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Abstract The so-called “Israeli queue” (Boxma et al. in Stoch Model 24(4):604–
625, 2008; Perel and Yechiali in Probab Eng Inf Sci, 2013; Perel and Yechiali in Stoch
Model 29(3):353–379, 2013) is a multi-queue polling-type system with a single server.
Service is given in batches, where the batch sizes are unlimited and the service time
of a batch does not depend on its size. After completing service, the next queue to be
visited by the server is the one with the most senior customer. In this paper, we study
the Israeli queue with retrials, where the system is comprised of a “main” queue and
an orbit queue. The main queue consists of at most M groups, where a new arrival
enters the main queue either by joining one of the existing groups, or by creating a new
group. If an arrival cannot join one of the groups in the main queue, he goes to a retrial
(orbit) queue. The orbit queue dispatches orbiting customers back to the main queue
at a constant rate. We analyze the system via both probability generating functions and
matrix geometric methods, and calculate analytically various performance measures
and present numerical results.
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1 Introduction

The “Israeli Queue” model was introduced in Boxma et al. [10, Sec. 5] when studying
a multi-queue single-server polling system with unlimited-size batch service [9,10],
where the next queue to be served is the one with the most senior customer (the
customer who has been waiting for the longest time among all present customers).
The term “Israeli Queue” originates from a real waiting line of individuals formed in
order to buy tickets for a show. The associated queueing system is comprised of heads
of groups, where each head can buy an unrestricted number of tickets for the group
of individuals he (“he” stands for “she” as well) represents, while the purchasing time
is assumed to be independent of the number of tickets bought. A new arrival either
joins one of the existing groups if he knows the group’s head, or creates a new group,
acting as its leader.

Unlimited batch service was studied by van der Wal and Yechiali [22] when analyz-
ing a computer tape-reading problem in a system where large amounts of information
are stored on tapes. It is assumed that the time to mount, read, and dismount the tape
is independent of the amount of information read from the tape. The problem was for-
mulated as a polling system, and the optimal visiting rules of the server were studied.
Unlimited batch-service models were also considered in the literature as application to
videotex, telex, and time division multiple access (TDMA) systems (e.g., [1,11] and
[17]). Van Oyen and Teneketzis [21] formulated a central data base system and an auto-
mated guided vehicle (AGV) as a polling system with an infinite capacity batch service.

Recently, Perel and Yechiali [19] extended the Israeli queue model to the case where
there is no bound on the number of different groups that can be present simultaneously
in the system. They analyzed single-server models with finite and infinite number of
groups, as well as models with multiple servers, and derived various performance
measures. Perel and Yechiali [20] further studied a two-class single-server preemptive
priority queueing model in which the high priority customers form a classical M/M/1
queue, while the low priority (class 2) customers form the unlimited-size batch service
Israeli queue with a finite number of groups. They calculated various performance
measures, such as the mean number of low priority groups in the system along with
the mean size of a class 2 group; the covariance between the number of high priority
customers and the number of low priority groups; sojourn times of a class 2 group
leader, as well as of an arbitrary class 2 customer.

In this paper, we consider a single-server Israeli queue with at most M groups
(the main queue) and an infinite capacity orbit queue. The arrival process to the main
queue is Poisson with rate λ, and the service time of a batch, independent of its size, is
exponentially distributed with parameter μ. Groups in the main queue are formed as
follows: each group has a “leader” or a “head”—the first member of the group to arrive
at the system. New arrivals see only the leader of each group. The probability for an
arriving customer to know another group leader standing in line is p, with the same p
for all group leaders. We assume that an arriving customer can join the group in service
while it is being served. Specifically, if there are m groups in the system (including
the one in service), m = 1, 2, . . . , M − 1, then the probability that a new arrival joins
the k − th group is (1 − p)k−1 p, for 1 ≤ k ≤ m. When m = 0, 1, . . . , M − 1, the
probability of creating a new group (the (m+1)-st) is (1 − p)m . However, if M groups
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are present in the main queue and an arriving customer does not know any of the group
leaders, he joins a retrial orbit queue that dispatches individual orbiting customers back
to the main queue at a constant Poisson rate γ (whenever there is a positive number
of orbiting customers). The order of dispatching customers from the orbit queue to
the main queue follows the order of their arrival, namely a FCFS order, so that only
the customer at the head of the orbit queue is allowed to try to access the main queue.
If, upon a retrial, the main queue is full (i.e., consists of M non-empty groups), the
orbiting customer goes back to the orbit queue. If an orbiting customer finds the main
queue with less than M groups, he forms a new group, last in the line of groups, that is,
a customer arriving from orbit does not look for a friend in the main queue, but rather
creates a new group to which new arrivals can join. Inter-arrival times, retrial times, and
service times are mutually independent. Recently, an M/M/1-type queueing model
with customer interjections, where interjecting customers try to cut into the queue
following a geometric distribution, has been studied by He and Chavoushi [15].

Retrial queues have been widely used to model a variety of problems in areas
such as telephone switching systems, telecommunication networks, computer sys-
tems, and others. There exists an extensive literature on retrial queues (see, for example
[2–8,12–14,23] and many references therein) in which various models are considered
(single or multiple servers, constant or non-constant retrial rates, priority models,
server breakdowns, or vacations) and a variety of mathematical techniques are uti-
lized (e.g., regenerative approach, probability generating functions, matrix analytic
methods, mean value analysis, and approximations) to analyze these models.

Several of the works mentioned above consider a main queue that can hold at most
one customer, that is, there is no waiting room for arriving customers. In contrast,
in our model, the main queue can hold up to M ≥ 1 groups, where the size of each
group is unrestricted. Avrachenkov and Yechiali [7] considered a queueing system
with a finite buffer M/M/1/K primary queue and an infinite buffer M/M/1/∞ orbit
queue, where customers arriving to a full buffer in the primary queue are blocked
and go to an orbit queue. Explicit analytical results were derived for a buffer of size
1 and of size 2, and a necessary and sufficient stability condition was obtained. In
particular, the stability condition obtained in the current paper, when setting p = 0,
coincides with the one established in [7]. Falin [14] studied a retrial queue with batch
arrivals in which batches of customers arrive at a single server. If the server is free at
an arrival epoch, then one of the customers from the batch begins his service while
the other members of the batch join an ordinary queue in front of the server and are
served following some service discipline. If the server is busy at a batch arrival epoch,
then all customers from the batch go to an orbit queue. Every such orbiting customer
produces a process of repeated calls until he finds the server idle. In contrast to our
model, the server in [14] does not serve the whole batch in one service period: the
group is split into individuals, whether in front of the server or in orbit.

In most of the retrial models mentioned above, there is a single retrial queue.
Avrachenkov et al. [6] recently studied a system with two input streams and two orbit
queues and analyzed it via both matrix geometric methods and probability generating
functions, while solving a Riemann–Hilbert boundary value problem.

The analysis of our “Israeli queue with retrials” model is presented as follows.
In Sect. 2, we define the model, establish balance equations for the two-dimensional
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steady-state probabilities characterizing the system, and employ probability generat-
ing functions (PGFs) to analyze the model. This requires the calculation of certain
boundary probabilities. Those probabilities are obtained by finding and characterizing
the roots of a (M+1)-degree polynomial being the determinant of a certain matrix
whose entries are functions of the system’s parameters. In Sect. 3, we derive various
performance measures, such as the mean number of groups in the main queue, the
mean number of orbiting customers, the mean size of a group standing in the main
queue, and the mean number of bypasses made by an arriving customer. In Sect. 4,
we briefly discuss the multi-server version of the model. In Sect. 5, we use matrix
geometric methods to further analyze the system, while in Sect. 6, we present numer-
ical results. It is seen that the mean number of groups in the main queue decreases
monotonically when p increases, and the mean number of customers in the orbit queue
descent rapidly when p increases. If p is too small, the orbit queue explodes (the ana-
lytical condition for stability is given in Eq. (2.11) and equivalently in Eq. (5.4)).
Furthermore, the mean size of the served batch is monotonically increasing with p.

2 The model

2.1 Model description

We consider the model described in the Introduction, namely a single-server Israeli
queue with at most M groups (the main queue) and an infinite capacity M/M/1-
type orbit queue. The outside arrival stream to the main queue is Poisson with rate λ,
while a service time of a group, independent of its size, is exponentially distributed
with parameter μ. If the main queue is full, then a new arriving customer joins the
orbit queue with probability (1 − p)M and stands there last in line. The orbit queue
dispatches individual orbiting customers back to the main queue at a constant Poisson
rate γ (whenever there is a positive number of orbiting customers), so that only the
customer at the head of the orbit queue is allowed to try to access the main queue.
Let L1(t) be the total number of groups in the main queue at time t , and L2(t) the
number of customers in the orbit queue at time t . Let Li = limt→∞ Li (t), and Pmn =
P(L1 = m, L2 = n), for m = 0, 1, . . . , M and n ≥ 0. A transition-rate diagram of
the two-dimensional continuous-time Markov process (L1, L2) is depicted in Fig. 1.

2.2 Balance equations and generating functions

For m = 0, the following relations hold,

λP00 = μP10, (2.1)

(λ + γ ) P0n = μP1n, n ≥ 1. (2.2)

For 1 ≤ m ≤ M − 1, we get

(
λ(1 − p)m +μ

)
Pm0 = λ(1 − p)m−1 Pm−1,0+μPm+1,0+γ Pm−1,1, (2.3)

(
λ(1 − p)m + μ + γ

)
Pmn = λ(1 − p)m−1 Pm−1,n + μPm+1,n

+ γ Pm−1,n+1, n ≥ 1. (2.4)
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Fig. 1 Transition-rate diagram of (L1, L2)

Lastly, for m = M , we have

(
λ(1 − p)M + μ

)
PM0 = λ(1 − p)M−1 PM−1,0 + γ PM−1,1, (2.5)

(
λ(1 − p)M + μ

)
PMn = λ(1 − p)M−1 PM−1,n + λ(1 − p)M PM,n−1

+ γ PM−1,n+1, n ≥ 1. (2.6)

Now, for 0 ≤ m ≤ M , define the m-th marginal PGF of the number of customers in
orbit:
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Gm(z) =
∞∑

n=0

Pmnzn .

Then, for m = 0, multiplying Eq. (2.2) by zn and summing over n, together with (2.1),
gives

(λ + γ ) G0(z) − μG1(z) = γ P00. (2.7)

For 1 ≤ m ≤ M − 1, multiplying Eq. (2.4) by zn and summing over n, together with
(2.3), leads to

(
λ(1 − p)m + μ + γ

)
zGm(z) −

(
λ(1 − p)m−1z + γ

)
Gm−1(z)

−μzGm+1(z) = γ
(
Pm0z − Pm−1,0

)
. (2.8)

Finally, multiplying Eq. (2.6) by zn and summing over n, together with (2.5), results
in
(
λ(1 − p)M (1 − z)+μ

)
zG M (z)−

(
λ(1 − p)M−1z + γ

)
G M−1(z)=−γ PM−1,0.

(2.9)

Define

α0(z) = λ + γ,

αm(z) = (λ(1 − p)m + μ + γ )z, 1 ≤ m ≤ M − 1,

αM (z) = (λ(1 − p)M (1 − z) + μ)z.

The set of Eqs. (2.7), (2.8), and (2.9) can be written in a matrix form as

A(z) · �G(z) = �b(z), (2.10)

where

A(z)

=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

α0(z) −μ 0 · · · · · · · · · 0

−(λz + γ ) α1(z) −μz 0 · · · · · ·
.
.
.

0 −(λ(1− p)z + γ ) α2(z) −μz 0
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . . 0

.

.

.
. . .

. . .
. . . −(λ(1− p)M−2z + γ ) αM−1(z) −μz

0 · · · · · · 0 0 −(λ(1− p)M−1z + γ ) αM (z)

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

,

�G(z) = (G0(z), G1(z), . . . , G M (z))T is a column vector (of size M+1) of the desired
PGF’s, and
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�b(z) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

b0(z)
b1(z)

...

bm(z)
...

bM−1(z)
bM (z)

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

γ P00
γ (P10z − P00)

...

γ
(
Pm0z − Pm−1,0

)

...

γ
(
PM−1,0z − PM−2,0

)

−γ PM−1,0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

To obtain Gm(z), we use Cramer’s rule and write Gm(z) = |Am (z)|
|A(z)| , m =

0, 1, . . . , M , where |A| is the determinant of a matrix A and Am(z) is the matrix
obtained from A(z) by replacing its m-th column by �b(z). The functions Gm(z)
are expressed in terms of M unknown boundary probabilities, P00, P10,. . .,PM−1,0,
appearing in �b(z). In order to derive these boundary probabilities, we utilize the roots
of |A(z)|. We have the following:

Theorem 2.1 For any finite buffer size M, the polynomial |A(z)| is of degree M +1. It

possesses a root of multiplicity
⌊

M
2

⌋
at z = 0 and a single root at z = 1. Furthermore,

if the condition

λ(1 − p)M
M−1∏

k=0

(λ(1 − p)k + γ ) < γμM
M−1∑

m=0

1

μm

m−1∏

k=0

(λ(1 − p)k +γ ) (2.11)

holds, then |A(z)| has exactly M −
⌊

M
2

⌋
− 1 roots in the open interval (0, 1) and a

single root in (1,∞). Else, |A(z)| has exactly M −
⌊

M
2

⌋
roots in (0, 1).

Proof Let q0(z) = 1 and define the determinants of the minors of the diagonal of the
matrix A(z), starting from the upper left corner, as follows:

q1(z) = α0(z) = λ + γ, q2(z) =
∣∣∣∣

α0(z) −μ

−(λz + γ ) α1(z)

∣∣∣∣ , . . . , qM+1(z) = |A(z)|.

It can be verified that

q1(z) = α0(z)q0(z),

q2(z) = α1(z)q1(z) − μ(λz + γ )q0(z),

qm(z) = αm−1(z)qm−1(z) − μz(λ(1 − p)m−2z + γ )qm−2(z), m = 3, . . . , M + 1.

(2.12)

We get the following properties:

1. q0(z) and q1(z) have no roots.
2. qm(z) is of degree m − 1, for m = 1, 2, . . . , M .
3. qM+1(z) = |A(z)| is of degree M + 1.
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4. qm(z) and qm+1(z) have no common roots in (0,1), because, if they do have such
a common root, then it is also a root of qm−1(z), qm−2(z),…,q1(z), but q1(z)
possesses no roots.

5. q1(0) > 0, q2(0) < 0.
6. qm(1) = ∏m−1

k=0

(
λ(1 − p)k + γ

)
> 0 for m = 0, 1, . . . , M , where

∏−1
i=0 (·) � 1.

7. qM+1(1) = 0.
8. If z∗ is a root of qm(z), then sign(qm−1(z∗) · qm+1(z∗)) = −1.
9. For the polynomials qm(z), where m = 1, 2, . . . , M , zero is a root of multiplicity⌊

m−1
2

⌋
.

10. For k ≥ 1, sign(q2k+1(0+))=(−1)k and sign(q2k+2(0+))=(−1)k+1 (proven by
induction).

We now consider the roots of the polynomials qm(z), for m = 1, 2, . . . , M + 1.
q1(z) = λ + γ and therefore has no roots. q2(z) is of degree 1 and has a single root
in (0,1). We shall denote it by z2,1. Next, q3(0) = 0, q3(1) > 0. Since q1(z2,1) > 0,
q3(z2,1) < 0 (by property 8). Therefore, since q3(z) is of degree 2, it has a single root
in (z2,1,1). We shall denote this root by z3,1. Further, q4(z) is of degree 3, q4(0) = 0, so
two roots are left to be determined. We have that q4(0+) > 0, and since q2(z3,1) > 0,
it follows from property 8 that q4(z3,1) < 0. With the fact that q4(1) > 0, we conclude
that q4(z) has the roots z4,1 ∈ (0, z3,1) and z4,2 ∈ (z3,1, 1). Continuing with q5(z),
its degree is 4 and it has a root at z = 0 with multiplicity 2. Now, q5(0+) > 0,
q5(z4,1) > 0, q5(z4,2) < 0, and q5(1) > 0. This implies that q5(z) has the roots
z5,1 ∈ (z4,1, z4,2) and z5,2 ∈ (z4,2, 1). Proceeding further, we conclude that qM (z)
has a root at z = 0 with multiplicity 	 M−1

2 
 and exactly M − 	 M−1
2 
 − 1 roots in

the open interval (0, 1). Our interest is in the roots of qM+1(z) = |A(z)|. From Eq.

(2.12), the degree of qM+1(z) is M + 1. It has a root of multiplicity
⌊

M
2

⌋
at z = 0,

a single root at z = 1, and M −
⌊

M
2

⌋
− 1 roots in the open interval (0, 1). Note

that since zM,M−1−	 M−1
2 
 ∈ (zM−1,M−2−	 M−2

2 
, 1) (meaning that the largest root of

qM (z) is between the largest root of qM−1(z) and 1), and since qM−1(1) > 0, then
qM+1(zM,M−1−	 M−1

2 
) < 0. So, the last root of qM+1(z), denoted by z∗
M+1, might be

either in (zM,M−1−	 M−1
2 
, 1) or in (1,∞). We shall now prove that if condition (2.11)

holds, then the last root is in (1,∞), else it is in (zM,M−1−	 M−1
2 
, 1). First, note that

since qM (1) > 0 and qM (z) has no roots in [1,∞), then qM (∞) > 0. It follows from
(2.12) that qM+1(∞) < 0. Next, in the Appendix, we show that the polynomials qm(z)
are of the following form:

qm(z) = zm−1
m−1∏

k=0

(λ(1 − p)k + γ ) + (1 − z)h(M)
m (z), m = 1, 2, . . . , M,

qM+1(z) = (1 − z)h(M)
M+1(z),

where h(M)
m (z) are functions discussed and explored in the Appendix. Now,

q ′
M+1(1) = −h(M)

M+1(1).

123



Queueing Syst (2014) 78:31–56 39

From all of the above, we conclude that if h(M)
M+1(1) < 0, then q ′

M+1(1) > 0 and

therefore, since qM+1(∞) < 0, z∗
M+1 ∈ (1,∞). Otherwise, if h(M)

M+1(1) > 0, then
q ′

M+1(1) < 0, which yields z∗
M+1 ∈ (zM,M−	 M−1

2 
−1, 1).
As proven in the Appendix,

h(M)
M+1(1) = λ(1 − p)M

M−1∏

k=0

(λ(1 − p)k + γ ) − γμM
M−1∑

m=0

1

μm

m−1∏

k=0

(λ(1 − p)k + γ ).

If h(M)
M+1(1) < 0, then the condition in (2.11) holds, so that z∗

M+1 ∈ (1,∞), else
z∗

M+1 ∈ (zM,M−	 M−1
2 
−1, 1). This completes the proof.

Remark In Sect. 5, we provide an analysis via matrix geometric method. The stability
condition derived using this method, given in the sequel by Eq. (5.4), is exactly the
condition given by (2.11), that is, we may say that z∗

M+1 is in (1,∞) iff the system is
stable.
We now assume that the system is stable and explain how to derive the boundary
probabilities P00, P10,. . .,PM−1,0. First, since for all m = 0, 1, . . . , M , Gm(z) =
|Am(z)|
|A(z)| is a PGF, every root of |A(z)| is a root of |Am(z)|. From Theorem 2.1, we

conclude that

|Am(zM+1,k)| = 0, zM+1,k ∈ (0, 1), k = 1, 2, . . . , M −
⌊ M

2

⌋
− 1, (2.13)

dk

dzk
|Am(z)|

∣∣∣
∣
z=0

= 0, k = 1, 2, . . . ,
⌊ M

2

⌋
− 1, (2.14)

where Eq. (2.14) follows from the fact that qM+1(z) has a root of multiplicity
⌊

M
2

⌋
at

z = 0. Second, we utilize the roots zM+1,k ∈ (0, 1), for k = 1, 2, . . . , M −
⌊

M
2

⌋
− 1,

as follows: we substitute zM+1,1 in |A0(z)|, zM+1,2 in |A1(z)|, and so on, so that
the last root, zM+1,M−	 M

2 
−1, is substituted in |AM−	 M
2 
−2(z)|. This provides us with

M −
⌊

M
2

⌋
− 1 equations relating between the boundary probabilities. Another set of

equations is derived from the derivatives of |Am(z)| as follows. We substitute z = 0

in the
(⌊

M
2

⌋
− 1

)
-th derivative of |AM−k(z)|, for k = 0, 1, . . . , 	 M

2 
 − 1. This gives

us
⌊

M
2

⌋
more equations, bringing the total to M −

⌊
M
2

⌋
− 1 +

⌊
M
2

⌋
= M − 1. The

last relation used is the normalization equation, that is,

M∑

m=0

Pm• =
M∑

m=0

Gm(1) =
(

M∑

m=0

|Am(z)|
|A(z)|

) ∣∣∣∣
z=1

= 1.

For example, let M = 8. We need to determine 8 boundary probabilities, P00,

P10, . . . , P70. |A(z)| = q9(z) is of degree 9. Under stability conditions, it possesses a
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root at z = 0 with multiplicity 4, three roots in (0, 1), a single root at z = 1, and a single
root in (1,∞) (which is not utilized for the calculation of the boundary probabilities).
We need to solve the following system:

|A0(z9,1)| = 0, |A1(z9,2)| = 0, |A2(z9,3)| = 0,

d3

dz3 |Am(z)|
∣∣∣∣
z=0

= 0, m = 5, 6, 7, 8,

(
8∑

m=0

|Am(z)|
|A(z)|

) ∣∣∣∣
z=1

= 1. (2.15)

The set (2.15) yields 8 linear equations in the 8 sought for boundary probabilities.

In general, when all the boundary probabilities are known, the set of PFGs
{Gm(z)}M

m=0 is completely determined. In addition, the marginal distribution of the
size of the main queue is given by

Pm• =
∞∑

n=0

Pmn = P(L1 = m) = Gm(1), m = 0, 1, . . . , M.

Alternatively, the marginal probabilities {Pm•}M
m=0 can be calculated by applying

horizontal “cuts” on Fig. 1, as follows:

(λ(1 − p)m + γ )Pm• − γ Pm0 = μPm+1,• , m = 0, 1, . . . , M − 1, (2.16)

so that for all 1 ≤ m ≤ M , Pm• can be expressed in terms of P0•, P00,
P10,. . .,Pm−1,0.

Solving iteratively, Eq. (2.16) gives

Pm• = 1

μm

m−1∏

k=0

(λ(1 − p)k + γ )P0•

−γ

m−1∑

j=0

1

μm− j

m−1∏

k= j+1

(λ(1 − p)k + γ )Pj0, m =1, 2, . . . , M, (2.17)

where P0• is derived by using
∑M

m=0 Pm• = 1. We thus have

P0• =
1 + ∑M

m=0 γ
∑m−1

j=0
1

μm− j

∏m−1
k= j+1(λ(1 − p)k + γ )Pj0

∑M
m=0

1
μm

∏m−1
k=0 (λ(1 − p)k + γ )

, (2.18)

with the notations
∑−1

k=0 (·) � 0 and
∏−1

k=0 (·) � 1. Furthermore, summation of Eq.
(2.16) over m leads to
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M−1∑

m=0

λ(1 − p)m Pm• + γ (1 − PM• − P•0 + PM0) = μ(1 − P0•), (2.19)

meaning that the creation rate of new groups in the main queue (by external arrivals
or by orbit customers) is equal to the emptying rate of groups from the main queue.
In a similar manner, vertical “cuts” on Fig. 1 yield

λ(1 − p)M PM• = γ (1 − PM• − P•0 + PM0), (2.20)

implying that the entrance and departure rate to and from the orbit queue are equal.
Combining Eqs. (2.19) and (2.20) yields

M∑

m=0

λ(1 − p)m Pm• = μ(1 − P0•). (2.21)

3 Performance measures

3.1 Mean queue lengths

Let E[L1] and E[L2] denote the mean total number of groups in the main queue, and
the mean total number of customers in the orbit queue, respectively. Then,

E[L1] =
M∑

m=0

m Pm• =
M∑

m=0

mGm(1), (3.1)

E[L2] =
∞∑

n=0

n P•n =
M∑

m=0

G ′
m(1). (3.2)

The expression given for E[L2] can be rewritten in a simpler form, easier for
performing computations. Specifically, we multiply Eq. (2.7) by z and sum it together
with Eqs. (2.8) (for m = 1, 2, . . . , M − 1) and (2.9). This gives

λ(1 − p)M zG M (z) − γ

M−1∑

m=0

Gm(z) = −γ

M−1∑

m=0

Pm0, (3.3)

or equivalently

M∑

m=0

Gm(z) =
(

λ(1 − p)M z

γ
+ 1

)
G M (z) +

M−1∑

m=0

Pm0. (3.4)

Taking the derivatives on both sides of (3.4) and letting z = 1 results in

E[L2] =
M∑

m=0

G ′
m(1) = λ(1 − p)M

γ
PM• + G ′

M (1)

(
λ(1 − p)M

γ
+ 1

)
. (3.5)
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3.2 Mean size of a batch

We now calculate the mean size of the group standing at the m-th position (1 ≤ m ≤
N ), right after the moment of service completion, and before the group moves forward
to the (m −1)-st position (or leaves the system, when m = 1). We define the following
variables, for 1 ≤ m ≤ M :

• ξ (k) = number of customers who have joined the group in the k-th position during
a single service period, assuming that the k-th group exists.

• D(m)
i = size of the batch standing in the m-th position at the moment of service

completion, given that it was formed in the i-th position, m ≤ i ≤ M .
• D(m) = size of the batch standing in the m-th position at the moment of service

completion.

Since the mean number of arrivals during a service period is λ
μ

, and the probability

that an arrival joins the k-th group (when it exists) is (1 − p)k−1 p, we get

E

[
ξ (k)

]
= λ

μ
(1 − p)k−1 p, 1 ≤ k ≤ M. (3.6)

Let νi,m denote the event that the group standing in the m-th position was created
in the i-th position (so that i ≥ m), whether by an external arrival (that does not know
any of the present group leaders), or by a customer arriving from the orbit queue. By
the definition of D(m)

i , we have that D(m)
i = 1 + ∑i−m+1

k=1 ξ (i+1−k) = 1 + ∑i
k=m ξ (k)

with probability P(νi,m). In order to calculate P(νi,m), we condition on whether the
orbit queue is empty or not, and if not, we further condition on the type of customer
that forms the new group (either a new customer or one coming from the orbit queue).
We have

P(νi,m)=
Pi−1,0(1 − p)i−1+(

Pi−1,• − Pi−1,0
) (

λ
λ+γ

(1 − p)i−1+ γ
λ+γ

)

∑M
j=m

[
Pj−1,0(1 − p) j−1+(

Pj−1,•−Pj−1,0
) (

λ
λ+γ

(1− p) j−1+ γ
λ+γ

)] .

(3.7)

Rewriting Eq. (3.7) gives

P(νi,m) = Pi−1,•(λ(1 − p)i−1 + γ ) − γ Pi−1,0(1 − (1 − p)i−1)
∑M

j=m

[
Pj−1,•(λ(1 − p) j−1 + γ ) − γ Pj−1,0(1 − (1 − p) j−1)

]

= γ Pi−1,0(1 − p)i−1 + μPi•
∑M

j=m

[
γ Pj−1,0(1 − p) j−1 + μPj•

] , (3.8)

where in the last equality in (3.8) we used Eq. (2.16).
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From (3.8) and (3.6), we get

E

[
D(m)

]
=

M∑

i=m

E

[
D(m)

i

]
P(νi,m)

=
M∑

i=m

(

1 +
i∑

k=m

λ

μ
(1 − p)k−1 p

)
γ Pi−1,0(1 − p)i−1 + μPi•

∑M
j=m

[
γ Pj−1,0(1 − p) j−1 + μPj•

]

= 1 + λ

μ
(1 − p)m−1 − λ

μ

∑M
i=m

[
γ Pi−1,0(1 − p)i−1 + μPi•

]
(1 − p)i

∑M
j=m

[
γ Pj−1,0(1 − p) j−1 + μPj•

] ,

(3.9)

where Pi• are given in (2.17) and (2.18).
In particular, the mean size of the served batch at a moment of service completion

is given by

E

[
D(1)

]
=

M∑

i=1

E

[
D(1)

i

]
P(νi,1)

= 1 + λ

μ
− λ

μ
·
∑M

i=1

[
γ Pi−1,0(1 − p)i−1 + μPi•

]
(1 − p)i

∑M
j=1 γ Pj−1,0(1 − p) j−1 + μ(1 − P0•)

. (3.10)

For the case where M = 1, we get from Eq. (3.10): E
[
D(1)

] = 1 + λ
μ

p. Indeed,

D(1) is composed of the leader of the group plus all arrivals that joined him during his
service duration.

On the other hand, when p = 1, there is only one group and E
[
D(1)

] = 1+ λ
μ

, that
is, the mean size of a served group is composed of the group’s leader and the mean
number of arrivals during his service period.

3.3 Number of bypasses and the position of a new arriving customer

In our model, it can happen that a newly arriving customer will be served before
customers that have arrived before him. For example, suppose the system is in state
(m, n) (m groups in the main queue and n customers in the orbit queue), and suppose
that a new arrival joins the main queue in position i ≤ m. We then say that the
number of bypasses made by this new arrival is m − i + n, that is, he passes m − i
group leaders and n orbit customers. Let Y denote the number of bypasses. Then,

P(Y = 0) = P00 +
M−1∑

m=1

Pm0(1 − p)m−1 + PM0(1 − p)M−1 p + PM•(1 − p)M ,

(3.11)
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where the first 3 expressions in (3.11) describe the case that a new arrival either opens
a new group in the main queue or joins the last group there, and the last expression
means that he joins the last position in the orbit queue (and therefore no bypasses are
made).

For Y = k ≥ 1, we distinguish between two cases: k < M and k ≥ M . For
each case, we consider two possibilities: (i) the newly arriving customer forms a new
group, or (i i) the newly arriving customer joins an existing group. More specifically,
the first possibility is that the system is in state (m, k) for m = 0, 1 . . . , M − 1 and
k ≥ 1, and a new arrival does not know any of the first m group leaders. Consequently,
he forms a new group and therefore bypasses only the k customers present in the
orbit. The second possibility is that the system is in state (m, k − j), 1 ≤ m ≤ M ,
j ≤ Min{m − 1, k}, and a new arrival knows the group leader in the (m − j)-
th position, so that j groups in the main queue are being bypassed. Therefore, the
numbers of bypasses is j + (k − j) = k. We now calculate P(Y = k) for each of the
cases k < M and k ≥ M , as follows:

For k < M ,

P(Y = k) =
M−1∑

m=0

Pmk(1 − p)m + p
k∑

m=1

m−1∑

j=0

Pm,k− j (1 − p)m− j−1

+p
M∑

m=k+1

k∑

j=0

Pm,k− j (1 − p)m− j−1. (3.12)

The first term in the right-hand side of Eq. (3.12) stands for a new arrival that forms
a new group and hence bypasses only the customers in the orbit queue. The second
and third terms represent the case where both the groups in the main queue and the
customers in the orbit queue are being bypassed, distinguished by either m ≤ k or
m > k.

Similarly, for k ≥ M ,

P(Y = k) =
M−1∑

m=0

Pmk(1 − p)m + p
M∑

m=1

m−1∑

j=0

Pm,k− j (1 − p)m− j−1. (3.13)

It follows that the mean number of bypasses, E[Y ] = ∑∞
k=0 kP(Y = k), can only be

numerically calculated up to a certain accuracy, using truncation. However, an explicit
expression for E[Y ] can be obtained as follows. Let X denote the position (group’s
number) that a new arrival enters to in the main queue, given that he is not blocked.
Since the probability of joining the orbit queue is PM•(1 − p)M , the distribution
function of X is given by

P(X = i) = Pi−1,•(1 − p)i−1 + ∑M
m=i Pm•(1 − p)i−1 p

1 − PM•(1 − p)M
, i = 1, . . . , M,

(3.14)
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and

E[X ] = 1

1 − PM•(1 − p)M

[
M∑

i=1

i Pi−1,•(1 − p)i−1 +
M∑

m=1

Pm•
m∑

i=1

i(1 − p)i−1 p

]

= 1

1 − PM•(1 − p)M

[
M∑

i=1

i Pi−1,•(1 − p)i−1 +
M∑

m=1

Pm•
1 − (1 − p)m(1 + mp)

p

]

= 1

1 − PM•(1 − p)M

[(

1 −
M∑

m=0

Pm•(1 − p)m

)
1

p

+
M∑

i=1

i(1 − p)i−1 [
Pi−1,• − Pi•(1 − p)

]
]

. (3.15)

Define Z = Max{0, L1 − X} to be the number of groups (in the main queue only)
being bypassed by a new arriving customer that joins the main queue. The distribution
function of the random variable Z is given by

P(Z = 0) = 1

1 − PM•(1 − p)M

(

P0•+
M−1∑

m=1

Pm•(1 − p)m−1+PM•(1 − p)M−1 p

)

,

P(Z = j) = 1

1 − PM•(1 − p)M

M∑

m= j+1

Pm•(1 − p)m− j−1 p, j = 1, 2, . . . , M − 1.

This implies

E[Z ] = 1

1 − PM•(1 − p)M

M−1∑

j=1

j
M∑

m= j+1

Pm•(1 − p)m− j−1 p

= 1

1 − PM•(1 − p)M

M∑

m=2

Pm•
m−1∑

j=1

j (1 − p)m− j−1 p

= 1

1 − PM•(1 − p)M

1

p

M∑

m=2

Pm•(mp − 1 + (1 − p)m). (3.16)

Straightforward algebra on Eq. (3.16) leads to

E[Z ] = 1

1 − PM•(1 − p)M

(

E[L1] − 1

p

(

1 −
M∑

m=0

Pm•(1 − p)m

))

. (3.17)

To calculate E[Y ], we condition on whether the new arrival joins the main queue
or the orbit queue. We get
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E[Y ] = P(A new arrival enters the orbit queue) · 0

+ P(A new arrival enters the main queue) · (E [Z ] + E[L2])
= (1 − PM•(1 − p)M ) (E [Z ] + E[L2])

= E[L1] − 1

p

(

1 −
M∑

m=0

Pm•(1 − p)m

)

+ (1 − PM•(1 − p)M )E[L2].

(3.18)

4 c ≥ 1 servers

The above single-server model can be readily extended to a multi-server system with
1 ≤ c ≤ M servers. The corresponding transition-rate diagram will look similar to
Fig. 1 with the modification that in state (L1, L2), the service rate in the main queue is
L1μ for L1 ≤ c, and cμ for c < L1 ≤ M . The resulting balance equations will have
the same structure and will lead to a set of equations regarding the PGFs similar to
Eq. (2.10) with the appropriate matrix A(z) and the vector �b(z). We will not elaborate
further on this extension.

5 Matrix geometric approach

Following Neuts [18], we construct a quasi-birth-and-death (QBD) process, with M+1
phases and an infinite number of levels. State (n, m) indicates that there are m different
groups in the main queue and n customers in the orbit queue, m = 0, 1, . . . , M , n ≥ 0.
We arrange these states in a lexicographic order. Then, the infinitesimal generator of
the QBD, denoted by Q, is given by

Q =

⎛

⎜⎜
⎜⎜
⎝

B A0 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0

. . .

...
. . .

. . .
. . .

. . .

⎞

⎟⎟
⎟⎟
⎠

,

where B, A0, A1, and A2 are all square matrices of order M + 1, as follows:

B =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

−λ λ 0 · · · · · · 0

μ −(λ(1 − p) + μ) λ(1 − p) 0 · · ·
.
.
.

0 μ −(λ(1 − p)2 + μ) λ(1 − p)2
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0
.
.
.

. . .
. . . μ −(λ(1 − p)M−1 + μ) λ(1 − p)M−1

0 0 0 0 μ −(λ(1 − p)M + μ)

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,
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A0 =

⎛

⎜⎜
⎝

0 0 0 · · · 0
.
.
.

.

.

.
.
.
. · · ·

.

.

.

0 0 0 0 0
0 0 . . . 0 λ(1 − p)M

⎞

⎟⎟
⎠ .

A1 =

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

−(λ + γ ) λ 0 · · · · · · 0

μ −(λ(1 − p) + μ + γ ) λ(1 − p) 0 · · ·
.
.
.

0 μ −(λ(1 − p)2 + μ + γ ) λ(1 − p)2
.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.
.
. 0

.

.

.
.
.
.

.
.
. μ −(λ(1 − p)M−1 + μ + γ ) λ(1 − p)M−1

0 0 0 0 μ −(λ(1 − p)M + μ)

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

,

and

A2 =

⎛

⎜⎜
⎜⎜⎜
⎝

0 γ 0 · · · 0 0
0 0 γ · · · 0 0
0 0 0 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 0 γ

0 0 0 · · · 0 0

⎞

⎟⎟
⎟⎟⎟
⎠

.

Define A = A0 + A1 + A2. Then,

A =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(λ + γ ) λ + γ 0 · · · · · · 0

μ −(λ(1 − p) + μ + γ ) λ(1 − p) + γ 0 · · ·
.
.
.

0 μ −(λ(1 − p)2 + μ + γ ) λ(1 − p)2 + γ
.
.
.

.

.

.

.

.

.
.
.
.

.
.
.

.
.
.

.
.
. 0

.

.

.
.
.
.

.
.
. μ −(λ(1 − p)M−1 + μ + γ ) λ(1 − p)M−1 + γ

0 0 0 0 μ −μ

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The matrix A can be looked upon as the infinitesimal generator of a finite
buffer M/M/1-type queue with service rate μ, and with state-dependent arrival rate
λ(1 − p)m + γ for state m, m = 0, 1, . . . , M − 1.

Let �x = (x0, x1, . . . , xM ) be the stationary vector of the irreducible matrix A, i.e.,

{ �x A = 0,

�x · �e = 1
(5.1)

A product-form solution to (5.1) is given by

xm = 1

μm

m−1∏

j=0

(
λ(1 − p) j + γ

)
x0, m = 1, 2, . . . , M, (5.2)
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x0 =
⎛

⎝
M∑

m=0

1

μm

m−1∏

j=0

(
λ(1 − p) j + γ

)
⎞

⎠

−1

. (5.3)

The stability condition [18], �x A0�e < �x A2�e, translates into

λ(1 − p)M xM < γ (1 − xM ). (5.4)

By substituting in Eq. (5.4) the expression for xM given in (5.2), we obtain again
the stability condition (2.11), that is, the system is stable iff the determinant of the
matrix A(z) presented in Sect. 2 has a root in (1,∞).

For the sake of consistency in defining steady-state probabilities in models analyzed
via matrix geometric methods, we define for all n ≥ 0 the steady-state probability
vector �πn = (πn0, πn1, . . . , πnM ). Note that πnm = Pmn and �πn · �e = P•n = P(L2 =
n). Then (see [18]),

�πn = �π0 Rn, n ≥ 0,

where R is the minimal nonnegative solution of the matrix quadratic equation

A0 + R A1 + R2 A2 = 0. (5.5)

The vector �π0 is derived by solving the following linear system,

�π0(B + R A2) = �0,

�π0 [I − R]−1 · �e = 1. (5.6)

Algorithms for the computation of the matrix R are suggested in various works;
see, for exmaple, [16,18] and [5]. In our case, we shall use Theorem 8.5.2 in [16],
which considers a special form of the matrix A0, as follows: if the QBD is positive
recurrent and A0 = c · r , where c is a column vector and r is a row vector normalized
by r1 = 1, then the matrix R is given by R = c · ξ , where ξ = r (−A1 − ηA2)

−1. η

is the spectral radius of R, i.e., it is the eigenvalue of the matrix R that has the largest
absolute value. Indeed, in our model, the matrix A0 may be represented as

A0 =

⎛

⎜⎜⎜
⎝

0
...

0
λ(1 − p)M

⎞

⎟⎟⎟
⎠

· (0, . . . , 0, 1) = c · r.

Following [16], we have that η is the unique solution of the scalar equation z =
r (−A1 − z A2)

−1 c in (0, 1). Now, since R = c · ξ and all elements of c are zeros
except for the last one, then all first M rows of R are zeros except for the last row. For
example, for M = 5, λ = 2, μ = 2, γ = 1, and p = 0.02, we get that η = 0.97597
and
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R =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0
0.14102 0.21153 0.31476 0.46392 0.67661 0.97597

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

6 Numerical results

In Tables 1, 2, and 3 below, we present numerical results for each one of the cases
M = 3, M = 5, and M = 8, for different values of λ, μ, γ , and p. We calculate
the measures whose formulas were obtained in the previous sections. Note that the
smallest values of p in these tables are slightly higher than the p value causing the
system to be unstable.

The tables exhibit that, as expected, E[L1] decreases monotonically when p
increases. In addition, there is a drastic decrease in E[L2] as p increases. This is
well demonstrated in Fig. 2, in which E[L2] is plotted as a function of p. The system’s
parameters considered there are M = 3, λ = μ = 2, and γ = 1. The value of p
in which E[L2] tends to infinity is about p = 0.0727895. Below, this value of p the
system is unstable. In Table 4, we provide exact values of E[L2] for various values of
p. The steep decrease in E[L2] is apparent with a minor increase in p above its sta-
bility value. In addition, the mean size of the served batch, E[D(1)], is monotonically
increasing when p increases, but the mean number of bypasses, E[Y ], decreases when
p increases. This follows since, when p increases, the number of orbiting jobs drops.

Table 1 Numerical results for
M = 3 μ = 2, γ = 1 E[L1] E[L2] E[D(1)] E[Y ]

λ = 2 p = 0.075 1.9101 139.0710 1.1564 97.2087

p = 0.1 1.7866 9.4201 1.1972 7.2252

p = 0.2 1.4337 0.9843 1.3328 1.0477

p = 0.3 1.2065 0.2618 1.4396 0.4324

p = 0.5 0.9153 0.0232 1.6070 0.1823

λ = 4 p = 0.325 2.1327 109.7110 2.1483 95.2510

p = 0.35 2.0299 5.8917 2.1813 5.7313

p = 0.4 1.8504 1.3843 2.2460 1.7506

p = 0.5 1.5636 0.2485 2.3654 0.6504

p = 0.7 1.1470 0.0091 2.5829 0.2805

λ = 6 p = 0.435 2.2419 232.4990 3.1346 213.1300

p = 0.45 2.1828 8.4841 3.1524 8.5183

p = 0.5 2.0022 1.3188 3.2139 1.8840

p = 0.7 1.4356 0.0300 3.4607 0.4498

p = 0.8 1.2059 0.0027 3.5973 0.3062
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Table 2 Numerical results for
M = 5 μ = 2, γ = 1 E[L1] E[L2] E[D(1)] E[Y ]

λ = 2 p = 0.015 3.5181 958.507 1.0543 648.489

p = 0.02 3.3867 37.6015 1.0696 26.6751

p = 0.1 2.1970 0.6046 1.2366 0.8115

p = 0.2 1.5919 0.0548 1.3625 0.3111

p = 0.5 0.9246 3.6 × 10−5 1.6092 0.1675

λ = 4 p = 0.176 3.8373 570.3940 2.0353 485.6580

p = 0.18 3.7748 32.0374 2.0391 28.4827

p = 0.2 3.4920 4.1915 2.0611 4.6828

p = 0.3 2.5421 0.1724 2.1785 0.9057

p = 0.6 1.3540 4.1 × 10−5 2.4784 0.3599

λ = 6 p = 0.255 3.9741 789.6740 3.0248 714.9410

p = 0.26 3.9115 21.8246 3.0270 21.2260

p = 0.3 3.4686 1.4058 3.0563 2.5665

p = 0.4 2.6661 0.0839 3.1473 1.0433

p = 0.6 1.7388 2.5 × 10−4 3.3454 0.5706

Table 3 Numerical results for
M = 8 μ = 2, γ = 1 E[L1] E[L2] E[D(1)] E[Y ]

λ = 2 p = 0.0023 6.2042 1,828.0822 1.0144 1, 224.7346

p = 0.003 6.1119 178.0613 1.0131 121.3286

p = 0.01 5.3390 12.9351 1.0528 10.1176

p = 0.1 2.3508 0.0332 1.2537 0.3528

p = 0.3 1.2753 2.7 × 10−6 1.4558 0.2317

λ = 4 p = 0.102 6.6039 1,373.1455 2.0047 1, 159.5788

p = 0.105 6.4496 30.1096 2.0042 27.5141

p = 0.11 6.2082 9.8736 2.0053 10.3268

p = 0.2 3.7204 0.0447 2.0929 1.1522

p = 0.5 1.6183 3.6 × 10−9 2.3786 0.4592

λ = 6 p = 0.154 6.7515 1,019.2930 3.0021 918.0628

p = 0.155 6.7142 78.7758 3.0014 73.4208

p = 0.2 5.3532 0.5313 3.0133 2.5281

p = 0.3 3.6098 0.0052 3.0748 1.3657

p = 0.5 2.1278 1.2 × 10−7 3.2419 0.7447

7 Conclusions

In this paper, we studied the Israeli queue with at most M groups in the main queue,
where blocked customers form a separate retrial (orbit) queue with constant retrial
rate. The two-dimensional continuous-time Markov process describing the system is
analyzed via both probability generating functions and matrix geometric methods.
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Fig. 2 E[L2] as a function of p, with M = 3, λ = μ = 2 and γ = 1

Table 4 Explicit values of E[L2] as a function of p, with M = 3, λ = μ = 2 and γ = 1

p 0.0727895 0.07279 0.0728 0.073 0.075 0.08 0.1 0.3 0.5 0.7

E[L2] 899,741.62 368,805.54 28,806.47 1,479.80 139.071 41.10 9.42 0.2618 0.0232 0.0009

Various performance measures are analytically calculated and numerical results are
presented. The stability condition, depending on the value p (being the probability
that a new arrival knows a group leader) and on the system’s other parameters, is
established. Numerical examples exhibit how the mean number of orbiting customers,
the mean number of groups, and the mean number of bypasses drop with increasing
values of p, while the mean size of a served group increases with p.

8 Appendix

Proposition 8.1 For a given 1 ≤ M < ∞, the polynomials qm(z) are of the following
form:

qm(z) = zm−1
m−1∏

k=0

(λ(1 − p)k + γ ) + (1 − z)h(M)
m (z), m = 0, 1, . . . , M,

qM+1(z) = (1 − z)h(M)
M+1(z),

where

h(M)
0 (z) = h(M)

1 (z) = 0,

h(M)
m (z) = h(M)

m−1(z)(λ(1 − p)m−1 + μ + γ )z − h(M)
m−1(z)μz(λ(1 − p)m−2z + γ )

−μγ zm−2
m−3∏

k=0

(λ(1 − p)k + γ ), m = 2, 3, . . . , M,
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and

h(M)
M+1(z) = h(M)

M (z)(λ(1 − p)M (1 − z) + μ)z − h(M)
M−1(z)μz(λ(1 − p)M−1z + γ )

+ zMλ(1 − p)M
M−1∏

k=0

(λ(1 − p)k + γ ) − μγ zM−1
M−2∏

k=0

(λ(1 − p)k + γ ).

Proof The proof is conducted by induction over m. First, q0(z) = 1 and q1(z) = λ+γ .
Therefore, h(M)

0 (z) = h(M)
1 (z) = 0. Next,

q2(z) = α1(z)q1(z) − μz(λz + γ )q0(z)

= (λ(1 − p) + γ )z(λ + γ ) − μ(λz + γ )

= z
1∏

k=0

(λ(1 − p)k + γ ) − μγ (1 − z),

so that h(M)
2 (z) = −μγ . Assume now that the proposition holds for any m =

2, 3, . . . , M − 1. For m + 1, we have

qm+1(z) = αm(z)qm(z) − μz(λ(1 − p)m−1z + γ )qm−1(z)

= (λ(1 − p)m + μ + γ )z

(

zm−1
m−1∏

k=0

(λ(1 − p)k + γ ) + (1 − z)h(M)
m (z)

)

−μz(λ(1 − p)m−1z+γ )

(

zm−2
m−2∏

k=0

(λ(1 − p)k +γ )+(1 − z)h(M)
m−1(z)

)

= zm
m∏

k=0

(λ(1 − p)k + γ ) + μzm
m−1∏

k=0

(λ(1 − p)k + γ )

+ h(M)
m (z)(λ(1 − p)m + μ + γ )z(1 − z)

−μzmλ(1 − p)m−1
m−2∏

k=0

(λ(1 − p)k +γ )−μzm−1γ

m−2∏

k=0

(λ(1 − p)k + γ )

− h(M)
m−1(z)μz(λ(1 − p)m−1z + γ )(1 − z). (8.1)

Note that

μzm
m−1∏

k=0

(λ(1 − p)k + γ ) − μzmλ(1 − p)m−1
m−2∏

k=0

(λ(1 − p)k + γ )

−μzm−1γ

m−2∏

k=0

(λ(1 − p)k + γ )
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= μzmλ(1 − p)m−1
m−2∏

k=0

(λ(1 − p)k + γ ) + μzmγ

m−2∏

k=0

(λ(1 − p)k + γ )

−μzmλ(1 − p)m−1
m−2∏

k=0

(λ(1 − p)k + γ ) − μzm−1γ

m−2∏

k=0

(λ(1 − p)k + γ )

= −μγ zm−1
m−2∏

k=0

(λ(1 − p)k + γ )(1 − z). (8.2)

Substituting (8.2) in (8.1) results in

qm+1(z) = zm
m∏

k=0

(λ(1 − p)k + γ ) + (1 − z)

(
h(M)

m (z)(λ(1 − p)m + μ + γ )z

− h(M)
m−1(z)μz(λ(1 − p)m−1z + γ ) − μγ zm−1

m−2∏

k=0

(λ(1 − p)k + γ )

)
.

(8.3)

Now, for m = M + 1, we get

qM+1(z) = αM (z)qM (z) − μz(λ(1 − p)M−1z + γ )qM−1(z)

= (λ(1 − p)M (1 − z) + μ)z

(

zM−1
M−1∏

k=0

(λ(1 − p)k + γ ) + (1 − z)h(M)
M (z)

)

−μz(λ(1 − p)M−1z + γ )

(

zM−2
M−2∏

k=0

(λ(1 − p)k + γ ) + (1 − z)h(M)
M−1(z)

)

= zMλ(1 − p)M (1 − z)
M−1∏

k=0

(λ(1 − p)k + γ ) + μzM
M−1∏

k=0

(λ(1 − p)k + γ )

+ h(M)
M (z)(λ(1 − p)M (1 − z) + μ)z(1 − z)

− zMλ(1 − p)M−1
M−2∏

k=0

(λ(1 − p)k + γ )

−μzM−1γ

M−2∏

k=0

(λ(1 − p)k + γ ) − h(M)
M−1(z)μz(λ(1 − p)M−1z+γ )(1 − z), (8.4)

which after some algebra leads to

qM+1(z) = (1 − z)

(
h(M)

M (z)(λ(1 − p)M (1 − z) + μ)z

− h(M)
M−1(z)μz(λ(1 − p)M−1z + γ )
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+ zMλ(1 − p)M
M−1∏

k=0

(λ(1 − p)k + γ )

−μγ zM−1
M−2∏

k=0

(λ(1 − p)k + γ )

)
. (8.5)

This completes the proof.

Proposition 8.2 For all 1 ≤ M < ∞,

h(M)
M+1(1) = λ(1 − p)M

M−1∏

k=0

(λ(1 − p)k + γ ) − γμM
M−1∑

m=0

1

μm

m−1∏

k=0

(λ(1 − p)k + γ ).

(8.6)

Proof By induction over M . First, assume M = 1. Recall from Proposition 8.1 that
for all 1 ≤ M < ∞, h(M)

0 (z) = h(M)
1 (z) = 0. Then, from Proposition 8.1, we get

h(1)
2 (1) = λ(1 − p)(λ + γ ) − μγ,

which coincides with Eq. (8.6) when M = 1.
Assume now that the proposition holds for M − 1. Using Proposition 8.1 for M ,

we get

h(M)
M+1(1) = h(M)

M (1)μ − h(M)
M−1(1)μ(λ(1 − p)M−1 + γ )

+ λ(1 − p)M
M−1∏

k=0

(λ(1 − p)k +γ )−μγ

M−2∏

k=0

(λ(1 − p)k + γ ). (8.7)

In addition, we use the following two relations

(a) h(M)
M−1(z) = h(M−1)

M−1 (z),

(b) h(M−1)
M (1) = h(M)

M (1) − h(M−1)
M−1 (1)(λ(1 − p)M−1 + γ )

+ λ(1 − p)M−1 ∏M−2
k=0 (λ(1 − p)k + γ ),

�

so that Eq. (8.7) translates to

h(M)
M+1(1) = μ

(

h(M−1)
M (1) + h(M)

M−1(1)(λ(1 − p)M−1 + γ )

− λ(1 − p)M−1
M−2∏

k=0

(λ(1 − p)k + γ )

)
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−h(M)
M−1(1)μ(λ(1 − p)M−1 + γ ) + λ(1 − p)M

M−1∏

k=0

(λ(1 − p)k + γ )

−μγ

M−2∏

k=0

(λ(1 − p)k + γ ). (8.8)

Using the validity for M − 1 yields

h(M)
M+1(1) = μ

(
λ(1 − p)M−1

M−2∏

k=0

(λ(1 − p)k + γ ) − γμM−1
M−2∑

m=0

1

μm

m−1∏

k=0

(λ(1 − p)k + γ )

− λ(1 − p)M−1
M−2∏

k=0

(λ(1 − p)k + γ )

)
+ λ(1 − p)M

M−1∏

k=0

(λ(1 − p)k + γ )

−μγ

M−2∏

k=0

(λ(1 − p)k + γ )

= λ(1 − p)M
M−1∏

k=0

(λ(1 − p)k + γ ) − γμM
M−2∑

m=0

1

μm

m−1∏

k=0

(λ(1 − p)k + γ )

−μγ

M−2∏

k=0

(λ(1 − p)k + γ )

= λ(1 − p)M
M−1∏

k=0

(λ(1 − p)k + γ ) − γμM
M−1∑

m=0

1

μm

m−1∏

k=0

(λ(1 − p)k + γ ). (8.9)

This completes the proof.
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