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ABSTRACT
Consider a deteriorating repairableMarkovian systemwithN stochastically independent identical units. The
lifetime of each unit follows a discrete phase-type distribution. There is one online unit and the others are in
standby status. In addition, there is a single repair facility and the repair time of a failed unit has a geometric
distribution. The system is inspected at equally spaced points in time. After each inspection, either repair or
a full replacement is possible.We consider state-dependent operating costs, repair costs that are dependent
on the extent of the repair, and failure penalty costs. Applying dynamic programming, we show that under
reasonable conditions on the system’s law of evolution and on the state-dependent costs, a generalized
control-limit policy is optimal for the expected total discounted criterion for both cold standby and warm
standby systems. Illustrative numerical examples are presented and insights are provided.

1. Introduction

System maintenance is necessary in order to improve overall
reliability, prevent system failures, and reduce costs. A common
industrial and military activity is the periodic inspection of a
system or of one of its units to keep it operative. After each
inspection, a decision has to bemade as towhether or not to alter
the system’s state at that time. Themain objective of this article is
to shed light on optimality issues regarding maintenance strate-
gies for multi-unit repairable systems.

In this article, a repairable system withN stochastically inde-
pendent and identical units (components) is analyzed. There is
one operating unit online while the others are on standby, in
repair, or waiting to be repaired. Upon an online unit failure, it
goes to a repair queue and is immediately replaced by a standby
unit (if available) that becomes the operating unit online. When
the number of good units reduces to zero, the system fails.

A multi-unit k-out-of-N standby system (which is a gener-
alization of the above 1-out-of-N system) is defined as a system
withN units that is functioningwhen at least k of the units work;
otherwise, the system fails. Note that both parallel (k = N) and
series (k = 1) systems are special cases of k-out-of-N system.
Examples abound in real-word systems: multiple pumps in a
hydroelectric plant; computer networks with multiple servers;
a four-engine aircraft that can continue to operate as long as
at least two engines are working; systems in remote locations
that are often designed as k-out-of-N systems, etc. A great deal
of research has been devoted to k-out-of-N systems; papers
by Smith and Dekker (1997), Tian et al. (2008), Levitin et al.
(2014), Xie et al. (2014), Barron (2015), Fernández (2015),
Wu et al. (2015), Babishin and Taghipour (2016), and Chalabi
et al. (2016) are just a sample. Even though the reliability and
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availability of k-out-of-N systems have been studied in the
literature, not many models have been proposed for inspection
and maintenance optimization of such systems.

In a repairable system, units are replaced upon failure while
failed units are sent to be repaired. A preventive maintenance
policy does not wait for units to fail; rather, it replaces or repairs
them in accordance with a predetermined maintenance sched-
ule. Such preventive maintenance policies reduce unexpected
failures of units and of the entire system. Condition-based
maintenance decisions are scheduled based on the condition of
single or multiple units and have been extensively studied and
widely applied. Known results on replacement andmaintenance
policies were summarized in Barlow and Proschan (1965). They
derived the optimal sequential policy for a replacement, using
dynamic programming. The finite-time inspection model with
discounted costs was discussed by Hariga and AI-Fawzan
(2000). For the discrete case, the basic models introduced by
Derman (1963) and Kolesar (1966) consider a system dete-
riorating based on a Markov process, where different states
correspond to different levels of deterioration. In these mod-
els, the only possible action is the replacement of the system
with a new one. They established conditions on the transition
probabilities and the cost functions under which the optimal
average cost criterion policy is a Control-Limit Rule (CLR).
Ross (1969) generalized the above models and extended the
results to the continuous state-space case. Other models, such
as Kijima et al. (1988) and Douer and Yechiali (1994), allow
partial repairs, which are cheaper than a complete replacement.
For a deterioration process that changes its characteristics as the
system ages, we cite Kao (1973), Stadje and Zuckerman (1991),
So (1992), Lam and Yeh (1994), Benyamini and Yechiali (1999),
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1032 Y. BARRON AND U. YECHIALI

and, more recently, De Smidt-Destombes et al. (2006), Naka-
gawa and Mizutani (2009), Huynh et al. (2012), and Bajestani
and Banjevic (2016), among others. Laggounea et al. (2010)
present a preventive maintenance model based on a partial
periodic renewal policy and non-negligible replacement times.
Zhong and Jin (2014) include preventive maintenance in a cold
standby two-unit system using a semi-Markov process. An
optimal replacement policy is developed by Zhang and Wang
(2011). Ahmadi (2014) presents a generalized approach to
maintenance scheduling of repairable systems whose resulting
output is subject to a system’s state. Zhang, Wu, Li, and Lee
(2015) study maintenance policies for a multi-unit system by
decomposing such a system into mutually influential single-
unit systems; each single unit system is formulated as a Markov
decision process, with the objective of minimizing its long-run
average maintenance cost. Olde Keizer et al. (2016) develop a
dynamic programming model to optimize the condition-based
maintenance strategy for a k-out-of-N system with both eco-
nomic dependencies and redundancy. Shi and Zeng (2016)
present a dynamic opportunistic condition-based maintenance
strategy based on real-time predictions of the remaining useful
life under the simultaneous consideration of economic and
stochastic dependence. Integrated models based on statistical
process control (for example, control charts) and maintenance
decisions for manufacturing and supply chain systems can be
found in Yin et al. (2015), Zhang, Deng, Zhu, and Yin (2015),
Gunay and Kula (2016), and Zhong et al. (2016). Practical
examples of systems using CLRs are manufacturing machines
whose components’ wear arises from continual use over time.
To produce items of acceptable quality, such systems must be
maintained by routine inspections for detecting the system state
and performing an appropriate action. As an example, consider
the operation of a gas turbine. In order to maintain the system’s
efficiency, it is required to inspect the components’ condition
from time to time. Another example comes from air conditioner
maintenance; due to electrostatic effects and air circulation,
some units are covered with dirt and dust, which, in turn, results
in the frequent overload of electronic components, a significant
increase in power consumption, and, even worse, the burning
out of electronic components. Hence, proper maintenance can
extend an air conditioner’s service life and prevent fatal damage.
Another notable example is the periodic inspection of a private
car, after which various degrees of maintenance are possible.

In this article, we focus on modeling and analyzing the effect
of preventive maintenance policies where the failure times of
the units follow a discrete phase-type distribution. Although
reliability systems are usually studied in the continuous time
space (Barron et al., 2004; Fernández, 2015; Shue et al., 2015;
Wu et al., 2015; Shu et al., 2016), not all systems can be con-
tinuously monitored, and some are observed at specified times.
Given that all discrete distributions with finite support can be
represented by discrete phase-type distributions (Neuts, 1981;
Alfa, 2004; Moghaddass and Zuo, 2014), phase distributions are
useful for representing evolutionary processes, such as degrada-
tion of a unit, and, hence, are appropriate for the present investi-
gation. Reliability systems that evolve in discrete time have been
used to analyze the behavior of devices in fields such as civil and
aeronautical engineering (Ruiz-Castro, 2016).

We assume a single repair facility where repair times are
independent and identically distributed (i.i.d.) randomvariables

and follow a geometric distribution (which is the counterpart
of the continuous exponential distribution) with probability p
for repairing a unit to “as good as new” during a time period.
Note that when p is very close to one, a good item is almost
always available and, thus, the repairman’s contribution is neg-
ligible. When p is close to zero, the mean repair time is huge
and the repair facility is hardly used. Hence, we consider val-
ues of p that are neither close to one nor to zero. We discuss
both a “Replacement-Only” model, in which the operating unit
is replaced by a new one, and a “Repair–Replacement” model, in
which we allow for a general-degree repair action from any state
to any better state at any time of inspection. We consider state-
dependent operating costs, failure costs, and repair costs that are
dependent on the degree of repair. Applying dynamic program-
ming,we focus on the discounted cost criterion, using a discount
factor 0 < α < 1. Two (classic) models are investigated: (i) the
cold standby system, in which a standby element is unpow-
ered and does not operate until needed to replace a faulty unit,
and (ii) the warm standby system, where an element, while in
standbymode, is partially powered. Therefore, the failure rate of
a warm standby element is typically less than its full operational
failure rate. The cold standby technique is commonly used in
applications where energy consumption is critical, while exam-
ples of a warm standby system are redundant hard disks used
to replace failed disks in a computer storage system. Another
example of a warm system is a power plant in which extra gen-
erating units are waiting in standby mode. (Clearly, the cold
standby system is a special case of thewarmone, for a zero failure
rate of a standby unit.) Formore examples, we refer the reader to
Amari et al. (2012), Levitin et al. (2014), andRuiz-Castro (2016).

The contribution of this article, motivated by the models of
Douer and Yechiali (1994), who consider a single-unit deterio-
rating system in discrete time, is fourfold:

(i) we study multi-unit systems;
(ii) we analyze both cold and warm standby systems;
(iii) the lifetime of an operative unit has a phase-type distri-

bution; and
(iv) we include a repair facility.
To the best of our knowledge, although the related litera-

ture is large, our model is new and has not previously been
investigated in the reliability literature. Following Douer and
Yechiali (1994), we introduce a generalized CLR defined as fol-
lows: Repair to a better state (or replace) if and only if the state
of the system exceeds some control-limit state. We show that,
under reasonable conditions on the system’s transition laws and
cost values, the optimal policy has the structure of a general-
ized CLR. In general, it is known that in a finite state space there
exists a non-randomized optimal policy; however, a generalized
CLR serves in two aspects: computability, by reducing the num-
ber of possible optimal policies, and practically, by providing
a useful and easy-to-implement tool for the controller; hence,
CL rules are the most practical to implement maintenance
rules.

This article is organized as follows. In Section 2 we intro-
duce the model, the associated expected discounted costs,
and the concept of a generalized CLR. Section 3 discusses
the Replacement-Only model and the optimality of CLRs.
Section 4 offers an extension by studying the Repair–
Replacement model. More restrictive conditions are suggested
and discussed. In both Sections 3 and 4, the cold and warm
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IISE TRANSACTIONS 1033

standby models are treated. In Section 5, numerical examples
are presented and insights are provided.

2. Mathematical description

Consider a system ofN stochastically independent and identical
units (components). There is one operating unit online and the
others are either in a standby position, in a repair position, or
waiting to be repaired. Upon failure, the unit goes to a repair
queue and is immediately replaced by a standby unit (if there is
any) that becomes the operating unit online. When all N units
are in a repair position, the system fails. Let Bi be the lifetime
of an operating unit i (i = 1, . . . ,N); we assume that Bi ∼ B are
i.i.d. random variables having a discrete phase-type distribution
with representation PHd(β,S) of orderm.

A discrete phase-type distribution B ∼ PHd(β,S) is the dis-
tribution of the absorption time into state m in a discrete-time
Markov chain with an initial probability vector (β, βm) and a
transition probability ((m + 1) × (m + 1)) matrix S̃:

S̃ =
[
S S

o

0 1

]
,

where So + Se = 1, e is the unit vector, and the (1 × m) vec-
tor 0 =(0, . . . , 0). We denote the (i j)th element of the tran-
sition matrix S̃ by Sij and Sij ≥ 0 for 0 ≤ i, j ≤ m. Note that
E(B) = β(I − S)−1e. The working unit is classified into one
of the m + 1 states: 0, 1, . . . ,m. Without loss of generality, we
assume that 0 denotes the state of a new unit or “as good as new”
andm denotes the state of a failed unit; hence, the (1 × m) vec-
tor β = (1, 0, . . . , 0) and βm = 0. State i is better than state j if
i < j. Throughout this article, we assume that Sij (0 ≤ i, j ≤ m)
satisfies the following condition.

Condition 1. An Increasing Failure Rate condition: For each
k = 0, 1, 2, . . . ,m, the function

Dk(i) =
m∑
j=k

Sij, i = 0, 1, . . . ,m − 1, (1)

is a nondecreasing function of i. It may be shown (see a sim-
ilar result in Derman (1963)) that Condition 1 is equivalent
to the following: for any nondecreasing function h( j), j =
0, 1, . . . ,m, the function

K(i) =
m∑
j=0

Sijh( j), i = 0, 1, . . . ,m − 1, (2)

is also nondecreasing in i.

The system is inspected at equally spaced points in time. Let
the instants of inspection be t = 1, 2, . . . . At time t , denote
by Xt the number of good standby units plus the online unit
(Xt ∈ {0, 1, . . . ,N}) and by It the observed state of the working
unit (It ∈ {0, 1, . . . ,m}). Note that a component in one of the
states {0, . . . ,m − 1} is considered to be a good functioning
component and state m indicates a bad component that should
be replaced. Thus, for Xt = i, if the state of the online unit is
It ∈ {0, . . . ,m − 1}, then there are i good units, of which (i − 1)
are in standby. If It = m, then there are just (i − 1) good standby
units. The two-dimensional stochastic process {(Xt , It ) |

t = 1, 2, . . .} is a finite-state discrete Markov chain. Further-
more, we assume that a failed unit is replaced immediately by
a new one from the standby units (if one is available) and the
replacement is instantaneous. In addition, there is a single repair
facility with a random variable repair time Y of a failed unit;
Y has a geometric distribution with probability p for repairing
a unit to “as good as new” during one time period. The repair
time is independent of the state of the repaired item or the
number of failed units; however, if there are no failed units (i.e.,
Xt = N), the repair facility is idle during interval [t, t + 1].
After each inspection, the working unit can be replaced by a
new one (if one is available) and the replacement takes no time.
Furthermore, we allow partial repair—i.e., maintenance—such
that a repair from state i to state j < i is immediate and costs
some fee (2 ≤ i ≤ m − 1, j = 1, ...i − 1). We assume that
maintenance or full replacement can be performed upon any
state It = 1, 2, . . . ,m − 1 of the operating unit. To emphasize,
when a unit (failed or not) arrives at the repair facility, a major
overall is being done, which takes considerable time, while
replacement or improvement of an online unit takes negligible
time. Clearly, the motivation for performing the maintenance
action of a full replacement is to prevent the severe conse-
quences of a system failure or of letting the unit operate under
“bad” conditions. We consider three costs, as follows.

(i) Replacement/repair cost. The expected cost of replacing
an online unit in state i (1 ≤ i ≤ m) by a new unit is
denoted by ci; this cost includes adjustments and setup.
Alternatively, the cost ci can be interpreted as the repair
cost to a “as good as new” unit. The cost of repairing
an online unit in state i (1 ≤ i ≤ m) to state j < i is
denoted by cij. Note that ci0 is the cost of replacing
the unit by a new one and hence ci0 = ci; we assume
that cii = 0. Recall that in state m a replacement is
mandatory, costing cm0.

(ii) Operating cost. The expected operating cost of an active
unit in state i (0 ≤ i ≤ m − 1) during the period [t, t +
1] is denoted by ri.

(iii) Penalty cost. Whenever the number of good units is
reduced to zero, the system fails until the number of good
units increases to one (which does not occur earlier than
the next inspection time). Each down time of the system
costs cd per time period (cd >> ri, ci, cij ∀i, j).

The goal of this article is to derive and characterize opti-
mal maintenance and repair rules under the total expected dis-
counted cost for an unbounded horizon.

We focus our attention on the class of non-randomized
stationary maintenance rules. As mentioned before, for the
Replacement-Only model, it is known (Derman, 1963; Kolesar,
1966; Ross, 1969) that for a finite state and a finite action space
and under specific conditions, there exists an optimal threshold
policy that depends only on the state of the system at decision
epochs. We direct our attention to the class of non-randomized
stationary rules of the form, “For Xt = x, replace the operative
unit, at time t , if and only if It ≥ i∗(x)” where i∗(x) is the control
limit (0 < i∗(x) ≤ m).

3. Replacement-only model

We now consider the case where only replacement is allowed;
i.e., after each inspection time t = 1, 2, . . . , a decision must
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1034 Y. BARRON AND U. YECHIALI

be made as to whether or not to replace the online unit by
a standby one. We impose the following conditions on the
costs.

Condition 2. The cost of a replacement is an increasing function
of the state; i.e., c1 ≤ c2 ≤ · · · ≤ cm.

Condition 3. The operating cost is an increasing function of the
state; i.e., r0 ≤ r1 ≤ · · · ≤ rm−1.

Note that Conditions 2 and 3 both imply that as the state of
the system deteriorates, the costs increase.

Condition 4. For each i, i < m, ci + r0 ≥ ri, Condition 4
implies that for a one time period, it does not pay to perform any
replacement; it is valid for systems in which the cost of replace-
ment is large relative to the operating cost.

3.1. Cold standby system

We start with the cold standbymodel; although the cold standby
model is a special case of the warm, analyzing it first makes
the presentation more transparent. Assume a 1-out-of-N cold
standby system where only the online unit can fail. Denote by
gR(Xt , It ) the one-step expected cost when the system is in state
(Xt , It ) at time t, under some maintenance rule R. Denote by
ϕR(x, i) the total expected discounted cost for an unbounded
horizon if the process starts at state (x, i) and somemaintenance
rule R is applied. Then,

ϕR(x, i) =
{ ∞∑

t=1

αt−1gR(Xt , It ) | (X1, I1) = (x, i)

}
. (3)

Here, x denotes the number of good standby units plus the
online one (x ∈ {0, 1, . . . ,N}) and i denotes the state of the
online unit (i ∈ {0, . . . ,m}).

For a given discount factorα denote the optimalmaintenance
policy for Criterion (3) by R∗

α and denote the total discounted
minimal cost by ϕ(x, i)

ϕ(x, i) = min
R

ϕR(x, i) = ϕR∗
α
(x, i).

Denote by ϕT (x, i) the minimal total expected discounted cost
for a finite horizon T and for an initial state (x, i) :

ϕT (x, i) = min
R

{ T∑
t=1

αt−1gR(Xt , It ) | (X1, I1) = (x, i)

}
.

Using a standard argument of dynamic programming, the func-
tion ϕT (x, i) satisfies the following functional set of equations
(Equations (4a)–(4f)):

ϕT (N, 0) = r0 + α

m∑
j=0

S0 jϕT−1(N, j). (4a)

Equation (4a) refers to the case of N good units and the online
unit is new. Clearly, in this case no decision has to be made.
Regarding p, the probability for repairing a unit to “as good as

new” during one time period, and setting q = 1 − p, we write

ϕT (x, i)
x=1,...,N−1,i=0

or x=1,i 	=m

= ri + α

m∑
j=0

Sij[pϕT−1(x + 1, j)

+ qϕT−1(x, j)]. (4b)

Equation (4b) refers to the case of a new online unit (in state 0)
or the case where only one good unit is left. Since the penalty
cost is assumed to be huge, both cases imply no replacement:

ϕT (x,m)
x=2,...,N

= cm + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]. (4c)

Equation (4c) refers to the case of a failed unit, where a replace-
ment is mandatory:

ϕT (1,m) ≡ ϕT (0) = cd + α[pϕT−1(1, 0) + qϕT−1(0)]. (4d)

The cost ϕT (1,m) ≡ ϕT (0) refers to the penalty cost in the case
of a system failure; i.e., when all of the units have failed and
the system does not function until one of the units is repaired.
Clearly, we assume that the cost of that situation is very high.

Next, we obtain ϕT (x, i) for the cases in which a decision has
to bemade.We start with the case where all of the units are good
and therefore the repair facility is idle (Equation (4e)). Note that
if a replacement is performed, the repair facility starts to repair
the replaced unit; with probability p the unit is fixed until the
next inspection time, and with probability q = 1 − p, the unit
continues to be inoperative. Then, for x = N we have Equation
(4e) and for 1 < x < N we write Equation (4f):

ϕT (N, i)
i=1,...,m−1

= min

⎧⎪⎨⎪⎩
ri + α

∑m
j=0 SijϕT−1(N, j),

ci + r0 + α
∑m

j=0 S0 j[pϕT−1(N, j)
+ qϕT−1(N − 1, j)].

⎫⎪⎬⎪⎭ (4e)

ϕT (x, i)
x 	=1,N

i=1,...,m−1

= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri + α

∑m
j=0 Sij

[
pϕT−1(x + 1, j)

+ qϕT−1(x, j)
]
,

ci + r0 + α
∑m

j=0 S0 j[pϕT−1(x, j)
+ qϕT−1(x − 1, j)].

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4f)

The following initial conditions are derived from the use of
Conditions 2 to 4 and the fact that for a one-time period, it does
not pay to perform any replacement or repair (note that in state
m the unit must be replaced, if one is available):

ϕ1(1,m) = cd,
ϕ1(x,m) = cm + r0 x > 1, (5)
ϕ1(x, i) = ri x ≥ 1, i 	= m.

Lemma 1. For fixed α,T, and i, ϕT (x, i) is a nonincreasing func-
tion of x (x = 1, . . . ,N). That is, the overall cost is (weakly)
smaller when the number of good units is larger.

Proof. We prove the lemma by using a double induction on T
and on i.

Step 1. We start with T = 1 and prove that ϕ1(x, i) ≥
ϕ1(x + 1, i) for all x. We consider the following four cases:
(i) For i 	= m, we obtain ϕ1(x, i) = ri = ϕ1(x + 1, i) = ri.
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IISE TRANSACTIONS 1035

(ii) For i = m, x > 1, we obtain ϕ1(x, i) = cm + r0 =
ϕ1(x + 1, i) = cm + r0. (iii) For i = m, x = 1, we obtain
ϕ1(1,m) = cd ≥ ϕ1(2,m) = cm + r0 since cd >> r0. (iv) For a
failed system, ϕ1(0) = cd = ϕ1(1,m).

Induction Step. Assume that Lemma 1 holds for T − 1; we
prove it for T . We start with i = 0, proceed with 0 < i < m, and
finally show for i = m.

Step 2. For i = 0.
(i) For 1 ≤ x < N − 1, i = 0. We use Equation (4b) to get

ϕT (x, 0) = r0 + α

m∑
j=0

S0 j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)]

≥ r0 + α

m∑
j=0

S0 j[pϕT−1(x + 2, j)

+ qϕT−1(x + 1, j)]
= ϕT (x + 1, 0).

(ii) For x = N − 1, i = 0. Equations (4a) and (4b) yield

ϕT (N − 1, 0) = r0 + α

m∑
j=0

S0 j[pϕT−1(N, j)

+ qϕT−1(N − 1, j)]

≥ r0 + α

m∑
j=0

S0 j[pϕT−1(N, j)

+ qϕT−1(N, j)]

≥ r0 + α

m∑
j=0

S0 jϕT−1(N, j) = ϕT (N, 0).

Assume that Lemma 1 holds for i − 1; we prove that it holds
for 0 < i < m. Then, the special case i = m is considered.

(i) For 0 < i < m, x = 1. By Equations (4b) and (4f) we
have

ϕT (1, i) = ri + α

m∑
j=0

Sij[pϕT−1(2, j) + qϕT−1(1, j)]

≥ ri + α

m∑
j=0

Sij[pϕT−1(3, j) + qϕT−1(2, j)]

≥ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri + α

∑m
j=0 Sij[pϕT−1(3, j)

+ qϕT−1(2, j)],
ci + r0 + α

∑m
j=0 S0 j[pϕT−1(2, j)

+ qϕT−1(1, j)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ϕT (2, i).

(ii) For 0 < i < m, 1 < x < N − 1. Equation (4f) leads to

ϕT (x, i) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri + α

∑m
j=0 Sij[pϕT−1(x + 1, j)

+ qϕT−1(x, j)],
ci + r0 + α

∑m
j=0 S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≥ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri + α

∑m
j=0 Sij[pϕT−1(x + 2, j)

+ qϕT−1(x + 1, j)],
ci + r0 + α

∑m
j=0 S0 j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ϕT (x + 1, i).

(iii) For 0 < i < m, x = N − 1. By Equations (4e) and (4f)
we obtain

ϕT (N − 1, i) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri + α

∑m
j=0 Sij[pϕT−1(N, j)

+ qϕT−1(N − 1, j)],
ci + r0 + α

∑m
j=0 S0 j[pϕT−1(N − 1, j)

+ qϕT−1(N − 2, j)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≥ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri + α

∑m
j=0 Sij[pϕT−1(N, j)

+ qϕT−1(N, j)],
ci + r0 + α

∑m
j=0 S0 j[pϕT−1(N, j)

+ qϕT−1(N − 1, j)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ϕT (N, i).

Finally, for i = m, x 	= 1, applying Equation (4c) results in

ϕT (x,m) = cm + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]

≥ cm + r0 + α

m∑
j=0

S0 j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)]
= ϕT (x + 1,m).

In the case of x = 1, i = m clearly supports ϕT (1,m) ≥
ϕT (2,m), since we assume that a system failure incurs a huge
penalty cost. �

Lemma 2. For fixed α,T, and x > 0, ϕT (x, i) is a nondecreasing
function of i (i = 0, . . . ,m). That is, as the state of the online unit
deteriorates, the overall cost (weakly) increases.

Proof. We use a double induction on T and on x.
Step 1. We start with T = 1 and prove that ϕ1(x, i + 1) ≥

ϕ1(x, i) for i ∈ {0, . . . ,m}. We consider three cases as follows.
(i) For i 	= m − 1 we obtain ϕ1(x, i + 1) = ri+1 ≥ ϕ1(x, i) =
ri. (ii) For i = m − 1, x > 1, we obtain ϕ1(x,m) = cm + r0 ≥
cm−1 + r0 ≥ rm−1 = ϕ1(x,m − 1). (iii) For i = m − 1, x = 1,
we obtain ϕ1(1,m) = cd >> rm−1 = ϕ1(1,m − 1).

Induction Step. Assume that Lemma 2 holds for T − 1; we
prove it for T by induction on x and by applying Condition 1.
The proofs for x = 1 and x = N are provided in Appendix A1.

Step 2. Assume that Lemma 2 holds for x − 1 good units; we
prove that it holds for x (1 < x < N) units.

(i) For 1 < x < N, i = 0. Equations (4b) and (4f) lead to

ϕT (x, 1) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r1 + α

∑m
j=0 S1 j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)],
c1 + r0 + α

∑m
j=0 S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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1036 Y. BARRON AND U. YECHIALI

≥ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r0 + α

∑m
j=0 S0 j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)],
r0 + α

∑m
j=0 S0 j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)](Lemma 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= r0 + α

m∑
j=0

S0 j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)] = ϕT (x, 0).

(ii) For 1 < x < N, 0 < i < m − 1. By applying Equation
(4f) we get

ϕT (x, i + 1) = min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ri+1 + α

∑m
j=0 Si+1, j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)],

ci+1 + r0 + α
∑m

j=0 S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

≥ min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ri + α

∑m
j=0 Si, j[pϕT−1(x + 1, j)

+ qϕT−1(x, j)],

ci + r0 + α
∑m

j=0 S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= ϕT (x, i).

(iii) For 1 < x < N, i = m − 1. By Equation (4c) we obtain

ϕT (x,m) = cm + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]

≥ cm−1 + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j)

+ qϕT−1(x − 1, j)]

≥ ϕT (x,m − 1).
�

For the following proposition, the following condition is
required.

Proposition 1. Suppose that for a fixed x, and for all states i, v
such that i < v < m, the condition

cv − ci ≤ rv − ri (6)

holds; then if in state i (0 < i < m) the minimum of Equations
(4e) and (4f) is achieved by a replacement, then for every state
v > i the minimum of Equations (4e) and (4f) is also achieved by
a replacement. Condition 1 implies that the higher the state, the
higher the incentive to replace (see also theorem 2.1 of Douer and
Yechiali (1994)).

Proof. We prove it by using an induction on T. For T = 1, m is
the only state in which a replacement is beneficial. Suppose that
the proposition holds for T − 1. We will show that it also holds
for T . For 1 < x < N, suppose that at state i (0 < i ≤ m − 1)
the minimum of Equation (4f) is achieved by replacing the unit;

that is,

ϕT (x, i) = ci + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j) + qϕT−1(x − 1, j)]

≤ ri + α

m∑
j=0

Sij[pϕT−1(x + 1, j) + qϕT−1(x, j)]. (7)

Now, when i = m − 1, it is clear that the proposition is true, as
the only larger state than i = m − 1 is m, for which a replace-
ment is mandatory. If i < m − 1, let v be such that i < v < m
and cv − ci ≤ rv − ri. Adding the last inequality to both sides of
Equation (7) results in

cv + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j) + qϕT−1(x − 1, j)]

≤ rv + α

m∑
j=0

Sij[pϕT−1(x + 1, j)

+ qϕT−1(x, j)] i < v < m. (8)

The case of x = N (Equation (4e)) is similar. This concludes the
proof. �

As ϕT (x, i) is nondecreasing in i = 0, . . . ,m (Lemma 2), it
follows from Condition 1 that

m∑
j=0

Sij[pϕT−1(x + 1, j) + qϕT−1(x, j)]

≤
m∑
j=0

Sv j[pϕT−1(x + 1, j) + qϕT−1(x, j)]. (9)

Substituting the above in the right-hand side of Equation (8) we
get

cv + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j) + qϕT−1(x − 1, j)]

≤ rv + α

m∑
j=0

Sv j[pϕT−1(x + 1, j) + qϕT−1(x, j)],

which implies that in state v the optimal policy is achieved by
replacing the unit, rather than doing nothing.

Proposition 1 simply states that under the above cost condi-
tions and Conditions 2 to 4, if it pays to replace in state (x, i), it
also pays to replace in state (x, v ) for v > i. Let 0 < i(x,T ) < m
be the smallest state in which there are x good units and a
replacement is beneficial when T periods are left for the operat-
ing horizon (such a state always exists because at state 0 nomain-
tenance is needed, and in state m replacement is mandatory).
Therefore, it readily follows from Proposition 1 that ϕT (x, i) has
the form

ϕT (N, i) = ri + α

m∑
j=0

SijϕT−1(N, j), 0 ≤ i < i(x,T )

ϕT (x, i)
x 	=N

= ri + α

m∑
j=0

Sij[pϕT−1(x + 1, j) + qϕT−1(x, j)]

0 ≤ i < i(x,T )
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IISE TRANSACTIONS 1037

ϕT (x, i)
x 	=1

= ci + r0 + α

m∑
j=0

S0 j[pϕT−1(x, j) + qϕT−1(x − 1, j)]

i(x,T ) < i < m. (10)

Note that Equation (10) lists only the costs in the cases where a
decision has to be made; the other costs are given in Equations
(4a) to (4d).

Since

ϕ(x, i) = lim
T−→∞

ϕT (x, i)

and, for each T, ϕT (x, i) is nonincreasing in x (x = 1, . . . ,N)

(Lemma 1) and is nondecreasing in i (i = 0, . . . ,m)
(Lemma 2), it follows that ϕ(x, i) is also nonincreasing in
x and nondecreasing in i. Using Conditions 2 to 4 and the
conditions of Proposition 1, it can be shown (in a similar way as
before) that there exists i(α), 0 < i(α) < m, such that ϕ(x, i)
has the form of a CLR.

3.2. Warm standby system

A natural extension to the cold standby system is the warm
standby system, in which each good standby unit can fail.
Motivated by Ruiz-Castro (2016), we assume that any warm
standby unit can fail at any time unit with probability γ ,

where we assume that the expected time of a failure of a warm
standby unit is much higher than that of an online unit; i.e.,
γ −1 > E(B) = β(I − S)−1e. The warm standby concept con-
siders two features: fast recovery (i.e., low restoration cost)
and energy conservation (i.e., low operational cost). While
in a standby mode, an element is partially powered and par-
tially exposed to operational stresses. Therefore, the failure
rate of a warm standby component is typically less than its
full operational failure rate. Thus, it is reasonable to assume,
for warm standby systems, that standby components have
time-dependent failure behavior. An example of warm standby
systems are redundant hard disks used to replace the failed
disks in a storage system. The spare disks are spinning and,
thus, can be exposed to operation stresses. On the other hand,
the warm standby disks do not provide access to information
and, therefore, their positioning mechanisms are idle, which
makes the disks in a standby mode less failure-prone than those
in the operation mode. Another example is a power plant in
which extra generating units are waiting in a standby mode.
The standby units can fail, but their failure rates, as well as oper-
ational costs, are less than those for the primary unit working
under full load.Wireless sensor networks also use warm standby
redundancy to keep a balance between energy consumption and
recovery time needed for switching the backup sleeping sensor
to operational mode. Another example is a gas company that
holds tanks with redundant pumps, to ensure continuous oper-
ation of the system. A sudden disaster, bad weather, or fire, can
cause a standby tank to be useless (we refer the reader to Levitin
et al. (2014) and Ruiz-Castro (2016) for additional examples).

For a given discount factor α, the number of good standby
units plus the online unit x (x ∈ {0, 1, . . . ,N}) and the state i
of the online unit (i ∈ {0, . . . ,m}) denote the total discounted
minimal cost for an unbounded horizon by ω(x, i) and for the

T periods left by ωT (x, i). As indicated, the cold standby model
is a special case where γ = 0. Let

C(k, n) =
(
n
k

)
γ k(1 − γ )n−k

denote the probability of exactly k failures among n good warm
standby units. Using a standard argument of dynamic program-
ming, the function ωT (x, i) satisfies the following functional set
of equations:

ωT (N, 0) = r0 + α

N−1∑
k=0

m∑
j=0

C(k,N − 1)S0 jωT−1(N − k, j).

(11a)
Equation (11a) refers to the case of N good units, where the
online unit is new; thus,N − 1 units are in warm standby status;
each of them can fail with probability γ :

ωT (x, i)
x=1,...,N−1,i=0

or x=1,i 	=m

= ri + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Sij

× [pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]
(11b)

ωT (x,m)
x=2,....,N

= cm + r0 + α

x−2∑
k=0

m∑
j=0

C(k, x − 2)S0 j

[pωT−1(x − k, j) + qωT−1(x − 1 − k, j)].
(11c)

Equation (11c) refers to the cases where (x − 1) good units are
in a warm standby status and the online unit fails. Thus, the
failed unit is replaced by one of the standby units, which leaves
x − 2 standby units, a new online unit, and a failed one under
repair:

ωT (1,m) ≡ ωT−1(0) = cd + α[pωT−1(1, 0) + qωT−1(0)].
(11d)

Similar to Section 3.1, Equations (11e) and (11f) refer to the case
where a decision is called for:

ωT (N, i)
i=1,...,m−1

= min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ri + α
∑N−1

k=0
∑m

j=0C(k,N − 1)
SijωT−1(N − k, j),

ci + r0 + α
∑N−2

k=0
∑m

j=0C(k,N − 2)
S0 j[pωT−1(N − k, j)

+qωT−1(N − k − 1, j)].

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(11e)

ωT (x, i)
x 	=1,N−1
i=1,...,m−1

= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri + α

∑x−1
k=0

∑m
j=0C(k, x − 1)Sij

[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)],

ci + r0 + α
∑x−2

k=0
∑m

j=0C(k, x − 2)S0 j
[pωT−1(x − k, j) + qωT−1(x − k − 1, j)].

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(11f)
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1038 Y. BARRON AND U. YECHIALI

The initial conditions are

ω1(1,m) = cd,
ω1(x,m) = cm + r0 x > 1, (12)
ω1(x, i) = ri x ≥ 1, i 	= m.

Condition 5. Assume that γ ≤ min(q, p).

Condition 5 is a peculiar one. A partial explanation is as fol-
lows. Regarding the equality γ ≤ q, which becomes essential
in Lemma 3, if the system is left to operate on its own without
the replacement option and the repair queue is not empty, the
repair facility is working on the broken units and is loaded
by failed warm standby units. It is reasonable to assume that,
during one unit of time, the failure probability of a standby
unit is smaller than the probability that a unit under repair will
not be fixed. In addition, the condition γ ≤ p is obtained by
examining the departure and arrival processes of failed units.
The number of failed units decreases with p and increases
with γ . Thus, in order to keep the system working and stable,
we also need the latter condition. Combining both conditions,
we obtain γ ≤ min(q, p).

Lemma 3. For a fixed α,T, and i, ωT (x, i) is a nonincreasing
function of x (x = 1, . . . ,N) under Conditions 2 to 4.

Proof. We use a double induction on T and on i.
Step 1. For T = 1 the proof coincides with that of Lemma 1.
Induction Step. Assume that Lemma 3 holds for T − 1 and
we prove it for T. We start with i = 0 and 1 ≤ x < N − 1. The
proofs for x = N − 1 and for i > 0 are similar and are provided
in Appendix A2.

Step 2. For i = 0.
(i) For i = 0, 1 ≤ x < N − 1:

ωT (x + 1, 0) = r0 + α

x∑
k=0

m∑
j=0

C(k, x)S0 j

[pωT−1(x − k + 2, j) + qωT−1(x − k + 1, j)]. (13)

Recall that(
x
k

)
=

(
x − 1
k − 1

)
+

(
x − 1
k

)
. (14)

By substituting Equation (14) in Equation (13) we get

ωT (x + 1, 0) = r0 + α

m∑
j=0

(x−1
0

)
γ 0(1 − γ )xS0 j

× [pωT−1(x + 2, j) + qωT−1(7 + 1, j)]

+α

m∑
j=0

[(x−1
1

) + (x−1
0

)]
γ 1(1 − γ )x−1S0 j

× [pωT−1(x + 1, j) + qωT−1(x, j)] +
...

+α

m∑
j=0

[(x−1
x−1

) + (x−1
x−2

)]
γ x−1(1 − γ )1S0 j

× [pωT−1(3, j) + qωT−1(2, j)]

+α

m∑
j=0

(x−1
x−1

)
γ x(1 − γ )0S0 j

× [pωT−1(2, j) + qωT−1(1, j)]. (15)

Arranging Equation (15) yields

ωT (x + 1, 0) = r0 + α

m∑
j=0

(x−1
0

)
γ 0(1 − γ )x−1S0 j

× [γ pωT−1(x + 1, j) + γ qωT−1(x, j)
+ (1 − γ )pωT−1(x + 2, j)
+ (1 − γ )qωT−1(x + 1, j)] +

...

+α

m∑
j=0

(x−1
x−1

)
γ x−1(1 − γ )0S0 j

× [γ pωT−1(2, j) + γ qωT−1(1, j)
+ (1 − γ )pωT−1(3, j) + (1 − γ )qωT−1(2, j)].

By the induction assumption, note that for every x (1 ≤ x <

N − 1),

γ [pωT−1(x + 1, j) + qωT−1(x, j)]
+ (1 − γ )[pωT−1(x + 2, j) + qωT−1(x + 1, j)]

≤ γ [pωT−1(x + 1, j) + qωT−1(x, j)]
+(1 − γ )[pωT−1(x + 1, j) + qωT−1(x, j)]

= pωT−1(x + 1, j) + qωT−1(x, j). (16)

Substituting Equation (16) in Equation (15) leads to

ωT (x + 1, 0) ≤ r0 + α

m∑
j=0

(x−1
0

)
γ 0(1 − γ )x−1S0 j

×[pωT−1(x + 1, j) + qωT−1(x, j)]
...

+α

m∑
j=0

(x−1
x−1

)
γ x−1(1 − γ )0S0 j

× [pωT−1(2, j) + qωT−1(1, j)]

= r0 + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)S0 j

× [pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]

≤ ri + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Sij

× [pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]
= ωT (x, 0). �

Lemma4. For fixedα,T, and x,ωT (x, i) is a nondecreasing func-
tion of i (i = 0, . . . ,m).

Proof. The proofs are similar to those of Lemma 2 and are pro-
vided in Appendix A3. �
Proposition 2. Suppose that for a fixed number of good units x,
and for all states i, v such that i < v < m, Condition (6) holds;
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IISE TRANSACTIONS 1039

then if in state i (0 < i < m) the minimum of Equations (11e)
and (11f) is achieved by a replacement, then for every state v > i
the minimum of Equations (11e) and (11f) is also achieved by a
replacement.

Proof. By using an induction on T . For T = 1, the state m is
the only state in which a replacement is beneficial. Suppose the
proposition holds forT − 1; we prove it forT.Assume that there
are x good units and suppose that for some state i (0 < i < m),
the minimum is achieved by a replacement. Following Equation
(11f) we obtain

ωT (x, i) = ci + r0 + α

x−2∑
k=0

m∑
j=0

C(k, x − 2)S0 j

× [pωT−1(x − k, j) + qωT−1(x − k − 1, j)]

≤ ri + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Sij

× [pωT−1(x + 1 − k, j) + qωT−1(x − k, j)].
(17)

Consider a state v, i < v < m, such that cv − ci ≤ rv − ri.
Adding the last inequality to both sides of Equation (17) leads
to

cv + r0 + α

x−2∑
k=0

m∑
j=0

C(k, x − 2)S0 j

× [pωT−1(x − k, j) + qωT−1(x − k − 1, j)]

≥ rv + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Sij

× [pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]

≥ rv + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Sv j

× [pωT−1(x + 1 − k, j) + qωT−1(x − k, j)],

which concludes that theminimum is achieved by a replacement
also for state v . The fact that in states i = 0 and i = m we must
replace completes the proof. �

In a nutshell, Proposition 2 states that under the above cost
conditions and Conditions 2 to 4, if it pays to replace in state
(x, i), it also pays to replace in state (x, v ) for v > i. Let 0 <

i(x,T ) < m be the smallest state in which a replacement is bene-
ficial when T periods are left for the operating horizon. Since

ω(x, i) = lim
T−→∞

ωT (x, i)

and, for each T, ωT (x, i) is nonincreasing in x (x = 1, . . . ,N)

(Lemma 3) and is nondecreasing in i (i = 0, . . . ,m)
(Lemma 4), it follows that ω(x, i) is also nonincreasing in
x and nondecreasing in i. Using Conditions 2 to 4 and the
conditions of Proposition 2, it is easy to show (in a similar
way as before) that there exists i(α), 0 < i(α) < m, such that
ω(x, i) has the form of a generalized CLR.

Claim 1. For fixed α, γ , x, and i , it can be shown that for each
T, ωT (x, i) ≥ ϕT (x, i), which implies that ω(x, i) ≥ ϕ(x, i).

4. Repair–replacementmodel

In this section, we generalize the above models to include a
repair facility; namely, after each inspection, in addition to a full
replacement, a repair to a better state is possible. We show that
under reasonable conditions on the system’s law of evolution and
on the operating, repair, and replacement costs, the generalized
CLR is optimal for the expected total discounted cost.

Specifically, in this section we assume that after each inspec-
tion and in each state 0 < i < m the system can be replaced by
a new one or be repaired to a better state than state i such that
its state after the repair is 0 < k < i. We assume that a repair
(as well as an initiated replacement) takes no time. Denote by
Ai the collection of maintenance actions possible when the sys-
tem is in state i (1 ≤ i ≤ m − 1). We assume that for each i,
Ai ∈ {0, . . . , i}. An action k ∈ Ai means a repair of the working
unit to state k (k = 0 means a replacement of the unit by a new
one, and k = imeans no repair at all). Note that when the system
is observed in state i and action 0 ≤ k ≤ i is taken, an expected
operating cost of rk ≥ 0 is incurred until the next inspection.
The repair action itself costs cik ≥ 0 (ci0 is the cost of replace-
ment and cii = 0). In addition, each time period in which the
system is in a failed status costs cd (cd >> ri, cik,∀i, k). Further-
more, note that when a full replacement is performed (where
k = 0), the unit is sent to the repair queue, whereas in the case of
repair only ( so that 0 < k ≤ i), the unit continues to be online.
In addition to Condition 3, and similar to Conditions 2 and 4,
we assume the following.

Condition 6. For each i, j, k such that 0 ≤ k ≤ i ≤ j ≤ m,c jk ≥
cik. That is, the cost of a repair to a certain state, k > 0, as well as
the cost of initiated replacement is an increasing function of the
state fromwhich the repair is performed.Note that the condition
cm0 ≥ ci0 for m > i implies that an initiated replacement costs
less than the mandatory replacement in the case of failure.

Condition 7. For each i, i < m, and k ≤ i, the condition cik +
rk ≥ ri holds. Condition 7 implies that for a one-time period, it
does not pay to perform any replacement or repair.

Here, too, we consider two systems: the cold and the warm
standby systems.

4.1. Cold standby system

For initial state (x, i), denote by ϕR(x, i) and ϕR
T (x, i) the total

discounted minimal cost for an unbounded horizon and for
T periods left, respectively. The function ϕR

T (x, i) satisfies the
functional set of equations

ϕR
T (N, 0) = r0 + α

m∑
j=0

S0 jϕR
T−1(N, j) (18a)

ϕR
T (x, i)

x=1,...,N−1,i=0
= ri + α

m∑
j=0

Sij
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
(18b)

ϕR
T (x,m)
x=2,...,N

= cm0 + r0 + α

m∑
j=0

S0 j

× [
pϕR

T−1(x, j) + qϕR
T−1(x − 1, j)

]
(18c)

ϕR
T (1,m) ≡ ϕR

T (0) = cd + α
[
pϕR

T−1(1, 0) + qϕR
T−1(0)

]
. (18d)
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1040 Y. BARRON AND U. YECHIALI

Note that Equations (18a) to (18d) refer to the cases where the
actions are uniquely dictated by the system’s states.

Next, we obtain ϕR
T (x, i) for the cases in which a decision

has to be made. We start with N good units (Equation (18e));
then the equation is extended to x < N (Equation (18f)). In both
equations, (18e) and (18f), the first line refers to the case where
no action is taken, the second line refers to a replacement, and
the third line to a repair:

ϕR
T (N, i)

i=1,...,m−1
= min

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ri + α
∑m

j=0 Sijϕ
R
T−1(N, j) (no action)

ci0 + r0 + α
∑m

j=0 S0 j[
pϕR

T−1(N, j) + qϕR
T−1(N − 1, j)

]
(replacement)

min
1≤k≤i−1

[
cik + rk + α

∑m
j=0 Sk jϕ

R
T−1(N, j)

]
(repair)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(18e)

ϕR
T (x, i)
x 	=N

i=1,...,m−1

= min

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ri + α
∑m

j=0 Sij
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
,

ci0 + r0 + α
∑m

j=0 S0 j
[
pϕR

T−1(x, j) + qϕR
T−1(x − 1, j)

]
,

min
1≤k≤i−1

×
[
cik + rk + α

∑m
j=0 Sk j

[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]]
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(18f)

Note that although in Equation (4f) the condition x 	= 1 is nec-
essary, since replacing the last unit causes a system failure, here,
in Equation (18f), the option of repairing the unit to a better state
should be considered.

The following initial conditions are derived from
Conditions 7 and the fact that for a one time period, it does not
pay to perform any replacement or repair:

ϕR
1 (1,m) ≡ ϕR

1 (0) = cd,
ϕR
1 (x,m) = cm0 + r0 x > 1, (19)
ϕR
1 (x, i) = ri x ≥ 1, i 	= m.

Lemma 5. For a fixed α,T, and i, ϕR
T (x, i) is a nonincreasing

function of x (x = 1, . . . ,N).

Lemma 6. For a fixed α,T, and x > 0, ϕR
T (x, i) is a nondecreas-

ing function of i (i = 0, . . . ,m).

Proof. Applying Conditions 2, 7, and 6, the proofs of Lemmas 5
and 6 are similar to those of Lemmas 1 and 2, respectively, and
thus are omitted. �
Proposition 3. Suppose that for a fixed x, and for all states i, k, v
such that 0 ≤ k < i < v < m, the condition

cvk − cik ≤ rv − ri, (20)

holds; then if in state i (0 < i < m) the minimum of Equations
(18e) and (18f) is achieved by a maintenance action (either by
a repair to some state 1 ≤ k < i or by a replacement), then for
every state j > i, the minimum of Equations (18e) and (18f) is
also achieved by a maintenance action.

Remark 1. Consider the specific case where for all states i, k, v
such that 0 ≤ k < i < v < m, the equality cvk − cik = rv − ri
holds. Then, Proposition 3 can be stated as follows: If in state

i (0 < i < m) the minimum of Equations (18e) and (18f) is
achieved by a repair (respectively, a replacement) to some state
0 < k < i (a replacement, respectively), then for every state j >

i, the minimum of Equations (18e) and (18f) is also achieved by
a repair (respectively, a replacement).

Proof. Byusing an induction onT . ForT = 1, the state (x,m) is
the only one for which a replacement is beneficial. Suppose that
the proposition holds for T − 1. We show that it also holds for
T . Assume initial state (x, i), 1 < x < N, 0 < i < m and sup-
pose that in state i the minimum of Equation (18f) is achieved
by a maintenance action. We distinguish between two mainte-
nance policies: a replacement or a repair. For each policy, we
prove Proposition 3 and extend it to include Remark 1.

(i) Replacement. If a replacement by a new unit is preferred,
then from the first and second lines of Equation (18f) we
obtain

ϕR
T (x, i) = ci0 + r0 + α

m∑
j=0

S0 j[pϕR
T−1(x, j) + qϕR

T−1(x − 1, j)]

≤ ri + α

m∑
j=0

Sij
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
.

(21)

Thus, for i < m, let v be such that i < v < m. Adding
Equation (20) for k = 0—i.e., cv0 − ci0 ≤ rv − ri—to both sides
of Equation (21) leads to

cv0 + r0 + α

m∑
j=0

S0 j[pϕR
T−1(x, j) + qϕR

T−1(x − 1, j)]

≤ rv + α

m∑
j=0

Sij[pϕR
T−1(x + 1, j) + qϕR

T−1(x, j)]

≤ rv + α

m∑
j=0

Sv j[pϕR
T−1(x + 1, j) + qϕR

T−1(x, j)], (22)

which implies that in state v a maintenance action is also
preferred.

Furthermore, by assuming that in state i (0 < i < m), the
minimum of Equations (18e) and (18f) is achieved by a replace-
ment yields

ϕR
T (x, i) = ci0 + r0 + α

m∑
j=0

S0 j[pϕR
T−1(x, j) + qϕR

T−1(x − 1, j)]

≤ min
1≤k≤i−1

[
cik + rk + α

m∑
j=0

Sk j[pϕR
T−1(x + 1, j) + qϕR

T−1(x, j)]
]
.

(23)

Now, assume that Remark 1 holds. That is, for each k:

cvk − cik = rv − ri,

and, specifically,

cv0 − ci0 = cvk − cik. (24)
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IISE TRANSACTIONS 1041

Adding Equation (24) to both sides of Equation (23) yields

cv0 + r0 + α

m∑
j=0

S0 j[pϕ′
T−1(x, j) + qϕ′

T−1(x − 1, j)]

≤ min
1≤k≤i−1

[
cvk + rk + α

m∑
j=0

Sk j
[
pϕ′

T−1(x + 1, j) + qϕ′
T−1(x, j)

]]
,

which implies that in state v a replacement is preferred. The case
of i = N is similar.

(ii) Repair. If a repair to a better state is preferred, then for
some k > 0, the first and third lines of Equation (18f)
yield

ϕR
T (x, i) = cik + rk + α

m∑
j=0

Sk j
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
t ≤ ri + α

m∑
j=0

Sij
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
. (25)

Adding Equation (20)—i.e., cvk − cik ≤ rv − ri—to both sides of
Equation (25) leads to

cvk + rk + α

m∑
j=0

Sk j
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
≤ rv + α

m∑
j=0

Sij
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
≤ rv + α

m∑
j=0

Sv j
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
,

(26)

which implies that in state v a maintenance action is also pre-
ferred. Next, assume that Remark 1 holds. Since a repair action
is preferred, then for some k > 0 we have

cik + rk + α

m∑
j=0

Sk j
[
pϕR

T−1(x + 1, j) + qϕR
T−1(x, j)

]
≤ ci0 + r0 + α

m∑
j=0

S0 j
[
pϕR

T−1(x, j) + qϕR
T−1(x − 1, j)

]
. (27)

Applying the same method as in case (i) yields the preferability
of the repair. �

We have thus proved the following theorem.

Theorem1. Under the condition of Proposition 3, the optimal pol-
icy has the form of a generalized CLR.

Remark 2. Assume that the costs of a replacement are equal
in the Replacement-Only model and the Repair–Replacement
model; that is, ci = ci0 for 0 < i ≤ m; then, in a similar man-
ner as above, it can be shown that ϕR

T (x, i) ≤ ϕT (x, i), (0 ≤ x ≤
N, 0 ≤ i ≤ m).

4.2. Warm standby system

Assume that the system starts at state (x, i). As before, we
assume that any warm standby unit can fail at any time with
probability γ . Denote the total discounted minimal cost of the

warm standbymodel for an unbounded horizon bywR(x, i) and
forT periods left bywR

T (x, i).The functionwR
T (x, i) satisfies the

functional set of equations

wR
T (N, 0) = r0 + α

N−1∑
u=0

m∑
j=0

C(u,N − 1)S0 jwR
T−1(N − u, j)

(28a)

wR
T (x, i)

x=1,...,N−1,i=0
= ri + α

x−1∑
u=0

m∑
j=0

C(u, x − 1)Sij

× [
pwR

T−1(x + 1 − u, j) + qwR
T−1(x − u, j)

]
(28b)

wR
T (x,m)
x=2,...,N

= cm0 + r0 + α

x−2∑
u=0

m∑
j=0

C(u, x − 2)S0 j

× [
pwR

T−1(x − u, j) + qwR
T−1(x − 1 − u, j)

]
(28c)

wR
T (1,m) ≡ wR

T (0) = cd + α
[
pwR

T−1(1, 0) + qwR
T−1(0)

]
.

(28d)

Note that Equations (28a) to (28d) refer to the cases where the
actions are uniquely determined by the system’s states.

Next, we obtainwR
T (x, i) for the cases in which a decision has

to be made. We start with N good units (Equation (28e)); then
the model is generalized to x < N good units (Equation (28f)).
In both equations, (28e) and (28f), the first line refers to the case
where no action is taken, the second line refers to a replacement,
and the third line to a repair:

wR
T (N, i)

i=1,...,m−1
= min⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri + α
∑N−1

u=0

∑m

j=0
C(u,N − 1)SijwR

T−1(N − u, j),

ci0 + r0 + α
∑N−2

u=0

∑m

j=0
C(u,N − 2)S0 j

× [
pwR

T−1(N − u, j) + qwR
T−1(N − u − 1, j)

]
min

1≤k≤i−1

×
[
cik + rk + α

∑N−1

u=0∑m

j=0
C(u,N − 1)Sk jwR

T−1(N − u, j)
]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(28e)

wR
T (x, i)
x 	=N

i=1,...,m−1

= min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri + α
∑x−1

u=0

∑m

j=0
C(u, x − 1)Sij

× [
pwR

T−1(x + 1 − u, j) + qwR
T−1(x − u, j)

]
,

ci0 + r0 + α
∑x−2

u=0

∑m

j=0
C(u, x − 2)S0 j

× [
pwR

T−1(x − u, j) + qwR
T−1(x − u − 1, j)

]
min

1≤k≤i−1

×
[
cik + rk + α

∑x−1

u=0

∑m

j=0
C(u, x − 1)Sk j

× [
pwR

T−1(x + 1 − u, j) + qwR
T−1(x − u, j)

] ]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(28f)
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1042 Y. BARRON AND U. YECHIALI

with the initial conditions

wR
1 (1,m) ≡ wR

1 (0) = cd,
wR

1 (x,m) = cm0 + r0 x > 1, (29)
wR

1 (x, i) = ri x ≥ 1, i 	= m.

The warm standby system has a similar behavior as the associ-
ated cold system; thus, we cite the following lemmas and propo-
sition without proofs.

Lemma 7. For fixed α,T, and i,wR
T (x, i) is a nonincreasing func-

tion of x (x = 1, . . . ,N).

Lemma 8. For fixed α,T, and x > 0,wR
T (x, i) is a nondecreasing

function of i (i = 0, . . . ,m).

Proposition 4. Suppose that Equation (20) holds, then if in state
i (0 < i < m) the minimum of Equations (28e) and (28f) is
achieved by a maintenance action (either by a repair to some state
1 ≤ k < i or by a replacement), then for every state j > i, themin-
imum of Equations (28e) and (28f) is also achieved by a main-
tenance action. Furthermore, assume that Equation (20) holds;
then if in state i (0 < i < m) the minimum of Equations (28e)
and (28f) is achieved by a repair (respectively, a replacement) to
some state 0 < k < i, then for every state j > i, the minimum of
Equations (28e) and (28f) is also achieved by a repair (respectively,
a replacement).

Theorem2. Under the condition of Proposition 4, the optimal pol-
icy has the form of a generalized CLR.

Remark 3. Assume that ci = ci0 for 0 < i ≤ m; then, in a similar
manner as above, it can be shown thatwR

T (x, i) ≤ wT (x, i), (0 ≤
x ≤ N, 0 ≤ i ≤ m).

Claim 2. For fixed α, γ , x, and i, it can be shown that for each
T, ωR

T (x, i) ≥ ϕR
T (x, i), which implies ωR(x, i) ≥ ϕR(x, i).

5. Numerical study and insights

Consider a discrete phase-type distribution with m = 4 states
having the transition probability matrix

S =

⎛⎜⎜⎝
0.7 0.1 0.1 0.05
0 0.1 0.05 0.8
0 0 0.1 0.7
0 0 0 0.1

⎞⎟⎟⎠ .

Let the initial probability vector β = (1, 0, 0, 0), the discount
factor α = 0.95, the penalty cost cd = 1000, and the operat-
ing cost vector r = [1, 1, 4, 6]. We begin our examples with the
Replacement-Only model. The first example is associated with
the cold standby system, the second example generalizes it to
include the warm standby one, and the last example is devoted
to the Repair–Replacement model.

Example 1: Consider the Replacement-Only cold standby sys-
tem. Assume N = 10 units and let p = 0.7 and q = 0.3. Let C
denote the replacement cost vector—i.e., C = (c1, c2, c3, c4)—
and let

C1 = (1, 1, 3, 5),C2 = (5, 6, 7, 8),C3 = (10, 12, 14, 16),
C4 = (18, 19, 20, 21),C5 = (25, 27, 30, 32).

Figure . Control-limit level, i(x), as a function of x for several vectorsC.

Figure 1 presents the control-limit level i(x) (i(x) ∈ {1, .., 4})
as a function of x = 1, 2, . . . , 10, for {C1,C2,C3,C4,C5}. Note
that i(x) = 4 means that a replacement is preferred only when
a units fails, whereas i(x) = k 	= 4 means that a replacement is
performedwhen the online unit is in state k.As expected, we see
that i(x) is a nonincreasing function of x and a nondecreasing
function ofC; clearly, for a high replacement cost (C5) it is never
worthwhile to perform maintenance (unless the unit fails).

Evidently, the control-limit level is influenced by all of the
parameters and costs. In order to examine numerically the
impact of the repair probability p,we fix x = 4. Figure 2 depicts
the control-limit level as a function of p for the same cost vec-
torsC. Figure 2 shows that i(x) is a nonincreasing function of p,
since a higher probability p results in a shorter repair time.

Next, we study the behavior of the warm standby system and
compare it to its cold standby counterpart.

Example 2: Consider a Replacement-Only warm standby sys-
tem with the same data as in Example 1, p = 0.7,C1 =
(1, 1, 3, 5), and x ∈ {1, .., 10}. Figure 3 shows the control-limit
level i(x) for several values of the probability γ . It is seen that

Figure . Control-limit level as a function of p for several vectorsC.
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IISE TRANSACTIONS 1043

Figure . Control-limit level, i(x), for several values of γ .

i(x) is a nonincreasing function of x, as is the case in the
associated cold standby model. In general, Figure 3 shows that
as γ increases, i(x) decreases. This behavior can be partially
explained as follows. When γ is high, it is worthwhile for the
decision maker to use a good standby unit before it fails; hence,
i(x) decreases.

In addition, it is interesting to compare the behavior of
the cold and warm standby systems. For γ = 0.15, Figure 4
presents the discounted total costs, ϕ(x, 0) (the black surface)
and w(x, 0) (the gray surface) as functions of x and C, respec-
tively. As expected, Figure 4 shows that w(x, 0) > ϕ(x, 0) (see
Claim 1) and both costs decrease in x and increase inC. Further-
more, Table 1 presents the control-limit level i(x) in both sys-
tems. Regarding thewarm system, although i(x) is influenced by
many factors, we see that it is a nonincreasing function of x and

Figure . Costs ϕ(x, 0) (black surface) vs. w(x, 0) (gray surface) as functions of x
and c.

Table . Control-limit level for the cold and warm standby systems for several
vectors C.

C1 C2 C3 C4

x Cold Warm Cold Warm Cold Warm Cold Warm

        
        
        
        
        
        
        
        
        
        

a nondecreasing function ofC (as in the cold model). However,
knowing i(x) for one of the models doesnot provide a specific
knowledge of its value for the other.

Example 3: Consider a Repair–Replacement cold standby sys-
tem with the same data as in Example 1 and with the following
repair and replacement costs:

CI : c10 = 10, c20 = 11, c30 = 13, c40 = 14, c21 = 7,
c31 = 9, c32 = 7,

CII : c10 = 17, c20 = 18, c30 = 20, c40 = 21, c21 = 7,
c31 = 9, c32 = 7,

CIII : c10 = 25, c20 = 26, c30 = 28, c40 = 29, c21 = 7,
c31 = 9, c32 = 7.

Let p vary in {0.3, 0.7, 0.9} and the vector C vary in
{CI,CII,CIII}. Tables 2 and 3 present the optimal decisions for
state (x, i) for different values of p and for CI and CII, respec-
tively; each entry of the tables presents a matrix with indices
(x, i)x = (1, .., 10) and i = (0, 1, 2, 3, 4). Note that for x = 0,
or when i equals either m = 4 or i = 0, no decision has to be
made. For each state (x, i), we mark the optimal policy as fol-
lows: “do nothing” by −1, replace to a new unit by 0, and repair
to a better state by k (1 ≤ k < i). Table 4 displays the optimal
policies for the Replacement-Only cold standby model with the
same parameters as in Table 3. For the replacement cost, we
take ci = ci0 i = 1, . . . ,m. Here, too, −1 is marked as “do noth-
ing” and 0 for a replacement by a new unit. Regarding Tables 2
and 3, our observation leads to some important insights:

1. The preferred state to be repaired to (in the case of repair)
seems to be state 1. Examining the transition probabil-
ities (see Example 1), it is seen that when the system
is new, it moves with high probability to state 1. State
1 is more stable, and the system stays there with high
probability. When out of state 1, the probability of fail-
ure increases. In addition, the operating costs of states
0 and 1 are equal, whereas the cost of replacing to state
0 is higher than the cost of repairing; thus, state 1 is
preferred.

2. Increasing the probability p causes the repair policy to
be less common; instead, the replacement policy or even
doing nothing (which leads to replacement, eventually)
becomes widespread. Clearly, when the repair probabil-
ity is high, new units are preferred.
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1044 Y. BARRON AND U. YECHIALI

Table . Optimal policies for the Repair–Replacement model, cost vectorCI .

3. For high replacement costs and large values of p, the
do nothing policy becomes common; however, for low
p, (e.g., p = 0.1), a replacement or doing nothing may
prove too risky and hence the repair policy has a signifi-
cant impact.

Furthermore, it is interesting to compare the optimal costs
and the optimal policies of the Repair–Replacement model
versus those of the Replacement-Only model. Figure 5 plots
ϕR(x, i = 0) (solid lines) and ϕ(x, i = 0) (dashed lines) as a
function of x, for C ∈ {CI,CII,CIII} (the blue lines represent
CI , the gray-CII, and the black-CIII ). Table 4 presents the opti-
mal decisions under the Replacement-Only policy for state
(x, i) for different values of p and for cost vector CI. Observ-
ing Table 2, Table 4, and Figure 5 leads to the following
insights:

1. For small values of p, replacing a unit to a new one is rare,
while repairing to a better state is common.

2. For high values of p, the decision to replace the unit as
a function of (x, i) is similar in both models since the
repair option is rare.

3. Figure 5 shows that ϕR(x, 0) ≤ ϕ(x, 0) (see Remark 2);
however, as x increases, the difference between these two
cost functions decreases and the costs eventually become
equal. Furthermore, although the costs ϕR(x, 0) and

Table . Optimal policies for the Repair–Replacement model, cost vectorCII .

ϕ(x, 0) increase as C increases, the difference ϕ(x, 0) −
ϕR(x, 0) is mainly determined by x and is not affected
byC.

Figure . ϕR(x, i = 0) (solid lines) vs. ϕ(x, i = 0) (dashed lines) for C =
(CI,CII,CIII).
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IISE TRANSACTIONS 1045

Table . Optimal policies for the Replacement-Only model, cost vectorCI , for dif-
ferent values of p.

6. Concluding remarks and further research

This article studies the effect of preventive maintenance policies
for a 1-out-of-N repairable system, using the dynamic program-
ming tool. The unit failure time follows a discrete phase-type
distribution and there is a single repair facility. Repair times
are i.i.d. geometric random variables. For both cold and
warm standby systems, we study the expected discounted cost
under two policies, a Replacement-Only policy and a Repair–
Replacement policy. Motivated by Douer and Yechiali (1994),
we introduce a generalized CLR and show that, under reason-
able conditions on the system’s transition laws and cost values,
the optimal policy has the structure of a generalized CLR.

Regarding the Replacement-Only policy, numerical exam-
ples of both the cold and the warm standby systems show a
similar behavior: the control-limit level is a nonincreasing func-
tion of the number of good units x and the repair probability
p and a nondecreasing function of the cost vector C. Under the
Repair–Replacement policy, our observations show that increas-
ing p causes the repair policy to be less common; instead, the
replace policy or even doing nothing becomes widespread. It
is proved that the expected discounted costs for all models
(i.e., ϕ(x, i),w(x, i), ϕR(x, i), and wR(x, i)) are a nonincreas-
ing function of x and a nondecreasing function of the state i.

Furthermore, although the costs ϕR(x, 0) and ϕ(x, 0) decrease
in x and increase in C, the difference ϕ(x, 0) − ϕR(x, 0)
decreases in x (and eventually becomes zero) and is not affected
byC.

There are several possible extensions of the above models.
Motivated by Ross (1969) and Benyamini and Yechiali (1999),
the case of a continuous state-space (for both failure times and
repair times) is probably tractable; in this case, a generalization
to exponential (or even phase-type) distribution seems possi-
ble. In addition, it may be worthwhile to consider S ≥ 2 paral-
lel identical repair facilities. Another interesting and practical
extension is to consider a phase-type distribution for the warm
standby units.
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A Appendix: Proofs.

A1. Proof of Lemma 2.

Proof. For x = 1.
(i) For x = 1, i < m − 1. Following Equation (4b) we have

ϕT (1, i + 1) = ri+1 + α

m∑
j=0

Si+1, j[pϕT−1(2, j) + qϕT−1(1, j)]

≥ ri + α

m∑
j=0

Sij[pϕT−1(2, j) + qϕT−1(1, j)]

= ϕT (1, i).

(ii) For x = 1, i = m − 1, clearly the inequality ϕT (1,m) ≥ ϕT (1,m − 1) holds, since we assume that system failure incurs a
huge cost.
For x = N.
(i) For x = N, i = 0 the proof is similar to the case of 1 < x < N, i = 0.
(ii) For x = N, 0 < i < m − 1:

ϕT (N, i + 1) = min
{
ri+1 + α

∑m
j=0 Si+1, jϕT−1(N, j),

ci+1 + r0 + α
∑m

j=0 S0 j[pϕT−1(N, j) + qϕT−1(N − 1, j)]

}
≥ min

{
ri + α

∑m
j=0 Si, jϕT−1(N, j),

ci + r0 + α
∑m

j=0 S0 j[pϕT−1(N, j) + qϕT−1(N − 1, j)]

}
= ϕT (N, i).

(iii) For x = N, i = m − 1:

ϕT (N,m) = cm + r0 + α

m∑
j=0

S0 j[pϕT−1(N, j) + qϕT−1(N − 1, j)]

≥ cm−1 + r0 + α

m∑
j=0

S0 j[pϕT−1(N, j) + qϕT−1(N − 1, j)]

≥ ϕT (N,m − 1). �

A2. Proof of Lemma 3.

Assume that Lemma 3 holds for T − 1 and we prove for T . The case of i = 0 and 1 ≤ x ≤ N − 1 is given in Lemma 3; we continue
with i = 0, x = N − 1, proceed with 0 < i < m, and finally show for i = m.

Proof. For i = 0, x = N − 1. Following Equation (11a) we obtain

ωT (N, 0) = r0 + α

N−1∑
k=0

m∑
j=0

C(k,N − 1)S0 j pωT−1(N − k, j).

Applying Equation (14) and following similar steps as in Equation (15) yields

ωT (N, 0) = r0 + α

m∑
j=0

(N−2
0

)
γ 0(1 − γ )N−2S0 j[γωT−1(N − 1, j) + (1 − γ )ωT−1(N, j)]

+α

m∑
j=0

(N−1
1

)
γ 1(1 − γ )N−3S0 j[γωT−1(N − 2, j) + (1 − γ )ωT−1(N − 1, j)]

...

+α

m∑
j=0

(N−2
N−2

)
γ N−2(1 − γ )0S0 j[γωT−1(1, j) + (1 − γ )ωT−1(2, j)]. (A1)

Using induction and Condition 5, for all x we obtain

(1 − γ − p)ωT−1(x − 1, j) ≥ (1 − γ − p)ωT−1(x, j)
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1048 Y. BARRON AND U. YECHIALI

or

pωT−1(x, j) + (1 − p)ωT−1(x − 1, j) ≥ γωT−1(x − 1, j) + (1 − γ )ωT−1(x, j). (A2)

Substituting Equation (A2) in Equation (A1) and applying Equation (11b) leads to

ωT (N, 0) ≤ r0 + α

m∑
j=0

(N−2
0

)
γ 0(1 − γ )N−2S0 j[pωT−1(N, j) + qωT−1(N − 1, j)]

+α

m∑
j=0

(N−2
1

)
γ 1(1 − γ )N−3S0 j[pωT−1(N − 1, j) + qωT−1(N − 2, j)]

...

+α

m∑
j=0

(N−2
N−2

)
γ N−2(1 − γ )0S0 j[pωT−1(2, j) + qωT−1(1, j)]

= ωT (N − 1, 0). (A3)

Assuming that Lemma 3 holds for i − 1, we now prove that it holds for 0 < i < m.
(i) For 0 < i < m, x 	= 1,N − 1. By Equation (11f) we get

ωT (x + 1, i) = min
{
ri + α

∑x
k=0

∑m
j=0C(k, x)Sij[pωT−1(x + 2 − k, j) + qωT−1(x + 1 − k, j)],

ci + r0 + α
∑x

k=0
∑m

j=0C(k, x − 1)S0 j[pωT−1(x + 1 − k, j) + qωT−1(x + 1 − k − 1, j)].

}
Consider the first option, in which no maintenance is taken. Then, by applying the same methods as in Equations (14) to
(16) we arrive at

ri + α

x∑
k=0

m∑
j=0

C(k, x)Sij[pωT−1(x + 2 − k, j) + qωT−1(x + 1 − k, j)]

≤ ri + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Sij[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]. (A4)

Similarly, for the second option, in which a replacement is performed, we get

ci + r0 + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)S0 j[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]

≤ ci + r0 + α

x−2∑
k=0

m∑
j=0

C(k, x − 2)S0 j[pωT−1(x − k, j) + qωT−1(x − k − 1, j)]. (A5)

Thus, from Equations (A4) and (A5) we obtain

ωT (x + 1, i) ≤ min

{
ri + α

∑x−1
k=0

∑m
j=0C(k, x − 1)Sij[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]

ci + r0 + α
∑x−2

k=0
∑m

j=0C(k, x − 2)S0 j[pωT−1(x − k, j) + qωT−1(x − k − 1, j)]

}
= ωT (x, i). (A6)

The proof for the case of x = 1 is similar and hence is omitted.
(ii) For 0 < i < m, x = N − 1. Applying Equations (A1) to (A3) proves the case of x = N − 1.

Finally, to end the proof, we consider Equation (11c), the case of i = m, x 	= 1 (note that the case of x = 1 incurs a huge cost
of cd):

ωT (x,m)
x 	=1

= cm + r0 + α

x−2∑
k=0

C(k, x − 2)S0 j[pωT−1(x − k, j) + qωT−1(x − 1 − k, j)]

= cm + ωT (x − 1, 0)
≥ cm + ωT (x, 0) (by induction)
= ωT (x + 1,m). (A7)
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A3. Proof of Lemma 4.

Proof. We use a double induction on T and x.
(1) Step 1. The case of T = 1 is similar to that of Lemma 2.
(2) Induction Step. Assume that Lemma 4 holds for T − 1; we prove it for the case of T periods left.
(3) Step 2. For x = 1, i < m − 1. Applying Condition 1, it is easy to show that ωT (1, i) ≤ ωT (x, i + 1) holds. For x = 1 and

i = m − 1, clearly ωT (i,m) represents a system failure with a high cost.
Assume that Lemma 4 holds for x − 1; we show that it holds for 1 < x < N.
(i) For 1 < x < N, i = 0. Applying Condition 1 and Condition 3 leads immediately to the proof.
(ii) For 1 < x < N, 0 < i < m − 1. Equation (11f) leads to

ωT (x, i + 1) = min

{
ri+1 + α

∑x−1
k=0

∑m
j=0C(k, x − 1)Si+1, j[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)],

ci+1 + r0 + α
∑x−2

k=0
∑m

j=0C(k, x − 2)S0 j[pωT−1(x − k, j) + qωT−1(x − k − 1, j)].

}
(A8)

Consider the first option, in which no maintenance is performed. Then

ωT (x, i + 1) = ri+1 + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Si+1, j[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]

≥ ri + α

x−1∑
k=0

m∑
j=0

C(k, x − 1)Si, j[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)]

= ωT (x, i), (A9)

which follows due to Condition 1, Condition 3, and the induction hypothesis. For the case of a replacement, applying
Condition 2 yields a similar proof. Note that following Equation (11c) for i = m − 1 we have

ωT (x,m − 1) = min

{
rm−1 + α

∑x−1
k=0

∑m
j=0C(k, x − 1)Sm−1, j[pωT−1(x + 1 − k, j) + qωT−1(x − k, j)],

cm−1 + r0 + α
∑x−2

k=0
∑m

j=0C(k, x − 2)S0 j[pωT−1(x − k, j) + qωT−1(x − k − 1, j)]

}

≤ cm−1 + r0 + α

x−2∑
k=0

m∑
j=0

C(k, x − 2)S0 j[pωT−1(x − k, j) + qωT−1(x − k − 1, j)]

≤ cm + r0 + α

x−2∑
k=0

m∑
j=0

C(k, x − 2)S0 j[pωT−1(x − k, j) + qωT−1(x − k − 1, j)]

= ωT (x,m). (A10)

Finally, the case of x = N is similar and is omitted. �
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