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ABSTRACT

In an M/M/s queueing system a server that completes service and finds no waiting units in
line leaves for a vacation of an exponentially distributed duration. At the end of the vacation
the server returns to the main system. Two models are analysed. In the first, a server returning
to an empty queue takes immediately another vacation. In the second, only a single vacation
is taken each time. For model 1, formulas for the distribution of the number of busy servers
and the mean number of units in system, L, are derived. Numerical calculations indicate that L
is very closely a linear function of the mean vacation time. Finally it is shown that model 2
may be analysed similarly to model 1.

REsuMmE

Dans une systéme de file d’attente M/M/s si, apres avoir complété le service d’une unité, un
serveur se retrouve devant une file d’attente vide, alors il se retire pour un congé d’une durée
ayant une distribution exponentielle. Une fois son congé terminé, ce dernier revient au systéme.
Deux modeles sont étudiés. Dans le premier modele, si au retour du serveur la file d’attente est
vide, ce dernier se retire pour un nouveau congé. Dans le second modele, un serveur ne peut se
permettre deux périodes de congé successives. Pour le premier modele, on dérive des formules
pour la distribution du nombre de serveurs au travail et pour le nombre moyen d’unités dans le
systeme, L. Des expériences numériques indiquent que L varie presque linéairement avec la
durée moyenne d'un congé. Finalement on démontre qu’on peut réaliser une analyse similaire
du second modele.

1 INTRODUCTION

In this work we study an M/M /s queueing system where servers that become
idle leave for a random period of time called vacation. These vacations may be
utilized to perform additional work assigned to the servers. We consider two
models. In the first, a server returning to an empty queue immediately takes
another vacation. In the second, only a single vacation is taken each time, i.e.
a server takes another vacation only after having served at least one unit. A
similar framework was studied by the authors™ for the M/G/1 queue where
different analytic techniques were used.

Previous studies on the control of multi-server queues were concerned with
variable service capacity. Yadin and Naor® extended works by Romani® and
by Moder and Phillips® by varying the service capacity of the system as a
function of the number of waiting units and the recent history of the system.
Our models differ mainly from these studies in that the return of a server from a
vacation is independent of the queue length. Thus, the control of the system’s
performance may be achieved by changing the length of the vacation period.
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2 MobEL 1

We consider an M/M/s system with arrival rate A and service intensity u per
server. When a server completes service and no units are waiting in the queue
the server leaves for a vacation whose duration is an exponentially distributed
random variable with finite mean 1/8. If the server finds an empty queue at
the end of a vacation he immediately takes another vacation, etc.

The process can be formulated as a continuous-time Markov chain with a

state space {(k,2) : B =0,1,2, ..., s;7 > k}, where k denotes the number of
busy servers and 7 the number of units in the system.
The steady state equations of the process are:

Apoo = ppu, - (1a)
(N + s8)po: = Npo, i1 (t=12.., (1b)
N+ kp)pu = (s — kB + )01 x + kupi i + (B + 1)ppriain
(k=12 ..,5s—1), (lo)
(N + sp)pss = 0ps 1,5 + Sups,sir, (1d)
[N+ kp 4+ (s — B)0lprs = (s — kb + 1)0px—1,s + Npx,i1 + kppr, i
(k=1,2,..,s5;1> k). (le)
Let Pre (R = 0,1, 2, ..., 5) be the probability that & servers are busy, i.e.

Pre = 2 Pii
i=k

Equations for pe can be found as follows: Summation of equations (1b) for

1 = 1,2, ... together with equation (la) yields
s0(poe — Poo) = wpi1- (2)
Forevery k = 1,2, ..., s — 1, summation of equations (le) over7 = k + 1,

k + 2, ... together with equation (1c) gives inductively

(5 —_ k)ﬂ(pk. - pkk) = (k + l)ﬂpk+1'};+1 (k = 0, 1, vew g 1) (33.)

Solving for pe gives the form

E+1
Pre = ((s ——i-_ #i’kﬂ,kﬂ + Due (k=01,...,5s—1). (3b)

Equations (3b) together with

S

D, pre =1 (4)

k=0
and equation (la) give a set of (s + 2) linear equalities in (2s + 2) variables
(the variables being p;: and pre fork = 0,1, ..., s).
Since the number of variables exceeds the number of equations, the set of
equalities is not sufficient to yield a unique solution. We thus have to employ
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an indirect method that will provide us with the information necessary for the
solution of the model.

Our approach will be to define partial generating functions and to exploit
their properties and the information concentrated in them.

Similar techniques were used previously by Mitrani and Avi-Itzhak® and
by Yechiali.®® Those works emphasized the existence of a set of equations that
may give a solution to the problem, but did not find explicit formulas for the
unknown probabilities. Moreover, a proof that the set of equations derived

via the generating functions is an independent one is not presented in the
above mentioned works.

In the present work, we explicitly derive a unique solution to the set of
probabilities p;e.

2.1 Generating functions
For each k define the partial generating function

o

Gi(2) = ; Pkizi (k=0,1,... y S5 |Z| <1). (5)

Multiplying the ith equation of (1b) by 2%, summing over all 7, and adding
(1a) yield

(N1 = 2) + $0]Go(z) = up1r + s8pqo. (6)
Similarly, for each £ = 1,2,...,s — 1, by multiplying the corresponding
equation of (le) by z! and adding (1c) multiplied by z* we obtain
Mz(l —2) — kp(1 — 2) + (s — k)62]Gi(z) — (s — k + 1)62G,_.1(2) =
(B + Duprrrar1z®™ + [(s — k)02 — kulpus® — (s — kb + 1)0zps_1,p_ 155!
(k=1,2,...,5s —1). (7)
Replacing (B 4 1)ppyi1,641 in equations (6) and (7) by the left-hand side of
(3) gives
N1 — 2) + $8]Go(z) = s6pq, (8a)
(M2(l —2) — ku(l — 2) + (s — k)02]Gi(2) — (s — k + 1)02G,_1(2) =
(s — R)Oprez™™! — (s — b + 1)8py_1,02* (B =1,2,..., 5 —1). (8h)
In a similar way we can find for & = s,
A2(1 — 2) — su(l — 2)]G,(z) — 602G, 1(2) = —0p,_1 o3 9)

That is, equation (8b) holds for £ = s as well.
Fork=0,1,2, .., slet

fi(z) = M2l — 2) — ku(1 — 2), (10a)
hi(z) = (s — k)bz. (10b)

Equations (8) and (9) are now rewritten as
[fo(z) + he(2)]Go(2) = ho(3)pos (11a)

[fk(z) + hi(2)]1Gr(2) — hi—1(2)Gi1(2) = hi(2)prez® — hk—l(z)m—x,ozkf"l
iR = 1y 2 o 550 (11b)
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The set (11) enables us to calculate the G, (2)’s recursively if the (s 4+ 1)
probabilities pe are known. Thus we have to find (s + 1) additional equations
in the (s 4 1) unknown p;.’s.

A first equation is obviously

,CZ% Pre = 1. (12)
A second equation will be
:@1 Epre = \/p. (13)

To show (13) we proceed as follows: summation of the first & equations of
(11) (B =0,1,2,...,5) gives

Go@) = ho(@)poe/(ole) + ho(2)). (14a)
Gie) = h@peod — T LG/ () + (@)
(k=1,2,...,5s—1). (14b)
[:@)Gie) = = 3 fel@)Gile). (14c)
Substituting (10a) for f,(z) and dividing by (1 — z), equation (14c) yields
3 (b~ M)Gile) = 0. (15)
Since Gi(1) = pye, equations (12) and (15) imply that

2 kpie = N
k=0

That is, the average number of busy servers is M u, as in the ordinary M/M/s
system. In other words, the average load carried by each server is \/su per unit
time, and as long as \/u < s the system will reach steady state.

To find the remaining (s — 1) equations let

A(z) =
fo(Z) + ho(z) 0 0 0 0
'—ho(Z) fl(Z) + hl(Z) 0 0 0
0 —hl(Z) fz(z) + hg(z) 0 0
0 0 0 o o1 @)+ Bos(2) 0
0 0 0 —he_1(2) fs(z) + hy(z)
Go(2) bo(z)
G1<Z) bl(Z)
g(Z) = : ) z2) = .

Gy(2) be(2)
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where b¢(2) = ho(2)poe
and bi(2) = hi(2)prez® — hy_1(2)pr_y o2*1 (k=1,2,..,5s).

Equation (11) when written in matrix form is
A(z)z(z) = b(2), 2] < 1. (16)

Equation (16) is a set of (s + 1) linear equations and for all values of z where
A (z) is non-singular Cramer’s law implies

14()|Gi(2) = [4:(@)] (B =0,1,...,5), (17)

where |A4| stands for the determinant of matrix 4, and the matrix 4,(z) is
obtained by replacing the kth column of 4 (z) with b(z). Since |4 ()] is a con-
tinuous function of z, equation (17) holds for every [z| < 1. Also, since for any
z € [0, 1], Gx(z) > 0, then every z which is a root of |4 (2)| is also a root of
IAk(Z)|~

Proposition 1
The polynomial |4 (z)| has exactly (s — 1) distinct roots in the interval (0, 1).

Proof
Clearly,

4@ =TT 146 + m@).

|4 (z)] is a polynomial of degree 2(s + 1) whose roots will be denoted by
{zi(R)|k = 0,1,...,5;1 =1, 2}, where z1(k) and z2(k) (z1(k) < z3(k)) are the
roots of the quadratic equation

fe(2) + hi(z) = 0. (18)

For k = 0, equation (18) means A\z(1 — z) + s6z = 0, and its roots are z, (0) =
0 and 2:(0) = (A + s8)/A > 1. For k = s, equation (18) gives A\z(1 — z) —
su(l — 2) = 0, the roots of which are z1(s) = 1 and 2:(s) = su/x > 1. We
now show that fork = 1,2, ..., s — 1,0 < z1(k) < 1,2:(k) > 1 and z,(k)
z21(7) for B # j. For 0 < k < s equation (18) takes the form

Az2 — [(N+ ku) + (s — k)6]z + ku = 0. (18")
The roots of (18) are
z12(k) = [(N + ku) 4+ (s — B)8 £/0:1/(2)), (19)
where

Qe = (A — k)2 + (s — k)02 + 2(\ + ku) (s — k). (20)

For X\ > 0, >0, (s — k)8 > 0 the following inequalities hold
{> [N = k) + (s — k)6)2 (21)
Qey> [k — N) + (s — k)6)? ' (22)
< LN+ kp) + (s — &)6)2 (23)
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Since z (k) and z, (k) correspond, respectively, to the plus and minus signs in
(19), (21) implies that z,(k) > [\ + (s — k)6]/N > 1. By (22), z:(k) <
N+ ku+ (s — k)0 — (ku — XN+ (s — k)8)]/(2\) = 1, and, by (23), z1(k) >
0. Thus, we have shown that |4 (z)| has exactly (s — 1) roots in the open inter-
val (0, 1). It remains only to show that they are distinct.

For every £ = 1,2, ..., s — 1 the roots z;(k) and z,(k) satisfy

21(k)zo (k) = ku/\, (24)
z1(k) + 22(k) = N+ ku 4 (s — k)O) /N = 1 + s8/\ + k(u — 6)/\. (25)

If, forsome 0 < k # j < s5,21(k) = 2:(j) = 2o then, from (24), 2, (k) /22 (j) =
k/j. On the other hand z5(k)/22(j) can also be calculated using (25).
O, Lu—0
z2(k)=1+>\+k 2
22(J)

oy (26)

A

1+ +80 g
This expression can be equal to k/j if and only if 1 4+ s8/N — 2, = 0, which is
impossible since z, < 1.
With this contradiction the proof is complete.
Letz; = 21(j) (j =1,2,...,s — 1). Equation (17) implies

|4x(z,)| = 0, k=1 ..,57=12..,s — 1. (27)

Note that we delete 2 = 0 since |4(z;)| = 0 for any 5(z).

However, for each z;, the s homogeneous equations of (27) differ from each
other only by a constant multiplier.

This follows since, by (17), for any pair 1 < 7 # k < s and for any |z < 1,
|[4:(2)|/|4x(2)| = Gi(2)/Gi(z). That is, the equation |4,(z;)| = 0 may be
obtained by multiplying the equation A;(z;) = 0 by the positive constant
Gi(z;)/Gi(z;).

Thus, (27) yields only one equation for each z; (j = 1,2,...,s — 1), and
together with (12) and (13) we have a set of s + 1 linear equations in the
s 4+ 1 unknowns pe (k. =0,1,2, ..., 5).

It now remains only to show that this set yields a unique solution.

For each z;let [4,(z;)| = O represent the single equation just mentioned. By
expanding |A;(z;)| progressively by the (j 4+ 1)th column, we obtain

J i-1

lAs(Zj)l = Z_% {0:(z5) H [ fx(z;) + hi(z))] :I:Ii hi(z;)} =0
(G=1,2,...,s—1). (28

Since b4(z;) is a linear combination of p;s and p,_1.«, we can derive, by some
elementary operations, the following recursive formula:

Dije = :Zo Ji(z)Dy,;-1(2) P10 /hi(25) (U= 1; 2yn i wys = L1}, (29)_
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where

2 (s — k)o

D; () = T

@ =l e The

This set of recursive equations, together with (13), determines uniquely the
probabilities pis, pae, ..., pse as a function of pgs. Then poe is obtained from
(12).

Moreover, it is easy to see that if A\/u = s then pse = 1.

Given the p;e's, the generating functions G,(z)’s are explicitly calculated
from (14).

We also note that from (1b) we have

56 R ‘
P°i=>\+so(>\+se)1’°" (30)

That is, the number of customers in the system when all servers are in vaca-
tion is geometrically distributed.

2.2 Mean number of units in system
Let pe,; denote the probability that ¢ units are present in the system. Thus

Pei = kz_:‘)pki (1'20,1,2,---)y (31)
where
pri = 0 for i < k.

The generating function of the number of units in system is given by

oo

G(2) = Z% peiz’ |z] < 1. (32)
=
Clearly, by (5),
G(z) = L_ZO Gi(2). (33)
The mean number of units in system, L, is given by
L=G0) =3 G/ (34)
k=0

Differentiating (14a), (14b), and (15) yields respectively

G/ (1) = S%po. (352)

; (>\ - iﬂ)?io
&) =

+kpko (k=1,2,...,5—1), (35b)

s—1

A+ g(x — u)pie
S — A

G,/ (1) = (35¢)
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By substituting in (34) the terms of G/ (1) from (35) for & = 0, 1, ..., s we
obtain, after algebraic manipulations,

bt B (Y S e o

1—p 1 —pi=t

where
p = N (su).

2.3 An example: s = 2
When the number of servers is s = 2 the set (29) yields a single equation,
namely

Al — 21)
le(l — 21) + 2021

Pre =

2y is derived from (19) as

2P0 ®.

Bi= o (O a4 0) = [+ o+ 0) — Dl
Together with (12) and (13) we obtain
Pon = ClD\Zl(l - 21) + 2021](1 = p),
pre = a2X(1 — 2:)(1 — p),
P2e = aX(2 — z1) (1 — 2)p,

where a = [A(1 — 2,2) + 262,]".
The mean number of units in system is given by

L=y L N — 21) + 6]/6.

2.4 Numerical results

Numerical calculations were performed by the authors to obtain values of i,
the mean number of units in system, for values of s running up to 15, and for
various values of the offered load, \/u, and of 1/6. (The calculations were

performed on a cpc 6600 computer of Tel-Aviv University; 164 seconds of cp
time were required, for example, to calculate 18,000 distinct values of L for the

TABLE 1
MEAN NUMBER OF UNITS IN SYSTEM FOR VARIOUS VALUES OF S, p, AND 1/6
s=25 s =10 s =15
1/6\ p 0.2 0.6 0.9 0.2 0.6 0.9 0.2 0.6 0.9

0.0 1.001 3.354  11.362 2.000 6.152 15.019 3.000 9.072 18.924
0.1 1.028 3.498 11.634 2.026 6.325 15.425 3.026 9.252 19.425
0.2 1.054 3.628 11.875  2.052 6.479 15.768 3.051 9.413 19.841
1.0 1.250 4.500 13.500 2.250 7.500 18.000 3.250 10.500 22.500
2.0 1.450 5.450 15.314 2.488 8.598 20.417 3.492 11.675  25.337
4.0 1.921 7.202 18.748 2.948 10.601 24.908 3.960 13.822 30.556
6.0 2.351 8.872 22.085 3.396 12.498 29.224 4.418 15.853 35.540
8.0 2.774 10.503 25.380 3.837 14.345 33.461 4.869 17.830 40.417
10.0  3.194 12.110 28.652 4.273 16.162 37.654 5.316 19.774 45.933
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L p=0.9
(@S =5
20.0 4 p =0.8
p=0.6
p=20
///p =0.2
p=0.1
0.0 T T 1 T |
0.00 4.00 8.00 1/6 -
40.04L
p=0.8
20.0 +
p=0.6
/// p=0.4
——‘——’//—// p = 8%
p = VU,
0.0 ; ¢ : | T
0.00 4.00 8.00 1/6
L
=0.9
() S =15 #
40.0
p=0.8
20.0 - p=20.6
//p = 0.4
///p =0.2
p=20.1
0.0 T T T T T
0.00 4.00 8.00 1/6

F1G. 1. The mean value of units in system, L, as a function of the mean vacation time, 1/6,
for various values of p.
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following values of the parameters: s = 95, 10, 15; p = 0.1, 0.2, 0.4, 0.6, 0.8,
0.9; and 1/6 = 0.01 (0.01) 10.00). Some selective results are exhibited in
table 1. The numerical results show that L is closely a linear function of the

mean vacation time for all values of A/u and s. Figure 1(a, b, ¢) demonstrates
this near-linear relation.

3 MODEL 2

We now consider a variation of the model studied in Section 2. As before, the
underlying structure is an M/M/s system with servers’ vacations. However,
a server now takes only a single vacation at a time. When he returns to the
main system he starts serving immediately if there are units waiting in the
queue. If the queue is empty he waits until his turn to serve comes.

In the sequel we use the same notation as for the first model, i.e., the arrival
rate is A, the service rate per station is i, and a vacation time is an exponentially
distributed random variable with mean 1/6.

The state space is now the set {(k,1) : 4,k = 0,1, 2, ..} where this time &
denotes the number of servers available for service — busy or idle — and %, as
before, denotes the number of units in the system.

The balance equations in this case are

@) (N + s8)poo = ppui, (37)
(b) (N 4 s8)po; = Ao, i1 z=1,2.),
© A+ (= F)0bwo = pprpri+ (s — k4 Dpyo (b =1,2,...,5 — 1),

d) AN+ (s =R+ iu)ps = (¢ + Dupiir, o+ (s — b+ 1)80pr—1.4 + Mpr.11
+6ikkﬂpk.k+l (1’ = ]-72y "'yk;k . 1)27 ey § 1)!

(e) W+ (s — k)6 + ku)pri = (s — k + 1)0pr—1,: + Mpr,io1 + kupy iv1
G=k+1,k+2..:k= 1,2, 38 = 1),

(f) ()\ + 1'“)Ps1. = 0ps-—l.i + (1 - 610))\Ps,i-—1 (1* = Oy ly ey § 1)7
(g) (>‘ + sP)Psi = eps—-l.i + )\Ps,i-l + Sﬂps,i»rl (’L =395, + 1; )1

l,i1=j
where 64 = {0, ; #;-
As in model 1, we cannot solve the above system of equations directly and

we shall have to use the generating functions technique. Thus, for each & = 0
I, ..., s we define

’

Gk(Z) = Zo Pkizi.
From equations (37a, b) we get

(N1 — 2) + $8]Go(2) = up. (38) .
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From equations (37, c, d, e) one derives

2(1 — 2) — ku(l — 3) + (s — R)62]Gi(2) — (s — & + 1)02G;_1(2)
k+1

k x
= u 1_21 Pit1,i8 — uz ‘_[,1 iprid — ku(l — 2) ZO priz’

(k=12...,5s—1). (39)
Equations (37f, g) yield

Mz(1 —2) — su(l — 2)IGs(2) — 02G,-1(2)

= T M2 izl 'ipsizi - Sl‘(l - Z) Zu psizi- (40)

If we write equations (38), (39), and (40) in matrix form as was done in Section
2 (i.e. A(2)g(z) = b(2)), it is readily seen that although the vector b(z) is
somewhat different, the matrix 4 (z) is exactly the same one as in model 1.
Hence, proposition 1 applies here too, and using (27) we have (s — 1) equations
in the unknowns p;, (k = 1,2,...,5;7 =0, 1, .. , k). From equations (37a),
(37b), (37c), (37d), and (37f) we derive s(s + 1) + 1 equations in the
(s + 1)(s + 2)/2 unknowns p, (¢ = 0,1, ... ,5:4 =0, 1, ..., k). Lettingz =1
in (38), (39), and (40) we obtain other (s + 1) equations with (some of) the
above probabilities and with additional (s + 1) probabilities pre (k = 0,
1, ..., s). Adding the equation

2 bre=1
x=0.
we altogether have a system of [(s — 1) + (3s(s + 1) + 1) + (s + 1) + 1]
= (s + 1)(s + 4)/2 equations in [(s + 1)(s + 2)/2 + (s + D]=(¢+1)
X (s + 4)/2 unknowns.
Solving for these probabilities and substituting in (38), (39), and (40), we
obtain the generating functions G, (z) for 2 = 0, 1, ..., s.
The mean number of units in system may now be found in a similar way as
in model 1. Also, result (30) applies here as well.
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