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Abstract We consider a single-server multi-queue system with unlimited-size batch service
where the next queue to be served is the one with the most senior customer (the so called
‘Israeli Queue’). We study a Markovian system with state-dependent group-joining policy
and derive results for various performance measures, such as steady-state distribution of
the number of groups in the system, sojourn times, group sizes, and lengths of busy peri-
ods. Closed-form expressions are obtained for both the Uniform and the Geometric joining
policies. Numerical results are presented.
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Group sizes - Busy periods
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1 Introduction

The so called ’Israeli Queue’ is a queue of groups, instead of individuals. Each arriving
customer joins a group already waiting in line, or creates a new group and becomes its leader.
When reaching the server, the entire group is being served, where service time is independent

Uri Yechiali dedicates this paper to Benny Avi-Itzhak, his first lecturer in Probability Theory, and to Matt
Sobel, a long time colleague.

Bd Uri Yechiali
uriy @post.tau.ac.il

Nir Perel
perelnir@post.tau.ac.il; perelnir@shenkar.ac.il

Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv
University, Tel-Aviv, Israel

Department of Industrial Engineering and Management, Shenkar College of Engineering, Design and
Art, Ramat Gan, Israel

@ Springer

:é: Journal: 10479 Article No.: 1942 [ TYPESET [__]DISK [_JLE [_]CP Disp.:2015/7/21 Pages: 34 Layout: Small



http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-1942-1&domain=pdf

G
]
]
S
(=W}
-
o
=
+—
=
<

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62

Ann Oper Res

of the group’s size. The order in which groups are served is determined by the order of arrival
of its leaders. The term ’Israeli Queue’ originated from a real-life situation when considering
a physical waiting line for buying tickets to a movie or a show. A line of groups is formed,
headed by a ’leader’, the first customer that originates the group. New arrival that knows a
leader already standing in line joins his group. When the leader reaches the cashier he buys
tickets for the entire group. It is assumed that the buying process is (almost) not affected by
the number of tickets purchased.

This system resembles a polling system with batch service, in which a single server circles
between the different queues, where the next queue to be served is the one with the most
senior customer (i.e., the leader that has been waiting for the longest time). Unlimited-size
batch service in an N-queue polling system was first studied by van der Wal and Yechiali
(2003) when analyzing a computer tape-reading problem in a system where large amounts
of information are stored on tapes, and requests for retrieving information from the various
tapes arrive randomly. Optimal visiting rules of the server were derived for various objec-
tive functions without requiring the steady-state distribution function of the system’s state.
Probabilistic properties of such a system were analyzed in Boxma et al. (2007, 2008).

Unlimited-size batch service models were also considered in the literature as application to
videotex, telex and TDMA (Time Division Multiple Access) systems (Dykeman et al. 1986;
Ammar and Wong 1987; Liu and Nain 1992). In addition, an Automated Guided Vehicle
system was formulated as a polling model with an infinite capacity batch service (Van Oyen
and Teneketzis 1996).

Subsequently, in Perel and Yechiali (2013, 2014a,b), systems with unlimited-size batch
service were studied, where the individual customers’ group joining policy is Geometric(p).
That is, if n groups are present in the system, then a newly arriving customer joins group
k (k < 1 < n) with probability (1 — p)*~!p, or creates a new group with probability
(1 — p)". Single-server and multi-server queues (2014a), priority queues (2013) and retrial
queues (2014b) were analyzed. In this paper we consider the Israeli Queue under general
group-joining policy. That is, we assume that when n groups are present in the system, the
probability that a new arrival joins the kth group (1 < k < n) is p,  and the probability
for a new group to be formed (last in the line of groups) is p, 41, Where ZZI} Pnk = 1.
The overall arrival process is Poisson with rate A, and the service is given in unlimited-size
batches. That is, it takes one (random) service duration to serve a group, independent of
its size. We assume that a service duration of each group is exponentially distributed with
parameter j. We further assume that an arriving customer can join the group which is being
served.

In Section 2 we present the general model and derive: (i) the steady-state distribution of
the number of groups in the system; (ii) the Laplace-Stieltjes Transforms (LST’s), as well as
the means, of the sojourn time, both of a group leader and of an arbitrary customer; (ii7)the
mean groups’ sizes right after a service completion or an arrival; and (iv) the mean length of
a busy period starting with n > 1 groups. In Section 3 we assume a Uniform group-joining
Policy. That is, when the number of groups in the system is n, for n > 0, a newly arriving
customer joins any of the existing groups with probability #, or creates a new group, the
(n 4 1)-st, with the same probability. We analyze this system both for finite, or possibly
infinite, number of groups. In Section 4 we assume that the number of groups present in
the system is at most /N, and consider Geometric group-joining policy. That is, if there are
1 <n < N — 1 groups in the system, then a new arrival joins the kth group with probability
(1— p)k_l p,for1 <k < n,orcreates a new group (the (n + 1)-st) with probability (1 — p)”".
Also, if N groups are present and a new arrival does not join any of the first N — 1 groups,
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he/she will necessarily join the last group (in the Nth position). The arrival process and
group service times are exponential, as described above. The contribution in this section is
a vast extension and elaborate treatment of the Geometric model, including issues that were
not studied in Perel and Yechiali (2014a). Finally, in Section 5 we present numerical results
for all models considered, and discuss the parameters’ effects on the various performance
measures.

2 General joining probabilities

In this section we consider a single-sever queueing system where the arrival process of
individual customers is Poisson with rate A and the queue is comprised of groups. Service
to a group is given simultaneously to all its members (batch service) and the service time
of a batch is exponentially distributed with parameter ©. We assume that when there are
n > 1 groups in the system, an arriving customer joins the kth group with probability px,
fork = 1,2,...,n, or creates a new group (the last in the line of groups) with probability
Pn.n+1. When the system is empty, an arriving customer creates the first group in line with
probability 1, thatis pg; = 1. Clearly, foralln > 0, ZZZ} pnk = 1. We study the case where
the number of groups is unbounded, and derive various performance measures. Throughout
the paper, we use the following notation: X=number of groups in the system in steady-state;
7w, = P(X = n); W= sojourn time of a group leader; W¢= sojourn time of an arbitrary
customer; L= size of the group in the kth position after an arrival or service completion;
and ©,= busy period starting with n groups.

2.1 Steady-state probabilities

We assume that X, the number of possible groups, is unlimited. For stability, we assume that
there exists an M such that for alln > M, Ap, ,+1 < w. The balance equations determining
the probability distribution of the number of groups in the system are

AT Pnont1 = W41, 1> 0. 2.0

Iteration of (2.1) yields

A\ n—1
Ty = 7o (*) [T 22
H7 iz

n —1
where 7o = (220 () TS piist) - with [ () 2 1.
The mean number of groups in the system is E[X] = ZZ’;O ni,.

2.2 Sojourn times

We wish to derive the LST and mean of the sojourn time in the system of a group leader, and
of an arbitrary customer. We first calculate P, the probability that an arriving customer
creates a new group. We have,

(o.¢] o0
M M
Paew = 2 TnPrntl = D st = —(1 = m0). 23)
n=0 n=0
Therefore,
APpew = pu(l — mo). (2.4)
@ Springer
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Equation (2.4) simply states that the rate of group generation equals the rate of group depar-
tures. Let W denote the total sojourn time of a group leader in the system and let W (-) denote
its LST. Then, using (2.1),

_ 1 M n+1 1 00 ( m )n+1
Wi(s) = = T, 5 2.5
() = 35— (MH) 1_710;) v\ s (2.5)
and
J— 1 E[X] E[X]
E[W] = —W(s)ls=0 = —— 1 — = . .6
(W] (9)]s=0 1_710;(“ Tt L= o s = e (26)
Define Z as the position in which a new group is formed. Then,
1 12 TTn
]P’Z: = _ _ = — = =]P>X= X 0, =1,2,...
( n) Poow TTn—1Pn—1,n Prow A”n 1= ( nlX >0), n
which implies that
E[X
E[Z] = LX] .
1-— 1)

That is, E[W] = 1 IE[Z] which is the mean service time, multlphed by E[Z], the mean
position in Which a new group is formed.

To calculate the LST and mean of W¢, the sojourn time of an arbitrary customer, we
condition on the position of the group that the customer joins. Since the LST of a group’s
service time is we have,

k
)

i

o0 n+1 m
wm:zmzm4

n=0 k=1 H +

and
n+1

E[w*] = znnkank

Define Z¢ as the position of the group that an arbitrary customer joins. Then,

o
P(Z*=n)= D Tprn

k=n—1
and
00 k+1

E[Z°] =D nP(2* =n) = Zn Z nkpkn—znkznpkn

n=1 n=1 k=n—1
As expected, E[W9] = /lLE[Z“].
2.3 Number of customers in the kth group
Define a Poissonian event as either an arrival of a new customer or a group service completion.

Let L}’ denote the number of customers present in the kth group (k = 1, 2, ...) immediately
after the mth Poissonian event occurs, for m > 1, and let Lm = (Lr]”, L7, .. ) We now
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observe the system at two successive Poissonian events, m and m + 1. Note that, if the system
is not empty, the time elapsing until the next Poissonian event is exponentially distributed
with mean ﬁ, whereas, if the system is empty, the time elapsing until the next Poissonian

event is exponentially distributed with mean %

Let {Y,,, m > 1} be the number of groups in the system a moment before the mth Pois-
sonian event occurs. {Y;,, m > 1} defines an infinite (semi) Markov chain with one-step
transition probabilities v;; = P(Yy41 = j|Y,, = i), fori, j =0,1,2....Let Q = [v;;] be

the one step transition probability matrix of the process {Y,,, m > 1}. Then, Q is given by

0 1 0 0
I A(1=pi2) AP12 0 0
At At At
0 W Ald=p23) Ap23 0
At A A+
0= ) )
12 )L(lfl’n.n+l) ADn.n+1
At At A+

Let 0 = (09, 01, . . .) denote the steady-state distribution of ¥ = lim,,_, oo ¥;,;, where oy, =
P(Y = k),0Q = 0, and > o ,0r = 1. By performing standard calculations we get, for
k>1,

k—1 k=1
ok = o0k + W)~ [ 71 2.7)
i=1
o
where oy is obtained from the normalization equation, > ox = 1. We thus have
k=0
% k-1 k=1 -1
(1 + ()\-Hl)z Hp,,+1) 2.8)
k=1

In fact, oy is the long-run fraction of visits of the process Y at state k. Then, the proportion
of time that there are k groups in the system is given by Ross (1997)

a0
A
o=
o, 1 .
A + At z 9j
j=l1
Ok
A
T = i L k> 1. 2.9)

Indeed, substituting in Eq. (2.9) the expressions for o} given in equations (2.7) and (2.8),
results in Eq. (2.2).

Consider the process (i’”),ono=1 in steady state, so that L;(” — Li when m — oo. If
the system is empty a moment before a Poissonian event (with probability op), the next
Poissonian event will be an arrival, so that the first group will contain a single customer.
Next, assume that only a single group is in the system (with probability o). Then, if the next

event is an arrival (with probability ﬁ), then the new customer will join the single group
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with probability p; 1 or will create a new (second) group (with probability p; 2)). However,
if a service completion occurs before an arrival, the system will become empty. This occurs
with probability # In this manner, we consider all possible vectors of group sizes and all
possible events. Thus, if k groups are present (with probability oy ), an arriving customer may
either join one of these groups, or create a new group (with the corresponding probabilities).
In all cases, when the system is not empty, a service completion before an arrival causes each
group to move one position forward towards the server. We then have

(1,0,0,0,....) wp. of
(L1 +1,0,0,0,...) wp. Mo
(L1,1,0,0,..)) Wp. %01
(0,0,0,0,...) wp. 1o
(L1 +1,L2,0,0,...) wp. Lo,
(L1,Ly+1,0,0,...) W.p. %%Q
(L1, Ly, 1,0,...) w.p. i}f}z o

(L1, Lo, L, .. ) £ 1 (£2.0,0,0,...) wp. 7o (2.10)

Y
(Li+1,Ly, ..., L, 0,0,...) wp. ﬁ%@

A
(L1, L., Lg+1,0,0,..) wp. ko

(L1, Lo, ..., L, 1,0,0,..)  wp. Dkl

A
(Lp,L3,...,L;r_1,0,0,...) w.p. ﬁak

From relation (2.10) we have, for all k > 1,

E[Li] = Ey [E[L|Y]] = D P(Y = HEIL|Y = jl= D ojE[L|Y = jl. (2.11)

j=0 j=0
Specifically,
> ADi 10 . Ao ad n
E[Li] =00+ » —"L L E[L J L / 2.12
(L] OZ}HM [I]EH [ﬂéH (2.12)
Pk 1,kOk—1 P 13% - ,uo
E[L;] = IR gL I k>2.
[L4] Z [ k]ZA >
Jj=k j= k+1
(2.13)
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Define:
q1 =00+ 72!’; 10j,

APk—1k A
= —ox—1+ ikoi, k>2,
qk o )_}_sz:kp],k |

¢}

00
A+M]ZU] zjgkn’j, k>1,
00

n g

Br = Z oj = —app1 k> 1.
e A

Then, Egs. (2.12) and (2.13) can be written as

E[Li] = gk + E[Li]ax +E[Lk+11B8k, k=1,

or
k i
Bl = 2%+ P g 2.14)
1 — o 1-
Iterating equation (2.14) n times gives
o k) Br+i " Bre
EILd =D +i H 2 Bl [[ (2.15)
i S Rty I — oty 0 I — gy

n—1 Br+j
J=0 T—aiy;

to 0 as n — o0, so that E[L;] may be well approximated by considering only the first
term in Eq. (2.15) for n sufficiently large.

Since both a and By tend to zero when k becomes large, the expression [ tends

2.4 The busy period

Let ®, (n = 1,2,...) denote the time from a moment when there are n groups in the
system until the first moment thereafter when no groups are present. Define for n > 0,
An = Appn+1. Let Exp(A) denote an exponential distribution with parameter A. Then, for
n > 1, the following relation holds,

On_1 w.p.
d n An+
O = Exp (Apan+1 + 1) + [ o (2.16)
Ont+1 w.p. A,I-T-M
where ®g = 0. This gives,
B0, = — 4+ " o, ]+ " E[O,]
" A+ Antu " A+ 1 e
or
A+ 1 w 1
E[®n11] = “——E[0,] — —E[O, 1] — —. (2.17)
)\n )\n )‘-n

To derive E[®], the mean period of time during which the server is working continuously,
starting from the first arrival to an empty system, we note that the idle time of the server is
Exp(A). Thus, we get
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E[O]

T =1-m,
L+ E[O]
resulting in

1 —m

E[0] = o

2.18)

To solve the recurrence relation (2.17), we rewrite it as follows:

E[0,] — E[0,_] = A“

n—1

(EI©0-1] - E[©,-21) - .

Iterating the above equation leads to

n—2 J

E[O,] — B[O, 1] = "~ ‘]‘[A B0 - > w/ [T
n—i =0 0

(2.19)
n—i—1

— i=

n—1n

Finally, moving E[®,,_] to the RHS of (2.19) and iterating again leads to
1 J 1

—k—
son=mon 3 1, -5 vl

= k=1 j=0 i=0

, (2.20)
An—i—k

where E[©1] is given in (2.18).
In the next sections we consider both Uniform (Section 3) and Geometric (Section 4)

group-joining policies. In these models we also consider the case where the number of
groups present in the system is finite and can be at most N.

3 Model 1: Uniform joining probability
3.1 Unbounded number of groups
3.1.1 Steady-state probabilities

We assume that X, the number of possible groups, is unbounded. If n groups are present,
n > 0, an arriving customer can join any of the ex1stlpg groups with probabthy Prk = i
k = 1,2,...,n; or creates a new group (the last in the line of groups) with probability
DPnontl = n-IH A customer arriving to an empty queue initiates the first group in the system.

Equation (2.1) now results in
1 /2"
mn=mo— |~ ) (3.1
n! \ u

ny —1 A
where 7p = (Ziio L (%) ) =e K.

That is, X is a Poisson random variable with parameter ( ) which, interestingly, is the
same as the distribution of the number of customers in an M /M /oo queue with Poisson
arrival rate A and exponentially distributed service time with parameter 1. This follows since
in the Uniform-joining Israeli Queue A, = ”)‘ﬁ and (41 = u, while in the M /M /oo queue,

= —2__ in both models.

A'H
Ay =Aand ppy) = Tt D)
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3.1.2 Sojourn times
Under the Uniform group-joining policy equation (2.3) results in
g g _x
Paew = 51 =m0) = = (1= e7¥).

Equation (2.5) becomes

0 n+1 A

~ 1 u+s —
W(s) = > ( s ) S

new .o ntl\p+ts en — 1

and
A i A

~ en

E[W] = —W'(s)]s=0 = = (3.2)

A - AT
pier =1  pr(l—e k)
The distribution of Z, the position in which a new group is formed, is given by

1 (%)n e_%/n!

A
new n 1l—e

P(Z =n) =

=PX=nlX>0), n=12,...

and

ee)

1 A
D 1= = —————— = pE[W].

n=1 n uw(d —e n)

E[Z] =

new

The calculations of the mean and LST of W¥,the sojourn time of an arbitrary customer, yield

Wa(s):iﬂ lril( 12 )k
=~ "n+1 w+s)’

k=1

which after some algebra results in

2

W =2 (1 — e ).
As
Differentiation gives
1 A
E(W¢=—+—. 33
[ ] w + 2M2 (3.3)
Note that E[ W] is linear in A. Furthermore,
- 1
P(Z¢ =n) = _—
@ =m= 2 m
k=n—1
which leads to
< A
E[Z] = P(Z¢ =n) = — + 1 = uE[W“]. 34
(2] ="" nP( m = g+ 1= HEIW] (3.4)

n=1

Intuitively, the sojourn time of an arbitrary customer should not exceed the sojourn time of
a group leader. In the “Appendix” we prove the following:

@ Springer




S
o
o
il
[a W
-
o
=
+—
=
<

255

256

257

258

259

260

261
262

263

264

265

266

267
268

Ann Oper Res

107 L4
b 4
4
b L4
L4
b ”
8 .
F e
e
4
e
’I
6 -, -
Pid -
4 -
’¢’ -
4+ e - -
e -
PR -
- -
.-
2F PR
A
L
[ Il Il Il Il Il A
2 4 6 8 10

Fig.1 E[W] and E[W¥“] as a function of A for u = 1

Proposition 3.1 Forany A, u > 0, E[W?] < E[W].
Furthermore, for large values of A, we have

EWe . QuAm(—e) 1

1m m .
r—oo E[W] A—>00 2A 2

Indeed, an arbitrary customer joins, on the average, the middle group, while a group leader
forms a new group, last in the line of groups. E[W] and E[W“] are de@d in Fig. 1 below.

3.1.3 Number of customers in the kth group

Following the general results of Section 2.3, in the case of Uniform group-joining policy, the
matrix Q and the vector ¢ are given by:

0 1 0
1% A A
M 204w 20w 0 0
" 2\ A
0= 0 3040 304w 0
" 3) A
0 0 M A+ 40w 0
k—1
or = 0o(A + 1), k=1,2,... (3.5)
ki
and
A
op=—""5—"". (3.6)
A+ wer —p

Consider now the group sizes at Poissonian events. Using equations (3.5) and p, x = #
fork=1,2,...,n+ 1, Egs. (2.12) and (2.13) become, for k > 1,
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SR —\u) G+D! ko w) !

j=k
) i—1
A\ 1
270 + E[L+1]oo E (*) ;

271 Jj=k+1 ®

2

=3
©

2

N

> Finally, E[L] is given by Eq. (2.15) with
o .
A’ 1
273 073 =O’OZ(*) TR
ik WS
00 j—1
A 1
274 ﬂk = 00 Z (*) )
"

!
j=k+1 J:

A\ /a1
‘”zgo(ﬁ) T O:k(u) G+l

276 J

S
o
o
il
[a W
-
o
=
+—
=
<

277 Figure 2 depicts E[L,] for k = 1, 5, 10. Evidently, the mean group size decreases with k.

278 3.1.4 The busy period

27e  Equation (2.16) becomes

O .D. £
d A & ) njhrl+ﬂ'
280 O, = E)C]? m +u)+ A . (37)
® D. n+l
nt+1 W.p nil—H/“

281 Now, (2.18) results in

282 E[®1] =

) (3.8)

283 and (2.20) is given by

E[L;]

S G E[L]
15

L E[Ls]
10+

I —  ElLl
5 |-

o = /"

Fig.2 E[Lj] as a function of A fork = 1,5, 10
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284 E[O,] :E[(’Dl]ik! (%)k _

k=1 k=0 j=1

(3.9)

285 3.2 Finite number of groups

286 In this section we assume that the number of groups in the system is at most N. If 0 < n <
27 N — 1 groups are present, then an arriving customer can join any of the existing groups with
288 probability #, or create a new group (the last in the line of groups) with probability #
280 However, if N groups are in the system, an arriving customer can only join any of the existing
200 N groups (with probability %), but can not create a new group. The performance measures
201 in this case are calculated similarly as in Section 3.1, so we omit most of the calculations and
202 present the final results.

203 The steady state distribution of the number of groups in the system is

()
294 Ty =\ — — 70,
n) n!
—1
N n
1 (A N!

e (BRE))

LAV el (N+1.%)

296

G
]
]
S
(=W}
-
o
=
+—
=
<

27 where I'(k,x) = || xoo t*=1e~'dt is the incomplete Gamma function. The probability of
208 creating a new group in the system is

1 n
299 Pnew—zﬂn OZ(M> (n+1)‘

soo The LST and mean of the sojourn time in the system, both for a group leader and for an
s01  arbitrary customer, are

N-1 n+1
z (&) @ s
_ 5] @ eI 41 ) - !
302 W(s) = ;/—1 =3 - H ,
(2)" oty T - N
W n+1D)! w
n=0
Al —
303 E[W] = M,
(1 = 7o)
|l " | X k
we — ,
%)= nzonnnﬂz(w) Nzl(w)
N—1 n+1 N N—
1 k n+2 N +1
E[WY] = i
WS S e S S
1
306 = — (E[X]—nny +2).
307 2u
ss  The mean number of customers present in the kth group, fork = 1,2, ..., N, is given by
. E[Lk]: Gk+j H Brt1+i ’
o =t 51— i
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where

M-

Qp = R 00,
=% I
1%
Br = P
N ‘
1 A\
qk = 00 -\
i§—1 G+ D! (M)

N An—l B
oy = ”Z;(“’“nw
n=

Finally, the mean busy period, starting with 1 < n < N groups, is

N_Z”:_j(N—i+1—j)! N—n

(N—i+1)!

N—n—1 )\’j

E[©,] =E[ON] — -
[©4] = E[O] ; i 2

(3.10)

Setting n = 1 in (3.10) and using Eq. (2.18) which holds in this model too, we obtain an
expression for E[® y], from which we finally get

N-2 i N-1-j 3 .
1 —mo Al (N—i+1-j)!
E[®,] = , L 7 "N J7
[ n] +jZ=;Mj+l ; (N—l-i—l)’
Ni‘l A Ni‘j(zv—iﬂ—j)!Jrn—l
j=1 wi! i=1 (N —i+D! wo

4 Model 2: Geometric joining probability; finite N

The Geometric group-joining policy with infinite number of groups was analyzed in Perel
and Yechiali (2014a). The finite case with at most N groups was only partially discussed
there, and the following results were obtained. The steady-state probabilities of the number
of groups in the system are

2\ n(—1)
m=\—-) d=p) 7 m, l=n=N\,
n

N oi\n -1
no=(Z() (1_,,)”‘"2”) . @.1)
n=0 H

Let D% denote the total size of the group standing at the kth position (1 < k < N), an
instant after a service completion. It was shown that, for 1 <k < N,

Tk
-
Zj:k j

In this section we extend the above results and derive: (i) the LST’s and means of the sojourn
times, both of a group leader and of an arbitrary customer; (ii) the mean groups’ sizes right

E[p®] = A= 42)
n
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9

352
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after a service completion or an arrival; and (iii) the LST and mean of the length of a busy
period, starting with n > 1 groups.

4.1 Sojourn times
Let G(z) = 2;11\/:0 m,z" be the Probability Generating Function (PGF) of X. Then, the
probability of creating a new group in the system is given by
N-1
Poew = D ma(1=p)' =G = p) —an(1 — p)". (4.3)
n=0

Using relation (2.4) we get
K N
G(l—-p)= X(l —mo) + v —p)7.

We then have,

n+1

N-1
. 1 m
W(s) = (1 — p) (7)
Pnew ; " P n+s

1 n (G((l—p)u) (l—p)u)
= — TN .
Prew 1 +s w+s m+s

Furthermore,

N-—1
1 A (n+1)  E[X]
E[W] = 5— gnn(l—m ( p )— P (4.4)

To derive the mean and LST of W¢, we distinguishing between the events where a new arrival
joins an existing group, and the event where he/she creates a new one. We write

2
Iz 2 2
+mlp—+U - — +
m+s l(p,u—f-s ( p)(u—i-s))
5 o\’ wo)"
+m | p———+ 10— ) +...+a-p! (7)
n(p’u_’_s ( p)p(u+s) ( 12} )4 i+ts
n+1
w
- (i) b
(I—=p) s
“ " 2 M N—1
+an{p——+ (1 - ) +.. . +a=-p2 (—)
N(pMJrS ( p)p(MJFS) 1-p"p it

N
__\N-1 M
+1—p) (/L-i-S) )

W (s) = mo
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or, after some algebra,

N N-1 w \"H N-1 n—1 (1—pu k
We(s) = > mu(1—p) (ﬁ) + > Z( )
n=0

n=0 k 0 ,LL-}-S
o S (= pu w
+ 7 +ay(1l — N- 1( )
Npu—l—s%( m+s ) ( 2 m+s
N—1 n+
w (1 - p)u))
= 7, (1 — p)* | —— EL4
~ d=p (M+S) z:(:) "Mp+8( n+s

1p (l—p)u)N_1 N—l( 0 )N
o - (2 +an(— L I
Nup-i—s( ( m+s n( P) m+s

In the same manner, the mean waiting time of an arbitrary customer is calculated as

N—-1
E[Wl = m(1 - p)"

n=0

+7rNL (1 —(1=-pN a4+ W - 2)1?)) +an(l - P)N_lﬁ
up s

n+1

N-1
1
— E 7, (1= (1= p)"(1+np))
pn:l

4.2 Number of customers in the kth group

The one step transition probability matrix of the process {Y,,, m > 1} defined in Sect. 2.3 is
given by

0 1 0 2. \-.. 0
" Ap Al—=p)
el e e 0 con S 0
0 L A=U-p? rd=p?
Q — A A+ A
w_ A=-p¥ T ad-pN!
0 0 0 0 0 yesrs p— pe
M A
0 0 0 0 0 0 pe pem
The calculation of the vector ¢ = (09, 01, ..., on) leads to
Ak=1 k(k=1)
Ok =Go(l+u)7(l -p) T, 4.5)
where

-1

N kl k(k 1)
00 = 1+(A+u)z " —(1—p) ) (4.6)

k=1
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The law of motion of the group sizes is

(1,0,0,...,0) W.p. 00

(L1 +1,0,...,0) w.p. %01
(L1,1,0,...,0) w.p. *‘;;,f)m
0,0,...,0) w.p. ﬁol

(Li+1,Ly,...,Lg,0,...,0) wp. ﬁ—”ﬂak

k1
(Li. Ly L) £} (L1 Loy L +1,0,...,0) wp. 2520 Pop (47

k
(L\,L,...,L;,1,0,...,0)  wp. 20=2q

A
(Lp, L3,...,L,0,...,0) w.p. ﬁak
(L1 +1,Ly,...,Ly) w.p. )L}fp.aN
L. L Ly +1 M-p
(L1, Ly, ..., Ly + 1) W.p. T ON
(Lz,L3,...,LN,0) w.p. ﬁ(ﬂv
Using (4.7) we have,
N M N
E[Lﬂ-aﬁ—ZoﬁE[Ll] Mzaj—i-E[Lz]A 2.0 (48
j=1 j=2

and, fork =2,3,...,N — 1,

N N
A1 — p)F! A1 —p)Yp A
ElLil=—— 64 1+ —— PN G +E[Li)] —— D o
(L] o Y Z;,, [k]HM;,
N
+E[Lk+l])»+ Z 0j. 4.9)
j=k+1
Finally, for k = N we get
B = 2P o) £ E LA (4.10)
= — (Oony _— o ON, .
N P N-—1 N N P N
from which
Al = p)Vloy_
E[Ly] = =P on-1 +on) 4.11)
A1 —on)+u
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Define

Za,, k=1,2,...,N,

A-i—,u

B = Z oj, k=1,2,...,N—1,
A+M} =k+1
q1—00+7z o),
(1 — pyF! w1 —pllp &
= or—1+ o, k=2,3,...,N—1,
dk "t k—1 P Z]‘: j
A1 — p)N-!

= ——(OnN=— +O’ .

P (on—1 N)

Then, after some algebra we obtain

N—k j—1

BiLd=> —HH T o1, (4.12)
Jj=

—o - XkHi Do 1 T Mk

where H;:lo () & 1,and Z;:lo () £0.

4.3 The busy period

As before, ®, (n = 1,2, ..., N) denotes the time from a moment when there are n groups
in the system until the first moment thereafter when no groups are present. The busy period
is ®1. We now derive the LST of ®,,, as well as a closed-form expression for E[®,,].

4.3.1 The LST of ©,,

Let (:j,, (s) denote the LST of ®,,. We now derive {én (s)}flv=l by constructing and solving a
set of N linear equations, as follows. First, we have that

d A(l=p)tu
®1 = Exp()"(l T P) + ,LL) + [ A(1—p) ’

2 WP T-pytu
which yields
Iz A1 —p)
AMl=—p)+pu+s r2d—-—p)+u+s
Second, forn =2,3,..., N — 1,

Q1 (s) = Oa(s). (4.13)

On1 W.p. A

d A(d=p)'+p
®,1=Exp<x<1—p>"+m+[ TR (4.14)

ntl WP 30—y

which leads to

- i)+ — =P 5 . @)
AMl—p)+pu+s AMI—p) +pu+s

Ou(s) =
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Last, forn = N,

d
On = Exp(u) + On-1, (4.16)
resulting in
~ I,L ~
ONG) = ——On_1(5). 4.17)
nts

Equations (4.13)—(4.17) comprise a set of N linear equations which can be written in the
following matrix form:

A(s) - O(s) = b, (4.18)
where
AMl=p)+pu+s —A(1—=p) 0o e 0

- AMl=pP+p+s —2(1-p2* 0 -
Als) =

: : o A= N b s == pNT!
0 o0 —u s

A(s) = (©1(s), O2(s), ..., (:)N(s))T is a column vector of the desired LST’s, and b =
(1,0,0,...,0)7. The solution for (4.18) is given by C:)(s) = (A(s))™! 5 and since b is all
zeros except from its first coordinate (which equals 1), we have that é(s) equals the first
column of (A(s))’l multiplied by . Note that A(s) is a tridiagonal matrix. There is an
increasing interest in tridiagonal matrices in many fields, where inversions of such matrices
are required. Examples for recent works that present explicit formula for the elements of the
inverse of a general tridiagonal matrix are Mallik (2001) and Kili¢ (2008), and references
there. Thus, once the inverse of A(s) is calculated, the vector C:)(s) is fully obtained, and
the mean values of the busy periods, i.e. E[®,] forn = 1,2, ..., N, can be derived using
differentiation. However, a closed form expression for E[®,], convenient for numerical
calculations, can be derived as shown in the next section.

4.3.2 Calculation of E[®,]
From Eq. (4.16) we get
1
E[ON—1] = E[ON] — o (4.19)

Using Eq. (4.14) results in
1 A1 —=p)" iz

E[®,] = E[® + ———FE[O,_1],
O = e T =k O Sy O
or equivalently,
A1 =p)" +WE[O,] =1+ A = p)"E[On41] + HE[O,_1]. (4.20)
Substituting n = N — 1 in Eq. (4.20) leads to
1 A1 = p)N! Iz
E[Oy1]= +  —ElON] + E[Oy-2].

Al =pN Tl A =N 4 A1 =pN-T4pu
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Using the expression for E[®y_1] given in (4.19) and rearranging terms give

A1 —pN-1 2
E[Oy-2] = E[Oy] - PP — = @21
W g
Continuing further, substituting n = N — 2 in Eq. (4.20) gives

1 A1 —p)N 2
AMI=pN2+p 20 =pN2+pu

w
+————E[Oyn_3].
ML= N2 4 1ON3l

E[@n_2] = E[®y—1]

Using the expressions for E[®y_5] given in (4.21) and for E[®y_1] given in (4.19), and
rearranging terms give

)»2
E[@y_3] = E[Oy] — ;(1 -pNta-ph?

A N-1 N-2 3
—a(a=p A ) - (422)

Continuing, the structure of Eqgs. (4.19) and (4.21)—(4.22) leads to the following general
solution,

. i .
iz i(i+2k—1) J

E[Oy-;] = E[ON] — Z ,+,Z<1— PV S =00 N

By setting n = N — j and rewriting the power of the term (1 — p) we get

N—nlian

:2 Do N —
BlO. =Elowl = 2, mr 2 (=P e 2T 12N,
, 5
i=1
(4.23)
. 0
where we define >, () = > () =0.
i=1
Now, the second summation appearing in Eq. (4.23) is
N (N —2kiD) ieN-it) 2
> (-p) =(1=p) Z (1—p*
k=1 k=1
B e Al Wy ) Nt U ) R
ot —(a-p r=a=p ’
so that Eq. (4.23) becomes
Nen—1 )\i ((1 _ )t( n+i+1) . (1 . )I(ZN 1+]))
E[©,] =E[OyN] — .
" ; WA= (= p))
N —n
— , n=1,2,...,N. (4.24)
nw
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Substituting n = 1in Eq. (4.24), and using the expression for E[®1] given in equation (2.18),
yield an expression for E[® y] in terms of 7,

i@N—i+1)

(- p - a - y
W1 = (1= p))

1 —
E[Oy] = MZO n (4.25)

i=1

Thus, in view of (4.24), E[®,] is completely determined forall 1 <n < N.

5 Numerical results and discussion

In this section we present numerical results summarized in tables, for models 1 and 2, as
follows. Tables 1 and 2 deal with Model 1 with infinite number of groups, Tables 3, 4, 5, 6,
7 and 8 exhibit results related to Model 1 with various values of finite NV, and Tables 9, 10,
11 and 12 relate to Model 2.

Table 1 presents values forE[ L],k = 1,2,...,10whenu = l,and X = 0.5, 1, 5, 10, 20.
As expected, as A grows, the size of each group becomes larger. Also, as k increases, E[ L]
decreases, meaning that groups standing “far” from the server are smaller (on the average) than
groups which are “close” to the server. Table 2 presents results for E[®,],k =1,2,...,10
when u = 1,and A = 0.5, 1, 5, 10.

Tables 3, 4, 5, 6, 7 and 8 show numerical results for Model 1 with finite number of groups,
where N assumes values of 5, 10 and 20, and u = 1. Tables 3, 4 and 5 show that for small
values of A, E[L;] are mostly the same, for any value of N. However, as A increases, the
difference between E[L]’s is more apparent. Also, in Tables 6, 7 and 8 it is seen that for
small values of A, E[®,] are very close, whereas for larger values of X there is a significant
difference between the values of E[®,].

The Geometric model is presented in Tables 9, 10, 11 and 12. In Table 9 (N = 5) we
calculate the first moment of L; and of D® k =1,2,...,5, as well as the first moment
of ®,,n = 1,2,...,5. Different values of A and p are considered, while & = 1 in all
calculations. The results show that E[L], the mean size of the group standing in the first
position (the one being served) increases with p, since for larger values of p, a great number
of customers concentrate in the first group. The size of the group in the second position
behaves differently for various values of p. Specifically, when p increases from 0.01 to 0.2,
E[L,] slightly increases, while when p grows from 0.2 to 0.6, E[ L] significantly decreases.
This follows since (1 — p) p, the probability of joining the second group, is increasing when
0 < p < 0.5, and decreasing when p > 0.5. Furthermore, E[L3], E[L4] and E[L5] decrease
as p increases. We also observe that E [ D®] is larger than E[ L ]. This follows since E [ D®]
is calculated after a service completion, so E [D(k)] contains all the customers that join this
group during a single service period. In contrast, E[ L] is calculated right after a Poissonian
event, which may be either an arrival or a service completion. In addition, Table 9 shows that
for all n, E[®,] drops considerably with the enlargement of p.

Table 10 presents results for E[Li], k = 1,2,...10, when N = 10. As expected, the
values of E[ L] decrease as the group’s index k grows. However, for small p (e.g. p = 0.01),
the mean size of the last group is slightly greater than the mean sizes of the groups in front
of it, and the values of E[ L] differ by small amounts. This follows since for small p, there
are values of k such that (1 — p)? > (1 — p)¥p. That is, the probability of joining the last
group is larger than the probability of joining groups k + 1,k +2,..., N — 1.
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In Table 11 the values for E [D(k)] are presented, when N = 10. When % is large, mg is

very small, and therefore, from Eq. (4.2), E [D(l)] is very close to %

Table 12 exhibits the values of E[®,] when N = 10. For large values of A and small p,
E[®,] is extremely large. However, when increasing the value of p from 0.2 to 0.6, E[®,]
drops drastically.

6 Appendix

6.1 Proof of Proposition 3.1

Proof We need to show that
! + * < _ 6.1)
meOAE T 21—

By setting a = %, and some straightforward algebra, Eq. (6.1) is equivalent to

2—a< —a 62)
2+a_e . .

Equation (6.2) clearly holds for a > 2. We will prove that it also holds for 0 < a < 2. Note
that (6.2) can be written as

a+2+ (a+2)e —4e’ > 0.

Define f(a) =a+2+ (a+2)e* —4e”. We need to prove that f(a) > Oforall0 <a < 2.
Note that f'(a) = 1 +e%(a—1),and f”(a) = ae® > 0. Therefore, f'(a) is non-decreasing,
and with f'(0) = 0 we have that f'(a) > 0 for 0 < a < 2. This implies that f(a) is also
non-decreasing for 0 < a < 2, and with f(0) = 0, the proof is completed. O
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