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This study is motivated by industries in which products can be partially prepared and stored before demand occurs, while
demand is stock-dependent. We study a multi-server system in which the servers utilise their idle time to produce and store
‘preliminary services’ (PSs) in order to reduce customers’ sojourn time and, as a result, stimulating demand by creating
the anticipation of a shorter sojourn time. In order to facilitate closed-form solutions, we analyse a Markovian queueing-
inventory model and apply matrix geometric (MG) methods. In contrast to most applications in which the rate matrix R
of the MG analysis is calculated numerically, our analysis enables derivation of explicit solutions for the entries of R and
discovers their relation to Catalan numbers, allowing a rapid solution for large systems. Consequently, the system’s stability
condition is readily obtained and shown to be identical to that of a regular M/M/s queue. Two models are developed: one for
non-perishable PSs, the other for perishable ones. An economic analysis is provided for two case studies: a bike store and a
pizza store. We observe that the reward has low sensitivity to deviation from the optimal PSs capacity and high sensitivity
to deviation from the optimal promotional level.

Keywords: Markov process; queueing-inventory system; stock-dependent demand; matrix geometric analysis; economic
analysis

1. Introduction

Reducing customer waiting times in service systems is a common objective, which aims to reduce costs associated with cus-
tomers’ sojourn time in the system and increase their satisfaction. Usually, it is achieved by using faster servers (e.g. Hwang,
Gao, and Jang 2010; Guo and Zhang 2013) or by hiring additional servers. However, these methods are costly. Recent stud-
ies (Hanukov et al. 2017, 2018, 2019a, 2019b) have suggested using a server’s idle time to produce and store preliminary
services, which will be used to serve future customers more quickly and thus increase the productivity of the service system
without investing in additional or better resources. This innovative approach is modelled using a queueing-inventory system
represented by a two-dimensional Markov process (see, e.g. Cox and Miler 1965), which is solved using matrix geometric
analysis. The main question in these models is: How many preliminary services should be produced and stored when the
server is idle? Actually, this approach represents an interesting contrast with another, similar scenario that has been exten-
sively studied in the literature whereby servers’ idle times may be used for carrying out ancillary duties (also known as
‘vacation models’; see, for example, Levy and Yechiali 1975, 1976; Rosenberg and Yechiali 1993; Boxma, Schlegel, and
Yechiali 2002; Yechiali 2004; Baek et al. 2014; Yang and Wu 2015; Mytalas and Zazanis 2015; Guha, Goswami, and Banik
2016; Barron 2018), which may increase customer waiting times. Thus far, the innovative approach of using idle times
to perform preliminary services has been applied (analytically) only to a single-server service system and a homogeneous
Poisson (customer) arrival process.

The current work extends this innovative approach (Hanukov et al. 2017, 2018, 2019a, 2019b) to the framework of a
multi-server service system with a stock-dependent customer arrival rate. Multi-server systems are widespread in real-life
businesses, but in the case of queueing-inventory systems, are considerably more complex, and thus are more difficult to
analyse. As for stock-dependent demand, it is known (see, e.g. Urban 2005) that customers buy more units of a product
when the level of the presented inventory is higher, which is due to marketing effects (e.g. a wider selection). In our
model, the stock of preliminary services has an additional positive effect on customer demand, since it implies a shorter
customer sojourn time in the system. To model this effect, we use a state-dependent customer arrival rate (Gupta 1967;
Winston 1978; Guo and Hassin 2011; Zhao and Lian 2011). In addition, we consider the deterioration of preliminary services
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while being held in stock. In particular, we assume an exponential lifetime of preliminary services, where spoiled units are
discarded.

Our model is mostly motivated by the fast food industry, in which food such as hamburger patties or basic pizzas can
be prepared before demand occurs, and only upon the arrival of a customer are they heated up, adjusted according to the
specific customer requirements, and then served. Another domain in which our model is applicable is bicycle retailing,
where mechanics can assemble parts of a bicycle before a customer’s arrival, and subsequently assemble the remaining
parts in accordance with the customer’s specific requirements and preferences. Handmade nameplates for doors are another
example in which service can be split up. The server can produce basic nameplates from wood, ceramic or glass before an
order is made, and complete the nameplate upon request (e.g. by writing the name or adding some form of decoration).

The main contributions of this paper are:

• This is the first study to investigate both of the aforementioned positive effects of preliminary services (i.e. utilising
the server idle time and stimulating demand) on the service system performance.

• Closed-form expressions for the steady-state probabilities of the system states are derived, leading to the calculation
of various performance measures for large problems in a relatively short time-frame.

• The relation of these expressions to Catalan numbers is shown. This result is notable due to the fact that, in typical
applications of matrix geometric analysis, explicit calculation of the entries of the rate matrix R is rarely possible.

• It is proved analytically that the stability condition of our model is identical to that of a standard M/M/2 queue.

2. Literature review

Prior studies that have considered queueing-inventory systems include the following: Zhao and Lian (2011) studied a service
facility in which each service uses one item in the associated inventory, which is supplied with exponentially distributed lead
time. Wang et al. (2013) modelled a simple production-inventory-queue system and formulated the optimal integrated con-
trol problem as a continuous Markov decision process. Adacher and Cassandras (2014) utilised a queueing model to tackle
the lot-sizing problem in manufacturing systems. Avs.ar and Zijm (2014) presented approximate queueing models for capaci-
tated multi-stage inventory systems under base-stock control. Altendorfer and Minner (2015) modelled a production system
as an M/M/1 queue with input rates that are dependent on queue length and random customer-required lead-time. They
then developed a heuristic solution for the optimal capacity investment problem. Chebolu-Subramanian and Gaukler (2015)
used queueing theory to analyse product contamination in a multi-stage food supply chain with inventory. Krishnamoorthy,
Manikandan, and Lakshmy (2015) considered two control policies, (s, Q) and (s, S), for an M/M/1 queueing-inventory
system, in which the item is given with a certain probability to a customer at his service completion epoch. The authors
investigated optimisation problems associated with both models. Nair, Jacob, and Krishnamoorthy (2015) considered a
multi-server Markovian queueing model where each server provides service only to one customer, and the servers are
considered as an inventory that will be replenished according to the standard (s, S) policy. Wang, Lan, and Jiang (2016)
explored the impact of customer impatience on the performance of a system that consists of make-to-stock queueing and
an M/M/1 service-orders-processed subsystem. Otten, Krenzle, and Daduna (2016) used queueing and inventory theories to
analyse a two-echelon production system with a central supplier who delivers raw material to servers at several locations,
each with a local inventory. Wang and Zhang (2017) investigated the individual equilibrium strategy and the socially opti-
mal strategy, along with the optimal price, in a single-server service-inventory system while considering customer-choice
behaviour.

Inventory control of perishable items has been thoroughly investigated in the Operations Management literature. These
studies deal with order quantity at fixed intervals or according to inventory position. For example, Avinadav and Arpo-
nen (2009) extended the classical EOQ model to products with a fixed expiry date and a declining demand rate due to a
reduction in the quality of the product with time. Hu, Shum, and Yu (2015) formulated and analysed a dynamic model of
inventory and pricing decisions for perishable goods under uncertainty, where every period consists of two phases: a clear-
ance phase and a regular-sales phase. Chao et al. (2015) developed approximation algorithms with worst-case performance
guarantees for stochastic periodic-review perishable inventory systems. They considered both backlogging and lost-sales
models. Chernonog (2020) and Avinadav (2020) investigated a two-echelon supply chain of a perishable product in which
a manufacturer and a retailer interact via a wholesale price contract and via a revenue sharing contract, respectively. For
further discussion on this topic, see for example, (Cooper 2001; Berk and Gürler 2008; Avinadav, Herbon, and Spiegel
2013, 2014; Chen, Pang, and Pan 2014; Li, Yu, and Wu 2016; Zhang, Shi, and Chao 2016; Avinadav et al. 2017; Cher-
nonog and Avinadav 2017; Herbon 2017, 2018; Herbon and Khmelnitsky 2017; Dolgui et al. 2018; Lacomme et al. 2018;
Abouee-Mehrizi et al. 2019; Barron 2019; Barron and Baron 2020). In our study, we consider the less explored scenario
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in which inventory is accumulated only when the server is idle (a stochastic process) and via production (also a stochas-
tic process). Inventory is depleted either via demand or due to spoilage of pre-prepared food units (both are stochastic
processes).

Relatively few papers have combined queueing systems and inventories of perishable items. Ioannidis et al. (2013)
considered problems of inventory control for make-to-stock production systems with perishable inventory and queueing of
impatient customers. Jeganathan et al. (2017) investigated a system consisting of a perishable inventory that uses a two-rate
service policy within a finite queueing system under a continuous review (s, Q) ordering policy. Kırcı, Biçer, and Seifert
(2019) considered a two-echelon supply chain for a perishable product where the production process is modelled using
an M/M/1 queueing system and the retailing process includes inventory decisions. However, none of the above papers
considered utilising the server’s idle time to produce preliminary services (PSs).

Utilising a server’s idle time to produce preliminary services has been recently investigated in the Operations Man-
agement literature. Hanukov et al. (2017) studied a queueing system with decomposed service in which they focused on
analysing the distribution of customer waiting times. Hanukov et al. (2018) analysed the effect of the preliminary services’
capacity on the server’s reward, where the service can be conducted either as one continuous process or as a two-phase
process. Whereas the latter two papers do not consider perishability of the preliminary services, Hanukov et al. (2019a)
analysed a fast food service queueing-inventory system, which includes perishability considerations. Hanukov et al. (2020)
extended the latter study to include two types of customer: fastidious and strategic. While all the above papers considered
a single-server system with a fixed customer arrival rate, only Hanukov et al. (2019b) and the current study consider multi-
server queueing, which is more common in the fast food industry, and analyses the use of preliminary services as a means
of increasing demand. This paper extends Hanukov et al. (2019b) by considering the perishability effect and by providing
two case studies to show the applicability of this model to real-life problems (specifically, a bike store and a pizza store),
which are followed by comprehensive sensitivity analyses.

3. Model formulation

Assume a service system with two servers, in which full-service (FS) time is exponentially-distributed with mean 1/μ, and
customer arrival follows a Poisson process with rate λ. The service can be split into two phases: a preliminary service
(PS), which can be carried out in the absence of the customer, and a complementary service (CS), which can be provided
only when the customer is present. When a server is idle, he/she can produce preliminary services. In line with prior
studies that involve make-to-stock queueing (Benjaafar, Cooper, and Mardan 2011; Flapper, Gayon, and Vercraene 2012;
Iravani, Kolfal, and Van Oyen 2011; Hanukov et al. 2017), the preparation time of the PS is assumed to be exponentially
distributed with parameter α. The PSs are stored until the arrival of customers, and are used to reduce the sojourn time of
future customers. The total number of preliminary services in stock is limited to n (capacity), and when the inventoried PSs
reach this capacity, the servers stop producing them and resume an idle position. When a customer reaches the front of the
queue and a preliminary service is available, his/her CS phase starts immediately. The CS time is exponentially distributed
with mean 1/β, where β > μ. That is, the CS duration is stochastically shorter than the FS duration (first-order stochastic
dominance). When PSs are available, the customer arrival rate increases to δ (> λ) until the number of customers is equal
to the number of PSs (both of which are observable by the customers).

The process can be formulated as a three-dimensional continuous-time Markov chain with a state space {Lt, St, Ut},
where Lt ∈ {0, 1, 2, . . . , ∞} denotes the number of customers in the system at time t, St ∈ {0, 1, 2, . . . n} denotes the total
number of PSs at time t, and Ut ∈ {0, 1, 2} denotes the number of customers in their CS phase at time t. Let L ≡ limt→∞Lt,
S ≡ limt→∞St and U ≡ limt→∞Ut. Let pi,j,k = Pr(L = i, S = j, U = k) denote the joint probability distribution of the latter
three-dimensional process. Thus pi,j,k represents the long-run fraction of time that the system stays in state (L = i, S =
j, U = k). As an illustration, Figure 1 below depicts the system’s states and its corresponding transition-rate diagram for the
case where the PS capacity is n = 3. Each circle in the diagram depicts a state (L = i, S = j, U = k) and the arrows indicate
the transition directions and rates.

Our goals are (i) to obtain the system’s stability condition (i.e. the condition on the parameters that will ensure that
the queue size does not grow beyond any given bound) and (ii) to derive the system’s steady-state probabilities (i.e. pi,j,k

when the system is stable). Subsequently, various performance measures, such as mean queue size, mean sojourn time,
mean PS inventory level, and mean time a PS spends in inventory, are calculated. For these purposes, matrix geometric
analysis (Neuts 1981) is applied, which entails calculation of the so-called rate matrix R (see below). The system’s states
are arranged in the following lexicographic order (i = 2, 3, . . . ):

{(0, 0, 0), (0, 1, 0), . . . , (0, n, 0); (1, 0, 0), (1, 1, 1), (1, 1, 0), . . . , (1, n, 1), (1, n, 0); . . . ;
(i, 0, 0), (i, 1, 1), (i, 2, 2), (i, 2, 1), . . . , (i, n, 2), (i, n, 1); . . .},
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Figure 1. System states and transition-rate diagram for n = 3.

which allows us to construct the system’s infinitesimal generator matrix, denoted by Q:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1,1 B1,2 0 0 0 0 0 0 0 · · ·
B2,1 B2,2 B2,3 0 0 0 0 0 0 · · ·

0 B3,1 B3,2 B3,3 0 0 0 0 0 · · ·
0 0 A2 B4,2 B4,3 0 0 0 0 · · ·
...

...
. . .

. . .
. . .

...
...

0 0 0 0 A2 Bn+1,2 Bn+1,3 0 0 · · ·
0 0 0 0 0 A2 A1 A0 0 · · ·
0 0 0 0 0 0 A2 A1 A0
...

...
...

...
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where matrices Bi,j are given in Appendix 1, and matrices A0 ≡ [av,t
0 ], A1 ≡ [av,t

1 ] and A2 ≡ [av,t
2 ] are given by A0 = λI2n×2n,

av,t
1 =

⎧⎪⎪⎨
⎪⎪⎩

−(λ+ 2μ) v = t = 1
−(λ+ μ+ β) v = t = 2, 4, 6, 8, . . . , 2n
−(λ+ 2β) v = t = 3, 5, 7, . . . , 2n − 1
0 Otherwise

, (2)

av,t
2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2μ v = t = 1
μ v = t = 2 and v = t + 1 = 4, 6, 8, . . . , 2n
β v = t + 1 = 2 and v = t + 2 = 4, 6, 8, . . . , 2n
2β v = t + 1 = 3 and v = t + 2 = 5, 7, 9, . . . , 2n − 1
0 Otherwise

. (3)
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4. Steady-state analysis

We now claim that the condition for the stability of the system is identical to that of a regular M/M/2 queue without
preliminary services (i.e. a Markovian service system with two parallel identical servers).

Theorem 4.1 The stability condition of the queueing-inventory system is λ < 2μ.

Proof According to Hanukov and Yechiali (2020), when each of the matrices A0, A1 and A2 is lower triangular, which is
the case in our model, the stability condition is given by a1,1

0 < a1,1
2 . By substituting a1,1

0 = λ and a1,1
2 = 2μ the claim is

proved. �

Theorem 4.1 implies that although preparing preliminary services improves the system’s performance, it does not alter
its stability condition. This result can be further explained as follows: due to the stochastic nature of the system, at some
point in time, both servers will be fully occupied and will not be able to produce any PSs, so the system will become a
regular M/M/2 queue. This observation leads us to state the following:

Stability: The system stability condition can be readily extended to the case where the underlying process is a regular
M/M/s queue, namely, λ < sμ.

The matrix geometric analysis is based on derivation of a so-called rate matrix R ≡ [rv,t]2n×2n, which is obtained by
solving the quadratic matrix equation (see Neuts 1981).

A0 + RA1 + R2A2 = 02n×2n. (4)

Let us define the (n + 1)-dimensional vector of probabilities

�p0 ≡ (
p0,0,0 p0,1,0 p0,2,0 p0,3,0 . . . p0,n,0

)
,

the (2n + 1)-dimensional vector of probabilities

�p1 ≡ (
p1,0,0 p1,1,1 p1,1,0 p1,2,1 p1,2,0 p1,3,1 p1,3,0 . . . p1,n,1 p1,n,0

)
and the (2n)-dimensional vectors of probabilities

�pi ≡ (
pi,0,0 pi,1,1 pi,2,2 pi,2,1 pi,3,2 pi,3,1 . . . pi,n,2 pi,n,1

)
i = 2, 3, 4, . . . .

Following Neuts (1981), the vectors �pi satisfy

�pi = �pn+1Ri−(n+1), i = n + 1, n + 2, n + 3, . . . , ∞. (5)

In most cases, the entries rv,t of the matrix R are found by numerical calculations (see Chapter 8 in Latouche and
Ramaswami 1999), mostly using successive substitutions (Neuts 1981, 37). However, for some special cases, the matrix can
be derived analytically. The matrices A0, A1 and A2 are lower triangular, and thus we can apply Theorem 4.1 of Hanukov
and Yechiali (2020) to provide closed-form formulae for the elements of the matrix R; the results are detailed in Appendix
2. Since, in the current model, the matrices A0, A1 and A2 are indeed lower triangular, it is possible to use these formulae to
derive closed-form expressions for all rv,t, as given in Theorem 4.2.

Let Cm be the m-th Catalan number (i.e. Cm ≡ ((2m)!/(m + 1)!m!), see Koshy 2008), where m is a non-negative integer.
Then,

Theorem 4.2 The entries of matrix R are:

(i) rv,t = 0 for v < t, (ii) r1,1 = λ
2μ , (iii) r2,2 = β+μ+λ−

√
(β+μ+λ)2−4λμ
2μ ,

(ii) rv,1 = 2μ
∑v−1

τ=2 rv,τ rτ ,1+β∑v
τ=2 rv,τ rτ ,2

2μ(1−rv,v)
, v = 2, 3, 4, . . . , 2n,

(iii) rv,2 = β
(∑v−1

τ=3 rv,τ rτ ,2+2
∑v

τ=3 rv,τ rτ ,3+∑v
τ=4 rv,τ rτ ,4

)
β+λ+μ(1−r2,2+rv,v)

, v = 3, 4, 5, . . . , 2n,

(iv) rv,t =
{

0 v = t + 1, t + 3, . . . , 2n − 1
C0.5(v−t)β

0.5(v−t)λ0.5(v−t+2)

(λ+μ+β)v−t+1 v = t, t + 2, . . . , 2n
, t = 4, 6, 8, . . . , 2n,

(v) rv,t =
⎧⎨
⎩
μ

∑v
τ=t+1 rv,τ rτ ,t+1+2β

∑v
τ=t+2 rv,τ rτ ,t+2

2β+λ v = t + 1, t + 3, . . . , 2n
20.5(v−t)C0.5(v−t)β

0.5(v−t)λ0.5(v−t+2)

(λ+2β)v−t+1 v = t, t + 2, . . . , 2n − 1
, t = 3, 5, 7, . . . , 2n − 1.
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Proof (i), (ii), (iii), (iv), (v) and the first term of (vii) are derived directly from the formulae given in Appendix 2. The
proofs for (vi) and for the second term of (vii) are given in Appendix 3. �

Let �p ≡ (�p0, �p1, �p2, . . .). Then, to calculate �pi, i = 0, 1, . . . , n + 1, we use a subset of equations from �pQ = 0 combined

with the normalisation equation �p0 · �e + �p1 · �e +
∞∑

i=2
�pi · �e = 1, where �e is a vector whose elements are all equal to 1.

Consequently, we solve the following linear set:

�p0B1,1 + �p1B2,1 = �0
�p0B1,2 + �p1B2,2 + �p2B3,1 = �0
�pi−1Bi,3 + �piBi+1,2 + �pi+1A2 = �0 i = 2, 3, . . . , n
�pnBn+1,3 + �pn+1(A1 + RA2) = �0
�p0 · �e + �p1 · �e +

n∑
i=2

�pi · �e + �pn+1[I − R]−1 · �e = 1.

(6)

5. Performance measures

Based on the steady-state probabilities, we show how to calculate relevant system performance measures. For a given
capacity of preliminary services, n, let L(n) and Lq(n) be the mean number of customers in the system and in the queue,
respectively. Similarly, let: W(n) and Wq(n) be the mean sojourn time of a customer in the system and in the queue,
respectively; S(n) and Sq(n) be the mean number of PSs in the system and in the inventory, respectively; and T(n) and Tq(n)
be the mean time a PS resides in the system and in the inventory, respectively.

Using (5) and the equations
∑∞

i=0 Ri = [I − R]−1 and
∑∞

i=0 (i + 1)Ri = [I − R]−2, we obtain:

L(n) = �p1�e +
n∑

i=2

i�pi�e + �pn+1(n[I − R]−1 + [I − R]−2)�e. (7)

Lq(n) = L(n)− 2(1 − �p0�e)+ �p1�e. (8)

In order to calculate the mean sojourn time of customers in the system and in the queue, we first have to calculate the
effective customer arrival rate λeff . Let pδ be the proportion of time for which customers arrive with rate δ, and pλ = 1 − pδ
the proportion of time for which customers arrive with rate λ. Then, the effective customer arrival rate is obtained as follows

λeff = δpδ + λpλ = (δ − λ)pδ + λ, (9)

where

pδ =
1∑

i=0

n∑
j=1

pi,j,0 +
n∑

j=2

p1,j,1 +
n∑

i=2

n∑
j=i

pi,j,1 +
n−1∑
i=2

n∑
j=i+1

pi,j,2. (10)

Thus, W(n) = L(n)/λeff and Wq(n) = Lq(n)/λeff .

In order to obtain S(n), we define three column vectors �vn+1 = (
0 1 2 3 · · · n

)T
, �v2n+1 = (0 1 1 2 2 3

3 · · · n n)T and �v2n = (
0 1 2 2 3 3 · · · n n

)T
. Thus, by using Equation (4) and algebraic manipulations,

we get

S(n) = �p0�vn+1 + �p1�v2n+1 +
n∑

i=2

�pi�v2n + �pn+1[I − R]−1�v2n. (11)

Similarly, in order to obtain Sq(n), we define three column vectors �un+1 = (
0 1 2 3 · · · n

)T
, �u2n+1 =(

0 0 1 1 2 2 3 · · · n − 1 n
)T

and �u2n = (
0 0 0 1 1 2 2 3 · · · n − 2 n − 1

)T
, so that

Sq(n) = �p0�un+1 + �p1�u2n+1 +
n∑

i=2

�pi�u2n + �pn+1[I − R]−1�u2n. (12)

In the case where the inventory level is less than n, preliminary services are produced by both servers when there are no
customers in the system, and by one of the servers when there is only one customer in the system. Therefore, the effective
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production rate of PSs is

αeff = 2α(�p0�e − p0,n,0)+ α(�p1�e − p1,n,0 − p1,n,1). (13)

Consequently, the mean periods of time for which a PS resides in the system and in the inventory, respectively, as
obtained from Little’s law, are as follows: T(n) = S(n)/αeff and Tq(n) = Sq(n)/αeff .

6. Economic analysis

In this section, we provide an economic analysis of our queueing-inventory model. Let REV be the net revenue from
supplying a service to a customer, so that the expected system’s revenue rate is equal to REV · λeff . Let c be the sojourn
cost per unit time per customer in the system, and let h be the capacity cost per unit time. Assume that the server can
publicise the existence of available preliminary services, which stimulates demand (due to a shorter sojourn time). The
publicity may be carried out at different levels. For example, the server could rent screen time for promotion at different
locations near its store, where each screen may increase customers’ arrival rate. Another possibility would be to transmit
promotional messages to customers’ smartphones, which could take place over a larger distance to reach more customers.
Thus, we denote by A(δ) the cost rate of making the number of PSs observable (hereafter transparency cost) as a function
of the desired arrival rate δ. We assume that the transparency cost is a convex increasing function of the gap between the
desired and the actual arrival rates. Specifically, we use A(δ) = ψ(δ − λ)τpδ ,where ψ (> 0) is a scale coefficient, τ (> 1) is
a shape coefficient, and pδ is defined in Equation (10). The objective is to maximise the total expected profit per unit time,
Z, by controlling the PS capacity n and the desired arrival rate when PSs are available, δ. We add the arguments n and δ to
each term that includes them, such that the optimisation problem is defined as follows:

max
n∈{0,1,2...}

δ≥λ
{Z(n, δ) = REV · λeff (n, δ)− A(n, δ)− cL(n, δ)− hn}. (14)

To illustrate the behaviour of the expected profit as a function of the PS capacity n and the desired arrival rate when
PSs are available δ, we use a numerical example of a bike store in Israel. The estimation is that each year 200,000 bikes are
sold1 via 300 bike stores,2 which are open between 200 and –250 days per year. Therefore, we use λ = 3[ customers

day ]. It takes
about two hours to build a complete bike from its components and then tune it according to the customer requirements, so,
assuming 8 working hours per day, we use a full-service rate of μ = 4[ customers

day ]. We further assume that it takes about an

hour3 to assemble a bike out of a box without the presence of a customer, while a similar length of time is required to tune
the bike according to the customer requirements (explanations, upgrades, oiling, testing, etc.); thus we use α = 7[ PSs

day ] and

β = 8[ CSs
day ]. The selling price of bikes varies from dozens of dollars (for children’s bikes) to hundreds of dollars or more

(for professional bikes),4 so we use an estimate of the net revenue (which is about one third of the selling price (see note 1))
of REV = 300[ $

customers ]. We assume that customers who are waiting for their bike to be assembled and tuned cost the store
owner about $6 per hour; so we use c = 50[ $

day×customer ]. The cost of renting a store is about $50 per square meter per month

(see note 1), and since an assembled bike occupies approximately 1 square meter, we use h = 1.5[ $
day×PS ]. In addition, we

use ψ = 100
[

$×(day)τ−1

(customer)τ

]
and τ = 1.6, implying that the promotion required to attract each buyer costs, per day, at least one

third of the net revenue from selling a bike. The results are given in Table 1 and Figure 2.
Table 1 shows that the optimal PS capacity and enhanced customer arrival rate are n∗ = 14 and δ∗ = 6, respectively,

and that the point corresponding to these values is the unique optimal solution of the expected profit maximisation problem
over the domain n ≤ 20, 3 ≤ δ ≤ 11. One insight from this case study is that the reward is less sensitive to the capacity
of the pre-prepared bikes in the neighbourhood of its optimal value (i.e. there is a change of no more than 1.3% within
the range 6 ≤ n ≤ 19), so the optimal value from the model can be used as is. In contrast, the reward is more sensi-
tive to deviation from δ∗. Therefore, since A(δ) is taken as a proxy for the actual promotion cost, we recommend for
the store owner to use a learning strategy by making small changes in the promotion expenditure until the best policy is
determined.

6.1. Sensitivity analysis

Now we investigate the effect of the monetary parameters (REV, c, h,ψ) on the decision variables (n, δ) and on the associated
profit (Z). In addition, we calculate the ratio between the profit when using preliminary services and that of a standard
M/M/2 system: ξ = Z(n∗, δ∗)/ZM/M/2. The results are presented in Figures 3–10. Figure 3 shows that both the optimal
PS capacity (n∗) and the optimal investment in publishing the existence of available PSs (which is correlated with δ∗)
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Table 1. The expected profit for various values of n and δ, where the maximum expected profit is shown in bold typeface.

n\δ 3 4 5 6 7 8 9 10 11

0 866.5 958.5 984.6 976.8 948.8 908.1 859.2 804.9 747.0
1 870.4 1009.3 1052.6 1042.6 999.7 936.1 859.5 774.8 685.3
2 871.1 1031.7 1084.8 1074.2 1023.4 948.0 857.8 759.2 656.3
3 870.6 1043.0 1103.2 1093.0 1037.5 954.4 855.6 748.6 638.3
4 869.5 1048.9 1114.6 1105.4 1046.8 958.2 853.3 740.7 625.7
5 868.3 1051.9 1121.9 1114.1 1053.3 960.5 851.0 734.4 616.3
6 866.9 1053.2 1126.7 1120.4 1058.1 961.9 848.8 729.2 609.0
7 865.5 1053.5 1129.8 1125.0 1061.6 962.7 846.6 724.7 603.1
8 864.0 1053.2 1131.7 1128.3 1064.3 963.1 844.5 720.8 598.2
9 862.5 1052.4 1132.7 1130.8 1066.3 963.1 842.5 717.4 594.2
10 861.0 1051.4 1133.1 1132.5 1067.7 962.9 840.5 714.3 590.7
11 859.5 1050.2 1133.1 1133.7 1068.8 962.5 838.6 711.6 587.7
12 858.0 1049.0 1132.7 1134.5 1069.5 962.0 836.8 709.0 585.0
13 856.5 1047.6 1132.0 1134.9 1070.0 961.3 834.9 706.7 582.5
14 855.0 1046.2 1131.2 1135.0 1070.2 960.6 833.1 704.4 580.3
15 853.5 1044.8 1130.2 1134.9 1070.3 959.7 831.4 702.3 578.2
16 852.0 1043.3 1129.1 1134.5 1070.2 958.8 829.7 700.4 576.3
17 850.5 1041.8 1127.9 1134.1 1069.9 957.8 828.0 698.5 574.4
18 849.0 1040.3 1126.6 1133.4 1069.6 956.8 826.3 696.6 572.7
19 847.5 1038.9 1125.3 1132.7 1069.1 955.7 824.6 694.8 571.0
20 866.5 958.5 984.6 976.8 948.8 908.1 859.2 804.9 747.0

Figure 2. The expected profit as a function of n and δ.

have a positive trend when the revenue from supplying a bike to a customer (REV ) increases. This is because a higher
payoff per customer motivates the server to increase the effective arrival rate (λeff ), either by publishing the existence of
preliminary services or by increasing their capacity. Figure 4 indicates that, as predicted, the total expected profit both in
the proposed system (Z) and in the classical M/M/2 system (ZM/M/2) increases with REV, as do the profit ratio (ξ) and the
absolute improvement in profits due to using preliminary services (i.e. the difference in height between the blue and the grey
bars). Figure 5 shows that δ∗ is robust to the value of h, because the latter represents the capacity cost and not the inventory
cost, whereas, as expected, n∗ decreases with h. Figure 6 shows that both Z and ξ decrease with h because increasing the
capacity cost reduces the advantage of providing preliminary services, and thus diminishes the profitability of such a system.
Figure 7 illustrates that both δ∗ and n∗ decrease as the customers’ sojourn cost c increases, due to the reduced motivation to
encourage arrivals when the sojourn time is more expensive. Figure 8 shows that, as expected, Z decreases with c; however,
ξ increases with c, which implies that PSs play a more significant role in accelerating the service as the sojourn cost per unit
time increases. Finally, Figures 9 and 10 demonstrate that, as expected, n∗, δ∗, Z and ξ all decrease with ψ .
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Figure 3. Optimal n and δ as a function of REV.

Figure 4. Z(n∗, δ∗) (left bars), ZM/M/2 (right bars), and ξ (curve) as a function of REV.

Figure 5. Optimal n and δ as a function of h.

Figure 6. Z(n∗, δ∗) (bars) and ξ (curve) as a function of h.
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Figure 7. Optimal n and δ as a function of c.

Figure 8. Z(n∗, δ∗) (bars) and ξ (curve) as a function of c.

Figure 9. Optimal n and δ as a function of ψ .

Figure 10. Z(n∗, δ∗) (bars) and ξ (curve) as a function of ψ .
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Figures 3, 5, 7 and 9 show that the optimal value of n (δ) is relatively sensitive (robust) to changes in the model’s param-
eter values; however, it was shown in Table 1 that the reward is robust (sensitive) to the value of n (δ) in the neighbourhood
of its optimal value. Therefore, we recommend for the store owner to make an effort to achieve the optimal values of n and
δ, and only if the model parameters are subject to considerable changes should a policy modification be considered.

7. Extension to perishable PSs

We now consider the case where the stored preliminary services are subject to decay, which we assume follows a Markovian
process; i.e. the lifetime of a PS is exponentially distributed with parameter θ . The transition-rate diagram that includes the
deterioration rate is depicted in Figure 11.

In this model, matrix Q takes on the same form as in Equation (1). Matrices A0 and A2 remain the same as in the previous
model, whereas matrix A1 ≡ [av,t

1 ] is given by

av,t
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ+ 2μ) v = t = 1
−(λ+ μ+ β) v = t = 2
−(λ+ 2β + θ(v − 3)/2) v = t = 3, 5, 7, . . . , 2n − 1
−(λ+ μ+ β + θ(v − 2)/2) v = t = 4, 6, 8, . . . , 2n
θ(v − 3)/2 v = 3, 5, 7, . . . , 2n − 1; t = v − 2
θ(v − 2)/2 v = 4, 6, 8, . . . , 2n; t = v − 2
0 Otherwise

.

Matrices Bi,j, i �= j, remain the same as in the previous model, whereas matrices Bi,j, i = j, are given in Appendix 4. Since
matrices A0, A1 and A2 are still all lower triangular, and since, as before, a1,1

0 = λ, a1,1
2 = 2μ, the system’s stability condition

remains λ < 2μ, as in the case of the regular M/M/2 queue. The rate matrix R is calculated directly via the formulae given in

Figure 11. System states and transition-rate diagram for n = 3 with deterioration in the preliminary services.
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Figure 12. Optimal n and δ as a function of θ .

Figure 13. G(n∗, δ∗) (bars) and ξ (curve) as a function of θ .

Appendix 2. By substituting the matrices R, Ai, Bi,j, ∀i, j, into Equation (6) and solving the set, the steady-state probabilities
are calculated. The performance measures are then calculated by substituting these probabilities into Equations (7)–(13). Let
θeff be the effective deterioration rate, which is calculated by θeff = θSq(n), and let k be the loss associated with a spoiled
PS. The objective is to maximise the total expected profit per time unit, G, by controlling the PS capacity n and the desired
arrival rate δ. Thus, the optimisation problem is defined as follows:

max
n∈{0,1,2...}

δ≥λ
{G(n, δ) = REVλeff (n, δ)− A(n, δ)− cL(n, δ)− hn − kθeff (n, δ)}. (15)

In order to illustrate the optimisation process and conduct a sensitivity analysis with respect to the added parameter θ , we
use a numerical example of a pizza store that uses similar parameter values to those in Hanukov et al. (2020). In particular,
we consider a two-server pizzeria in which customers arrive according to a Poisson process with rate λ = 16[ customers

hour ],
where each customer buys one pizza. It takes on average six minutes (μ = 10[ customers

hour ]) to prepare a pizza according to the
customers’ requirements. However, when the server prepares a pizza during his idle time, it takes five minutes (α = 12[ PSs

hour ])
to prepare the pizza and another one minute to warm it up after a customer buys it (β = 60[ CSs

hour ]).
We further assume that a pizza is sold for 15[ $

customer ],
5 and we estimate the net revenue as one third of the selling price,

i.e. REV = 5[ $
customer ]. Thus, the cost due to a spoiled pizza is estimated to be k = 10[ $

customer ]. We estimate the sojourn
cost of a customer to be c = 5[ $

hour×customer ] (due to loss of goodwill) and the capacity cost to be h = 0.25[ $
hour×PS ] (the

alternative cost of using the surface to prepare other products for sale). In addition, we use ψ = 1
[

$×(hour)τ−1

(customer)τ

]
and τ = 1.6,

implying that the promotion required to attract each buyer costs, per hour, at least 20% of the net revenue from selling a
pizza.

From Figure 12 we conclude that the optimal investment in promoting the existence of available PSs, which is positively
correlated with δ∗, is robust to changes in the value of θ , whereas the optimal PS capacity n∗ decreases with θ . The latter
relation can be explained by the willingness to avoid loss due to spoilage, which, in this example, is higher than the loss
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due to the waiting time of customers. Figure 13 shows that, as expected, the maximal expected profit G decreases with θ ,
and since the expected profit of M/M/2 is independent of θ , then the profit ratio ξ also decreases with θ . We conclude that
the reward may change by up to 15% due to the perishability effect, and the store owner may wish to invest in preservation
equipment to mitigate this effect (see, for example, Hanukov et al. 2019a).

8. Conclusions

This paper analyses a multi-server system in which customers’ arrival and service rates follow Markovian processes. We
show that utilising the servers’ idle time to produce preliminary services for incoming customers, thus stimulating demand
by creating the anticipation of a shorter sojourn time, results in increasing the reward of the service system’s owner. Two
case studies demonstrate that the system’s owner may obtain significant profit gains by using the proposed operational and
marketing strategy. In particular, we observe an increase of up to 45.7% in the profit of a bike store and an increase of up
to 25.6% in that of a pizza store. The lower increase in the latter case is due to the perishability effect in the food industry,
which reduces the benefit from producing preliminary services that may eventually become spoilt and hence would need
be scrapped. From a managerial perspective, our models can be applied to many industries in which a service includes a
product tailored to the specific requirements of customers. Moreover, our model can serve as an approximation to more
complex cases.

For a Markovian model, closed-form expressions for the steady-state probabilities of the system states are derived by
applying matrix geometric analysis, which facilitates the straightforward calculation of various performance measures. This
result is notable due to the fact that, in typical applications of matrix geometric analysis, closed-form solutions are rarely
possible. Furthermore, it is proved analytically that the stability condition of our model is identical to that of a standard
M/M/2 queue. This implies that even with the preparation of PSs, the system can hold a load as if it was a regular M/M/2
queue, while the sojourn time of customers is lower and thus the service is considered superior.

We suggest the following directions for future research: First, it would be of great value to relax the Markovian assump-
tions and study more general arrival, production and service processes, such as PH distributions. Second, the dichotomous
effect of the stock of PSs on demand could be extended to a continuous effect. Finally, a worthwhile avenue for further
research would be to consider different types of customer, namely regular, fastidious (who consume only fresh products),
and strategic (who may balk if the queue length is too high).

Notes
1. https://monopoli.co.il/blog-business/how-to-start-business/%D7%90%D7%99%D7%9A-%D7%9C%D7%A4%D7%AA%D7%95%

D7%97-%D7%97%D7%A0%D7%95%D7%AA-%D7%90%D7%95%D7%A4%D7%A0%D7%99%D7%99%D7%9D-%D7%91%
D7%99%D7%A9%D7%A8%D7%90%D7%9C.

2. https://bikepanel.com/%d7%94%d7%aa%d7%90%d7%92%d7%93%d7%95%d7%aa-%d7%97%d7%a0%d7%95%d7%99%d7%
95%d7%aa-%d7%94%d7%90%d7%95%d7%a4%d7%a0%d7%99%d7%99%d7%9d-%d7%94%d7%a4%d7%a8%d7%98%d7%
99%d7%95%d7%aa-%d7%94%d7%90%d7%9d-%d7%96/.

3. https://www.quora.com/How-long-does-it-take-to-assemble-a-bike-from-a-box.
4. https://www.amazon.com/bikes/b?ie = UTF8&node = 1265458011.
5. https://www.forbes.com/sites/priceonomics/2017/04/07/how-much-do-the-ingredients-cost-in-your-favorite-foods/#87c3d9711eda.
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Appendices

Appendix 1

B1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(λ+ 2α) 2α 0 · · · 0
0 −(δ + 2α) 2α 0

0 0 −(δ + 2α)
. . .

...
...

...
. . . 2α

0 0 0 · · · −δ

⎞
⎟⎟⎟⎟⎟⎟⎠
(n+1)×(n+1)

B2,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 0 0 · · · 0
0 λ 0 0 · · · 0
0 δ 0 0 · · · 0
0 0 δ 0 0
0 0 0 δ 0
...

...
...

...
. . .

...
0 0 0 0 · · · δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2n+1)×2n

B1,2 =

⎛
⎜⎜⎜⎜⎝
λ 0 0 0 · · · 0 0
0 δ 0 0 · · · 0 0
0 0 0 δ · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · δ 0

⎞
⎟⎟⎟⎟⎠
(n+1)×(2n+1)

B2,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ 0 0 · · · 0 0
β 0 0 · · · 0 0
0 μ 0 · · · 0 0
0 β 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · μ 0
0 0 0 · · · β 0
0 0 0 · · · 0 μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2n+1)×(n+1)

B2,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ+ μ+ α) 0 α 0 0 · · · 0 0
0 −(λ+ β + α) 0 α 0 · · · 0 0
0 0 −(δ + μ+ α) 0 α · · · 0 0
0 0 0 −(δ + β + α) 0 · · · 0 0
0 0 0 0 −(δ + μ+ α) · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · α 0
0 0 0 0 0 · · · 0 α
0 0 0 0 0 · · · −(δ + β) 0
0 0 0 0 0 · · · 0 −(δ + μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B3,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2μ 0 0 0 0 0 0 0 0 · · · 0
β μ 0 0 0 0 0 0 0 · · · 0
0 2β 0 0 0 0 0 0 0 · · · 0
0 0 β μ 0 0 0 0 0 · · · 0
0 0 0 2β 0 0 0 0 0 · · · 0
0 0 0 0 β μ 0 0 0 · · · 0

0 0 0 0 0 2β 0 0 0
...

...
...

...
...

...
...

... 0
0 0 0 0 0 0 0 · · · β μ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×(2n+1)
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The square matrices Bi,2 ≡ [bv,t
i,2], i = 3, 4, 5, . . . , n + 1, of size 2n × 2n, are given by

bv,t
i,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(λ+ 2μ) v = t = 1
−(λ+ μ+ β) v = t = 2, 4, 6, 8, . . . , 2i − 4

−(λ+ 2β) v = t = 3, 5, 7, . . . , 2i − 3
−(δ + μ+ β) v = t = 2i − 2, 2i, 2i + 2, . . . , 2n

−(δ + 2β) v = t = 2i − 1, 2i + 1, 2i + 3, . . . , 2n − 1

.

Similarly,

Bi,3 ≡ [bv,t
i,3],

where

bv,t
i,3 =

{
λ v = t = 1, 2, 3 . . . , 2i − 3
δ v = t = 2i − 2, 2i − 1, 2i, . . . , 2n .

Appendix 2

rv,t = 0 for v < t, (A2.1)

i.e. R is lower triangular,

rv,v =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−av,v
1 −

√
(av,v

1 )
2 − 4 av,v

0 av,v
2

2 av,v
2

, av,v
2 > 0, av,v

0 > 0

0, av,v
2 > 0, av,v

0 = 0

−av,v
0

av,v
1

, av,v
2 = 0

, ∀v. (A2.2)

rv,t = −av,t
0 + ∑v

k=t+1 rv,kak,t
1 + ∑v−1

τ=t+1 rv,τ rτ ,tat,t
2 + ∑v

k=t+1
∑v
τ=k rv,τ rτ ,kak,t

2

at,t
1 + at,t

2 (r
t,t + rv,v)

for v > t. (A2.3)

Appendix 3

Since av,t
0 = 0 for v �= t, ak,t

1 = 0 for k �= t and at,t
2 = 0 for t > 2, then Equation (A2.3) reduces to

rv,t = −
∑v

k=t+1
∑v
τ=k rv,τ rτ ,kak,t

2

at,t
1

. (A3.1)

(i) Proof of the first term of (vi)
When t = 4, 6, 8, . . . , 2n, then at,t

1 = −(β + μ+ λ), at+2,t
2 = β, and ak,t

2 = 0 for k �= t + 2. Substituting these values into (A3.1) leads
to

rv,t =
β

v∑
τ=t+2

rv,τ rτ ,t+2

λ+ μ+ β
. (A3.2)

We now prove by induction that rv,t = 0 for t = 4, 6, 8, . . . , 2n − 2, v = j + 1, j + 2, . . . , 2n − 1. First, rv,t = 0 for t = 2n − 2,
v = 2n − 1, which is proved by substituting the values of t and v into (A3.2), which eliminates the summation. We now assume that
rv,t = 0 for t ≥ 2n − 2k, v = t + 1, t + 3, . . . , 2n − 1 and show that rv,t = 0 for t = 2n − 2(k + 1), v = t + 1, t + 3, . . . , 2n − 1. By sub-
stituting the value of t into the summation in (A3.2) we get

∑v
τ=2n−2k rv,τ rτ ,2n−2k . By the induction assumption, when τ is even, rv,τ = 0,

and when τ is not even, rτ ,2n−2k = 0, which proves the claim.

(ii) Proof of the second term of (vi)
We now prove by induction that

rv,t = C0.5(v−t)β
0.5(v−t)λ0.5(v−t+2)

(λ+ μ+ β)v−t+1 for t = 4, 6, 8, . . . , 2n, v = t, t + 2, t + 4, . . . , 2n. (A3.3)

First, (A3.3) is proved for v = t = 2n by substituting a2n,2n
0 = λ and a2n,2n

1 = −(λ+ μ+ β) into the third term of (A2.2), which is

used since a2n,2n
2 = 0. We now assume (A3.3) for t ≥ 2n − 2k, v = t, t + 2, t + 4, . . . , 2n and show that it is valid for t = 2n − 2(k + 1),

v = t, t + 2, t + 4, . . . , 2n. By substituting the latter value of t into (A3.2), and by considering that when τ is not even, rτ ,2n−2k = 0, we
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get

rv,2n−2(k+1) =
β

∑v
τ=2n−2k
τ even

rv,τ rτ ,2n−2k

β + μ+ λ

=
β0.5(v−2n+2(k+1))λ0.5(v−2n+2(k+1)+2) ∑v−(2n−2k)

τ=0
τ even

C0.5(v−(2n−2k)−τ )C0.5τ

(λ+ μ+ β)v−(2n−2k)+1

By rearranging the indices in the summation and by using the recurrence relation of Catalan numbers,
∑m

k=0 CkCm−k = Cm+1, we
get

v−(2n−2k)∑
τ=0
τ even

C0.5(v−(2n−2k)−τ )C0.5τ =
0.5(v−(2n−2k))∑

τ=0

C0.5(v−(2n−2k))−τCτ = C0.5(v−(2n−2(k+1))),

which proves the claim.

(iii) Proof of the second term of (vii)
When t = 3, 5, 7, . . . , 2n − 1, then at,t

1 = −(λ+ 2β), at+2,t
2 = 2β, at+1,t

2 = μ, and ak,t
2 = 0 for k �= t + 1, t + 2. Substituting these

values into (A3.1) leads to

rv,t = μ
∑v
τ=t+1 rv,τ rτ ,t+1 + 2β

∑v
τ=t+2 rv,τ rτ ,t+2

2β + λ
. (A3.4)

We now prove by induction that

rv,t = 20.5(v−t)C0.5(v−t)β
0.5(v−t)λ0.5(v−t+2)

(λ+ 2β)v−t+1 for t = 3, 5, 7, . . . , 2n − 1, v = t, t + 2, . . . , 2n − 1. (A3.5)

First, (A3.5) is proved for v = t = 2n − 1 by substituting a2n−1,2n−1
0 = λ and a2n−1,2n−1

1 = −(λ+ 2β) into the third term of (A2.2),

which is used since a2n−1,2n−1
2 = 0. We now assume (A3.5) for t ≥ 2n − 1 − 2k, v = t, t + 2, t + 4, . . . , 2n − 1 and show that it holds for

t = 2n − 1 − 2(k + 1), v = t, t + 2, t + 4, . . . , 2n − 1. By substituting the latter value of t into (A3.4), and by considering that rv,τ = 0
when τ is even and rτ ,t+1 = 0 when τ is not even, we get

rv,2n−1−2(k+1) =
2β

∑v
τ=2n−1−2k
τ not even

rv,τ rτ ,2n−1−2k

λ+ 2β

=
20.5(v−(2n−1−2(k+1)))β0.5(v−(2n−1−2(k+1)))λ0.5(v−(2n−1−2(k+1))+2) ∑v

τ=2n−1−2k
τ not even

C0.5(v−τ)C0.5(τ−(2n−1−2k))

(λ+ 2β)v−(2n−1−2(k+1))+1

By rearranging the indices in the summation, we get

v∑
τ=2n−1−2k
τ not even

C0.5(v−τ)C0.5(τ−(2n−1−2k)) =
0.5(v−(2n−1−2k))∑

τ=0

C0.5(v−(2n−1−2k))−τCτ = C0.5(v−(2n−1−2(k+1))),

which proves the claim.

Appendix 4

B1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ+ 2α) 2α 0 · · · 0 0
θ −(δ + 2α + θ) 2α · · · 0 0
0 2θ −(δ + 2α + 2θ) · · · 0 0
0 0 3θ · · · 0 0
...

...
...

...
...

0 0 0 · · · −(δ + 2α + (n − 1)θ) 2α
0 0 0 · · · nθ −(δ + nθ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n+1)×(n+1)



International Journal of Production Research 19

B2,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ+ μ+ α) 0 α 0 0 · · ·
0 −(λ+ β + α) 0 α 0 · · ·
θ 0 −(δ + μ+ α + θ) 0 α · · ·
0 θ 0 −(δ + β + α + θ) 0 · · ·
0 0 2θ 0 −(δ + μ+ α + 2θ) · · ·
...

...
...

...
...

0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 0 0 0 · · ·

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

...
...

...
...

−(δ + β + α + (n − 2)θ) 0 α 0
0 −(δ + μ+ α + (n − 1)θ) 0 α

(n − 1)θ 0 −(δ + β + (n − 1)θ) 0
0 nθ 0 −(δ + μ+ nθ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix Bi,2 ≡ [bv,t
i,2] is given by

bv,t
i,2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ+ 2μ) v = t = 1
−(λ+ μ+ β) v = t = 2
−(λ+ 2β + θ(v − 3)/2) v = t = 3, 5, 7, . . . , 2i − 3
−(δ + 2β + θ(v − 3)/2) v = t = 2i − 1, 2i + 1, 2i + 3, . . . , 2n − 1
−(λ+ μ+ β + θ(v − 2)/2) v = t = 4, 6, 8, . . . , 2i − 4
−(δ + μ+ β + θ(v − 2)/2) v = t = 2i − 2, 2i, 2i + 2, . . . , 2n
θ(v − 3)/2 v = 3, 5, 7, . . . , 2n − 1; t = v − 2
θ(v − 2)/2 v = 4, 6, 8, . . . , 2n; t = v − 2
0 Otherwise

.
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