate (i.e., individ-

als with blood type B). The issue of cross-transplantation of kid-

eys corresponding to blood type O has given rise to the so-called

Blood Type O Problem”, in which too many type O kidneys are

ross-transplanted to compatible blood groups, thereby diminish-

ng the supply of type O kidneys and causing notably longer waits

or candidates with blood type O. Queueing models have recently

egun to address this problem (see Drekic, Stanford, Woolford, &

cAlister, 2015 ). 

In what follows, we propose a new measure for evaluating the

erformance of a kidney transplantation queueing system. First,

iven that a kidney has been allocated to a particular queue, we

ropose that the specific waiting candidate who receives the kid-

ey should be selected on the basis of a best-fit rule . In particular,

e suggest that the kidney should be allocated to the candidate

ith the highest level of HLA match. We operationalize the HLA

atch as follows: When a kidney arrives and is allocated to the

ueue of a particular blood type, it is assigned a level of histocom-

atibility for each one of the waiting candidates, where there are I

ossible levels. The kidney is then given to the candidate with the

est fit, independently of his position in line, as defined below. 

Let H be a random variable denoting the number of mis-

atched HLA characteristics between a randomly-arriving kidney
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and a random candidate. Let f i = P ( H = i ) , i = 0 , 1 , 2 , . . . , I, be the

probability that a random candidate and a random kidney have i

mismatches; and let F i = P ( H ≤ i ) , where F I = 1 . Let X be a random

variable denoting the ‘transplantation value’ between a random

kidney and a random candidate. For example, X may denote the

probability that the lifetime of the transplanted candidate will ex-

ceed a given number of years. The value of X for H = i mismatches

is denoted by x i , where, if i < j, then x i > x j . Consequently, 

P ( X = x i ) = P ( H = i ) = f i , and E [ X ] = 

I ∑ 

i =0 

f i x i . 

Suppose that L B = n ≥ 1 , and that an arriving kidney is allo-

cated to Q B , the queue of candidates with blood type B. The X val-

ues corresponding to the n candidates waiting in Q B are denoted,

respectively, X 1 , X 2 , ..., X n ; each of these variables is i.i.d. like X . As-

suming that the kidney is allocated according to the best-fit rule ,

then the value of the allocation is 

X ∗
(n ) 

= max { X 1 , X 2 , ..., X n } . Now, denoting F̄ i = 1 − F i , we

obtain: 

E 
[
X 

∗
(n ) 

]
= 

(
1 − F̄ n 0 

)︸ ︷︷ ︸ 
T he probability 

that at least one 

cand id ate has 

zero mismatches 

x 0 + 

I ∑ 

i =1 

((
1 − F̄ n i 

)
−

(
1 − F̄ n i −1 

))︸ ︷︷ ︸ 
T he probability t hat t he cand id ate with 

thebest match has exactly i mismatches 

x i . 

(15)

We define the EVT obtained from allocating a kidney (type B or

type O) to a B candidate, EV T B , as follows: 

E V T B = 

N ∑ 

n =0 

P n •E 
[
X 

∗
(n ) 

]
, (16)

where P n • is given by Eq. (7) , E[ X ∗
(0) 

] = 0 , and when L B = 1 ,

E[ X ∗
(1) 

] = E[ X] = 

I ∑ 

i =0 

f i x i . 

Similarly, when an arriving type O kidney is allocated to a can-

didate with blood type O, the EVT is given by 

E V T O = 

∞ ∑ 

m =0 

P •m 

E 
[
X 

∗
(m ) 

]
, (17)

where P •m 

= 

−→ 

P m 

· e T . 

Let C nm 

= w n E[ X ∗
(n ) 

] + (1 − w n ) E[ X ∗
(m ) 

] . Then, the overall EVT ob-

tained from allocating a kidney according to the best-fit rule is

given in the following theorem. 

Theorem 2. E V T best− f it = 

μB 
μB + μO 

E V T B + 

μO 
μB + μO 

[ 
∞ ∑ 

m =1 

P 0 m 

E [ X ∗
(m ) 

] + 

N ∑ 

n =1

P n 0 E[ X ∗
(n ) 

] + 

N ∑ 

n =1 

∞ ∑ 

m =1 

P nm 

C nm 

] 

Proof. The best-fit EVT equals the sum of two terms: (i) the

product of the probability that a randomly-arriving kidney is

of type B, i.e., 
μB 

μB + μO 
, and EV T B ; and (ii) the product of

the complementary probability, 
μO 

μB + μO 
, and the weighted EVT,

N ∑ 

n =0 

∞ ∑ 

m =0 

P nm 

( w n E[ X ∗
(n ) 

] + (1 − w n ) E[ X ∗
(m ) 

] ) , resulting from allocating

an O-type kidney to either a B or an O candidate. The proof is com-

pleted by using the specific definition of C nm 

and since E[ X ∗
(0) 

] =
0 . �

Conventional resource allocation methods are based on a first-

come first-serve (FCFS) approach (see a detailed discussion and a
ist of limitations in Thekinen and Panchal, 2016 ). Under the FCFS

ule, an incoming kidney that has been allocated to a given queue

s assigned to the candidate at the front of the queue. Thus, the

VT of the entire system under the FCFS rule equals 

V T F CF S = 

μB 

μB + μO 

(1 − P 0 •) E [ X ] + 

μO 

μB + μO 

(1 − P 00 ) E [ X ] . (18)

This calculation is based on the assumption that a kidney of

lood type B is allocated to a candidate with blood type B when

here is at least one such candidate in the system, whereas a kid-

ey of type O is allocated whenever at least one of the candidate

ueues is not empty. Clearly, E V T best− f it ≥ E V T F CF S . 

. Numerical analysis: w n increases with n 

In what follows we carry out a numerical analysis in which we

ssume that the probability of allocating a kidney of blood type O

o a candidate of blood type B increases with n , the number of can-

idates of blood type B who are waiting for transplant. Specifically,

e define w n = 

αn 
N for n = 1 , 2 , 3 , ..., N, where 0 ≤ α ≤ 1 . 

Since transplant waitlists are almost never empty, it is appropri-

te to assume that 
λO 
μO 

is a value close to unity. Hence, we assume

hat λO = 9 and μO = 10 . Adopting the ratio of kidney availabil-

ty rates presented in Stanford et al. (2014) for blood types B and

, respectively, we set λB = λO 
9 

46 , and μB = μO 
9 

46 . In addition, we

et N = 40 . For the EVT calculations we use the following data: I =
, f i = [0.0094, 0.0941, 0.3134, 0.4073, 0.1758], and x i = [0.7, 0.62,

.49, 0.47, 0.44] (see David & Yechiali, 1985 ). 

Fig. 2 depicts the expected sojourn times of type O candidates

nd type B candidates— E[ W O ] and E[ W B ] , respectively—as a func-

ion of α for two different values: λO = 9 and λO = 9 . 5 (where the

alue of λB in each case is determined according to the ratio of

idney availability rates). Clearly, when α increases, more O kid-

eys are given to B candidates, causing higher values of E[ W O ] .

ote that when α equals zero, E[ W O ] = 

1 
μO −λO 

, since the system

or the O blood type becomes a regular M/M/1 queue. At the same

ime, E[ W B ] decreases as α increases. Denote by α∗ the value of α
hat yields E[ W O ] = E[ W B ] . Stanford et al. (2014) assume that this

oint reflects equity and fairness in the allocation process. As de-

icted in Fig. 2 , as λO increases, the average number (as well as

he mean waiting time) of O candidates increases, implying that
∗decreases from α∗ ∼= 

0 . 24 ( Fig. 2 a) to α∗ ∼= 

0 . 09 ( Fig. 2 b). That is,

he probability of allocating an O kidney to a B candidate decreases

s λO increases. 

Thus, when the decision maker’s objective is to equate the ex-

ected waiting times for the two types of candidates, the mean

raction of O kidneys cross-transplanted to B candidates is equal to

¯  ∗ ≡
N ∑ 

n =1 

P n • α∗n 
N = 

α∗
N E[ L A ] . When λO = 9 , then w̄ 

∗ ∼= 

0 . 013 , while

hen λO = 9 . 5 , then w̄ 

∗ ∼= 

0 . 01 . Note that these small probabili-

ies ensure that cross-transplantation is indeed a rare occurrence,

hereby preventing the “blood type O problem” in which the aver-

ge waiting time for transplantation candidates with blood type O

s much higher than that of candidates with blood type B ( Stanford

t al., 2014 ). 

Next, we consider a case in which the decision maker’s objec-

ive is to maximize the EVT of the system. Fig. 3 depicts EV T O ,

V T B and EV T best− f it as functions of α for the two values of λO .

learly, as λO increases, all EVT values increase, since having more

andidates in the system increases the probability of attaining a

etter transplantation fit (HLA match). In addition, when α in-

reases, the probability of allocating an O kidney to a B candidate

ncreases, resulting in higher values of EV T O , since more O candi-

ates accumulate in the queue, resulting in a higher probability of

ttaining a good fit. As depicted in Fig. 3 , EV T best− f it also increases

n α. 
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Fig. 2. E[ W O ] and E[ W B ] as functions of α for a: λO = 9 , and b: λO = 9 . 5 . 

Fig. 3. EV T best− f it , EV T O and EV T B as functions of α for a: λO = 9 , and b: λO = 9 . 5 . 

Fig. 4. E[ W O ] 
EV T O 

and E[ W B ] 
EV T B 

as a function of α for a: λO = 9 , and b: λO = 9 . 5 . 
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We further consider an additional objective measure that com-

ines fairness and equity in candidates’ waiting times with the

enefit in terms of transplantation quality reflected in the EVT

easure. Specifically, we propose the ratio [EW/EVT], which quan-

ifies the rate of change in EW due to a change in EVT. We de-

ote the value of α that equates the ratios 
E[ W O ] 
EV T = 

E[ W B ] 
EV T by ˜ α.
O B 
ig. 4 a shows that ˜ α = 0 . 67 for λO = 9 , and Fig. 4 b shows that

˜ = 0 . 15 for λO = 9 . 5 . Let ¯̃
 w ≡

N ∑ 

n =1 

P n • ˜ αn 
N = 

˜ α
N E[ L A ] . When λO = 9 ,

hen 

¯̃
 w 

∼= 

0 . 03 and when λO = 9 . 5 then 

¯̃
 w 

∼= 

0 . 02 . That is, a rel-

tively small fraction of O kidneys are cross-transplanted into

 candidates. 
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Figs. 4 and 2 suggest that ˜ α is larger than α∗. That is, tak-

ing into consideration the EVT measure by employing the ratio

EW/EVT results in a higher probability of allocating an O kidney

to a B candidate. When the objective is to equate the values of

[EW/EVT] for the two queues, the waiting time of O candidates is

longer than that under the policy that equates the values of EW;

however, the value of EV T best− f it in the former case is greater, as

shown in Fig. 3 . That is, overall benefit to the system in terms of

achieving a high value of EVT may come at a slight cost in terms

of type O candidates’ waiting time. 

7. Conclusions 

Resource flexibility can be beneficial in that it facilitates effi-

cient resource utilization. Yet, it leads to the question: What is

the optimal fraction of cross-allocation? To address this problem,

we developed and analyzed a queuing model based on a dynamic

approach, in which the probability of cross-allocation of a flexible

resource depends on the number of objects waiting in the non-

flexible queue. We applied our model to the context of kidney

transplantation, in which candidates with blood type B can be al-

located kidneys of either blood type B or type O, but candidates

with blood type O can only receive type O kidneys. We proposed

a measure, EVT, that takes into account the histocompatibility be-

tween kidneys and transplant candidates, as a new measure for

evaluating the effectiveness of the kidney allocation system. We

further suggest that it is possible to balance different objectives

(namely, achieving equitable waiting times among different candi-

dates while maximizing EVT) by striving to equate the value of the

ratio EW/EVT between the two types of candidates. In a numeri-

cal analysis we show that, when the latter objective is used, only a

small fraction of type O kidneys are ultimately allocated to type B

candidates, and that type O candidates’ average waiting time only

slightly exceeds that of type B candidates. 

Appendix 

Theorem 1 is proved using a cascade of supporting lemmas. To

this end we define the following. 

Let q 0 (z) = 1 . Define the determinants of the minors of the

diagonal of the matrix A (z) , starting from the upper left corner, as

follows: 

q 1 ( z ) = d 0 ( z ) (A1)

q n ( z ) = d n −1 ( z ) q n −1 ( z ) − λB c n −2 q n −2 ( z ) , ( n = 2 , . . . , N + 1 ) . 

(A2)

Clearly, q 0 (z) has no roots. Next we find the roots of q 1 (z) . 

Lemma 1. q 1 (z) has one root in (0, 1) and another root in (1, ∞ ). 

Proof. Clearly, z = 0 is not a root of q 1 (z) , so that

z d 0 (z) is a quadratic function of z having two

roots: z 1 , 1 = 

λO + λB + μO −
√ 

( λO + λB + μO ) 
2 −4 λO μO 

2 λO 
, and y 1 , 1 =

λO + λB + μO + 
√ 

( λO + λB + μO ) 
2 −4 λO μO 

2 λO 
. Now, since 

λO λB > 0 , z 1 , 1 ∈ (0 , 1) while y 1 , 1 > 1 since μO > λO . �

Lemma 2. q n (z) and q n +1 (z) have no common roots . 

Proof. By induction. Clearly, for n = 0 the claim is true. Assume

the lemma holds for n = k − 1 ≤ N. If z ∗ is a root of both q k (z) 

and of q k +1 (z) , then, by Eq. (A2) and since c n is not a function

of z, z ∗ is also a root of q k −1 (z) , which contradicts the induction’s

assumption. �
emma 3. Given z ∗ is a root of q n −1 (z) , then sign

 q n −2 ( z 
∗) q n ( z ∗) )) = − 1 . 

roof. If q n −1 ( z 
∗) = 0 by Eq. (A2) , q n ( z 

∗) = −λB c n −2 q n −2 ( z 
∗) , im-

lying that sign( q n −2 ( z 
∗) q n ( z ∗) )) = − 1, as claimed. �

The following four lemmas follow from Eq. (A2) . 

emma 4. z n q n (z) is a polynomial of degree 2n for 0 ≤ n ≤ N + 1. 

emma 5. q n ( 0 + ) = (−1) n ∞ 0 ≤ n ≤ N + 1 

emma 6. q n (∞ ) = (−1) n ∞ 0 ≤ n ≤ N + 1 

emma 7. q n (1) = ( λB ) 
n 0 ≤ n ≤ N + 1 

emma 8. For 1 ≤ n ≤ N + 1 , q n (z) possesses exactly 2n roots from

hich n roots, denoted by z n, 1 , . . . , z n,n , are in ( 0 , 1 ) , and the

ther n roots, denoted by y n, 1 , . . . , y n,n , are in ( 1 , ∞ ) . In addi-

ion, sign ( q n −1 ( z n,i )) = (−1) n −i and sign ( q n −1 ( y n,i )) = (−1) i −1 for

 = 1,…, n . 

roof. By induction. For n = 1, by Lemma 1 , q 1 (z) has exactly two

oots, 0 < z 1 , 1 < 1 and 1 < y 1 , 1 < ∞ . Since q 0 (z) = 1 for all z , then

vidently, q 0 ( z 1 , 1 ) > 0 and q 0 ( y 1 , 1 ) > 0 . 

For n = 2, by Lemma 5 , q 2 ( 0 
+ ) > 0 . By Lemma 7 , q 2 (1) > 0 .

ince q 0 (z) = 1 > 0 , then by Lemma 3 , q 2 ( z 1 , 1 ) < 0 and q 2 ( y 1 , 1 ) <

 . By Lemma 6 , q 2 (∞ ) > 0 . Therefore, q 2 (z) has exactly 2 roots

n (0,1) denoted by z 2 , 1 and z 2 , 2 and exactly 2 roots in (1, ∞ ) de-

oted by y 2 , 1 and y 2 , 2 . Hence, the claim is true for n = 2. For these

oots, 0 < z 2 , 1 < z 1 , 1 < z 2 , 2 < 1 < y 2 , 1 < y 1 , 1 < y 2 , 2 < ∞ . In addi-

ion, q 1 (z) < 0 in ( −∞ , z 1 , 1 ) and in ( y 1 , 1 , ∞ ) , q 1 (z) > 0 in ( z 1 , 1 ,

 1 , 1 ) . Therefore, q 1 ( z 2 , 1 ) 〈 0 , q 1 ( z 2 , 2 ) 〉 0 , q 1 ( y 2 , 1 ) > 0 , q 1 ( y 2 , 2 ) <

 , showing that 

sign ( q 1 ( z n,i )) = (−1) n −i and sign ( q n −1 ( y n,i )) = (−1) i −1 holds

or n = 2. 

We assume that the Lemma holds for n −1 and prove for n . 

By Lemma 5 , q n ( 0 
+ ) = (−1) n ∞ and by the induction assump-

ion and Lemma 3 sign ( q n ( z n −1 ,i )) = (−1) n −i for i = 1,…, n −1.

ow, by Lemma 4 , q n (1) > 0 . Therefore, q n (z) changes it’s sign

 + 1 times in (0,1) and the roots satisfy 0 < z n, 1 < z n −1 , 1 <

 n, 2 , . . . , z n −1 ,n −1 < z n,n < 1 . Since we know all the roots of

 n −1 (z) and q n −1 (1) > 0 and since q n −1 ( 0 
+ ) = (−1) n −1 ∞ > 0 then

ign ( q n −1 ( z n,i )) = (−1) n −i i = 1,…, n . Similarly, the same holds for

he roots in (1, ∞ ) and the proof is complete. �
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