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ARTICLE INFO ABSTRACT

Arﬁclf? history: We study M/M/c queues (c =1, 1 < ¢ < oo and ¢ = o) in a 2-phase (fast and slow) Markovian random
Received 6 August 2008 environment, with impatient customers. The system resides in the fast phase (phase 1) an exponentially
Accepted 18 February 2009 distributed random time with parameter # and the arrival and service rates are /1 and g, respectively. The

Available online 27 February 2009 corresponding parameters for the slow phase (phase 0) are y, %o, and p, (< ). When in the slow phase,

customers become impatient. That is, each customer, upon arrival, activates an individual timer, expo-
ifyword?: nentially distributed with parameter ¢. If the system does not change its environment from 0 to 1 before
ternating queue the customer’s timer expires, the customer abandons the queue never to return.

%;ﬁ;; We concentrate on deriving analytic solutions to the queue-length distributions. We derive, for each
M/M /oo case of ¢, the corresponding probability generating function, and calculate the mean queue size. Several
Slow server(s) extreme cases are investigated and numerical results are presented.

Impatient customers © 2009 Elsevier B.V. All rights reserved.
Abandonment

1. Introduction

Models with customers’ impatience in queues have been studied by various authors in the past, where the source of impatience was
either a long wait already experienced in the queue, or a long wait anticipated by a customer upon arrival. There is an extensive literature
on this kind of models and we refer the reader to [3,6,8,10,15,16,18,19] and references there. However, recently, Altman and Yechiali [1,2]
analyzed models where customers become impatient only when the server(s) is (are) on ‘vacation’ and unavailable for service. That is, cus-
tomer’s impatience arises only when, upon arrival, no servers are ready to serve. The M/M/1, M/G/1, M/M/c and M/M /oo queues were
investigated and various performance measures calculated. Yechiali [21] then analyzed M/M/c systems (for 1 < ¢ < o) that suffer disas-
trous breakdowns, resulting in the loss of all customers present (e.g. all running and waiting sessions). While a repair process is taking place,
the flow of new customers continues but they become impatient since no server is available. Recently, Martin and Mitrani [12] studied an
M/M/1 model, with an intermittently available server (the server goes through breakdowns and repairs). While the server is unavailable,
the stream of new arrivals continues while customers may abandon the system. The main difference between [12,21] is that in the former
abandonments occur also when the server is active.

In this work, we examine the case where customers’ impatience is due to a slow service rate. For example, the server might be occupied
with other, higher priority, tasks, but is not totally unavailable. In other words, the server keeps on working but with a slower rate than
before. In order to analyze the model, we consider an M/M/c queue (c=1, 1 < ¢ < oo, ¢ = c0) operating in a 2-phase random environ-
ment. That is, the system oscillates between two phases, denoted by 0 and 1, residing in phase (environment) j, j = 0, 1, an exponentially
distributed random time with parameters y and #, respectively. Under environment 1, the Poisson arrival rate is 4 and the service time is
exponentially distributed with parameter p. However, when operating under environment 0, the Poisson arrival rate is /g, the service rate
drops to i, < f, and customers become impatient. That is, each customer, upon arrival, activates an individual timer, exponentially dis-
tributed with parameter ¢. If the system does not change its environment from 0 to 1 before the customer’s timer expires, the customer
abandons the queue never to return.

Queues in random environment have been long studied in the literature. We mention works by Yechiali and Naor [22], Yechiali [20],
Neuts [13], O’Cinneide and Purdue [14], Baykal-Gursoy and Xiao [4] and Gupta et al. [11]. We indicate that, if customers are patient
and do not leave the system when the server becomes slower, the current model reduces to the original M/M/1 queue in 2-phase random
environment studied in [22,11]. All the above random-environment models can be formulated as a level (environment) dependent quasi
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birth-and-death processes. Bright and Taylor [7] presented such a formulation, using Neuts Matrix Geometric approach, and proposed algo-
rithms for computing the equilibrium queue distributions. However, their methods are based on a truncation of the possible number of
levels (=number of customers in the system). In contrast, using classical approach of probability generating functions, we present analytic
formulas for various characteristics of the processes considered.

The paper consists of the following models: In Section 2 we consider the M/M/1 queue. After deriving the system’s steady-state balance
equations we obtain and solve a differential equation for Go(z), the (partial) probability generating function (PGF) of the queue size when
the server is slow. Gy(z) is a function of Py and Py, the fraction of time the system is empty in each environment, respectively. The cal-
culation of those probabilities completes the derivation of Go(z). Following that, the PGF of environment j = 1, G;(z), is derived by using a
direct relation between the two PGFs. The mean total number of customers in the system is then calculated. Various extreme cases, result-
ing when some of the parameters approach 0 or o, are examined, and numerical examples are presented. Section 3 deals with the M/M/c
model, for a finite c. We derive the PGF Gy(z) by solving a differential equation and calculating the required 2c boundary probabilities for
the complete representation of Gy(z), and then of G, (z). Performance measures similar to those of Section 2 are calculated. In Section 4 we
study the M/M /oo case. In order to derive the corresponding PGFs, we utilize the (no abandonment) 2-phase model studied by Baykal-Gur-
soy and Xiao [4], where an M/M/oo queueing system subject to partial failures is investigated.

2. The single server case
2.1. The model

Consider an M/M/1 type queue operating in a 2-phase random environment, where the underlying process is a 2-state continuous-time
Markov chain as described in the introduction. It is assumed that the underlying 2-phase environment Markov process is independent of
the arrival, service and impatience processes, and we investigate the system in steady-state.

Let L denote the total number of customers present in the system and let J denote the server’s environment (0 or 1). Then the pair (J,L)
defines a continuous-time Markov process with transition-rate diagram as shown in Fig. 2.1.

2.2. Balance equations and generating functions

LetPj, =P(J=j,L=n) (j=0,1,n=0,1,2,...) denote the steady-state probabilities of the random process (J,L). Then, the set of balance
equations is given by

izo {71202(io-i-V)Poo:111’10-1-(#0:1-5)1)017 2.1)
— n>1:(o+ 7+ Uy +nEPon = 2oPon-1+ NP + (U + (N + 1)E)Pons1,
i=1 {n:05(7»+’7)P10:VP00+/1P11, 22
— n=21:0A+u+n)Pin=P1a1+ YPon + UP1pi1-
Forj=0,1let P, = Y ;" Pj» = P(J =j). Then, by summing (2.2) over n we get
(A+n)P1e + W(P1o — P1o) = AP1s + p(P1. — P1o) + YPo.,
which leads to
NP1 = yPo..
Since Py, + P1. = 1, we get
Py, = /. P, = i . (2.3)

7N T v+

Eq. (2.3) can also be obtained by taking horizontal cuts between the two environments in Fig. 2.1. Clearly, (2.3) can be derived directly by
considering the environment fluctuations as an alternating renewal process.
Now, define the (partial) probability generating functions (PGFs)

= iPo,qz”, G] (Z) = isz".
n=0 n=0

By multiplying each equation for n in (2.1) by z", respectively, summing over n and rearranging terms we get
A u A u A, U A u A
I n I n I n I n I n

A o +& A w28 4, ty+né& Ay py+(n+D¢ A,

L: 0 1 2 T n n+1 T

Fig. 2.1. Transition-rate diagram for the M/M/1 case.
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Go(@)[E(1 = 2)2] = Go(2)[(%0z — 1ho)(1 = 2) + 2] — 112G1(2) + (1 — 2)Poo, (2.4)

where Gy (z) = £Go(2).
Similarly, using (2.2) we obtain

(
G1@)[(2z = W)(1 = 2) 4+ nz] = y2Go(2) — u(1 = 2)Pyo. (2:5)
Define
%(z) = (loZ — po)(1 = 2) + 7z, p(2) = (12— W) (1 -2) +nz.
Then, (2.5) can be written as

_ 7260(z) — p(1 = 2)Pyo .

Gi(z 2.6
Substituting (2.6) in (2.4) leads to the following differential equation:
_ 2
G/O(Z) _ OC(Z)ﬂ(Z) T/I'J/Z Go(z) _ W#ZPIO + )uOﬁ(Z)POO . (27)

¢z(1-2)p(2) P(2)z

Before solving the differential equation (2.7), let us examine f(z). The roots z;, z, of the quadratic polynomial §(z) = —/i(z — z1)(z — z2) are

A+ AN TA G+ u+n)? —4u
21 ’
where z, -z, = ﬁ and z; +z; = ’*/ﬂ Furthermore, z; as a function of the parameter # represents the Laplace Stieltjes transform of the busy

period in a regular M/M/1 queue with arrival rate 2 and service rate . In addition, f(0) = —y < 0, 8(1) = 5 > 0, and (+ooc) < 0. Therefore
z>1>2z>0.

Z12 =

2.3. Solution of the differential equation (2.7)

Define the coefficient of Go(z) in (2.7) as f(z) = — 228212 £(7) can be represented as f(z) = —yby? (i +%Z) where

¢(1-2)zp(z) =21 1

%—21 UL 4 721(22—1)>0 N = %_22 72122_22722(21_1)
Z—21 -7 Z— 71 ’ -1 -2 Z -2

<0.

In order to solve (2.7), we multiply its both sides by eJI@ (see [5, p. 30]). Therefore,

/f(z)dz = —1224—% In(z) +¥ Injz—z)| —g In(z, - 2),

and
194 _ ¥ 77 _ 2[¥(z, - 2) 7. (2.8)

Multiplying both sides of (2.7) by (2.8) gives the following:

dr/, i m il _ (NPP10Z + Uof(Z2)Poo\ izt m Bl
E[(e 22— 21T (2 - 2) )Go(z)]7<W>e Y- 2| (- 2) F. (2.9)

It seems convenient to split Eq. (2.9) into two intervals, as follows. Define

0% Ho m _uN
ki(zy=e7z7(zy—2)(z2—2) 7, z<zZ,
iz to ™ N

kyz)=e7z7(z—71)7 (&2 fz)’%, 22z,

then Eq. (2.9) can be written as a set of two equations,

&1k (2)Go(2)] = (MRl by (2), 2 < 2,

) jﬂ(Z)zf . (2.10)
$le@)Gol@)] = (Mgl @), 2> 2.
Integrating the upper part of (2.10) from O to z (z < z;) and the lower part from z; to z and rearranging terms gives
%HP]O jé k/;((xx)) dX-‘r”?UPoo fg @dx s<z
k] (Z) s X 41
Go(z) = 2 - (2.11)
%P]ofh ‘;T(xx))dx+%Poole #dx 2>z
k2 (z) ’ -

Eq. (2.11) expresses Go(z) in terms of Go(0) = Pgo (the proportion of time the server is in environment 0 and there are no customers in the
system) and in terms of G;(0) = P, (the proportion of time the server is in environment 1 and the system is empty). Thus, once Py and Py
are calculated, Go(z) is completely determined, and G;(z) is obtained by using Eq. (2.6).
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2.4. Derivation of Poo, P10, E[Lo] and E[L;]

We write

nu 1 k() Ho T kX
n _ PO. _ Go(l) _ ¢ Pm jz] BXx) dx+ ¢ POO le X dx

n+vy k(1)
This gives
1’[@’(2( / d / kZ (X)
= X + UoP, dx. 2.12
P B + UoPoo p (2.12)
Next, by setting z = z; in the upper part of Eq. (2.11), we get
nu 1k (x) uo / ki (x)
=P d P dx =0. 213
¢ 10 o P Xrg o 0 X * ( )
Since both numerator and denominator vanish at z = z;.
Define

V41 77 1
5 / kl dx, T:/ kl(x)dx, / kz dx, V:/ ko (x)
o X “ N X

then, by the definitions of k;(z), k»(z) and B(z), it follows that T,U,V > 0 and S < 0.
From (2.13) we get

HoPooT

pio = -0l (2.14)
Substituting (2.14) in (2.12) yields
néka(1)S
= . 2.15
Ho(n +7)(SV —TU) (2.15)
Finally, from (2.14) we get
Prp=——<ke(DT (2.16)

W +7)(SV —TU)"

Notice that S < 0 and SV — TU < 0, so Py and Pjo are positive.

One can show formally that the system is ergodic. Intuitively, we indicate that the system is always stable since, with any set of param-
eters A>0,u4> 0,4 > 0,1, = 0,7 >0,17>0,¢ > 0, the abandonment process, whose overall rate increases with L, prevents explosion.
Alternatively, the system is stable if and only if Py and P;o are positive, which always holds for the above set of parameters.

We now calculate mean queue sizes. Employing vertical cuts in Fig. 2.1 gives

Z0Pon + AP1n = UP1 1 + (o + (N + 1)E)Pon1, n =0 (2.17)

Summing (2.17) over n yields
J0Pos + 7P1e = W(P1s — P1o) + tg(Poe — Poo) + & Z n+1)Ponii. (2.18)
n=0

Define G}(z)|zz1 =E[Lj] = > onPjn,j = 0, 1. Then, Eq. (2.18) is written as
JoPo. + AP1. = H(P]. — P]o) + ,UO(P(). — Poo) + fE[Lo] (219)

Eq. (2.19) simplify testifies that the mean arrival rate (left hand side) equals the sum of the effective service rate and the abandonment rate.
Thus

70Pos + P1e — ((P1e — P19) — Ho(Poe — Poo)

ElLy] = 7 (2.20)
By defining / = 4oPo. + APi., ft = UyPo. + UP1., Eq. (2.20) can be written as

E[Lo] :2*ﬂ+ﬂ?o+ﬂopoo. (2.21)
Differentiation of G;(z) in (2.6), setting z =1 and using (2.21) give

Elly] = Y — 1) + E(A = [)P1a + Y HoPoo + UP10(y + &) _ (2.22)

n
The mean number of customers in the system, E[L], is given by E[L] = E[Lo] + E[L4].

2.4.1. Numerical examples

Example 1. Consider the following set of parameter values:
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=4<u=7 l=2<ly=5 y=2, n=2, ¢=1
With the aid of “Maple”, we get
T=0.0019837, S=-0.0008534, U =0.00473321, V =0.00687647, k,(1)=0.05479,
resulting in
Py = 0.3064, Pyo=0.2544, Po.=P;.=05, E[L)]=0.3131, E[L,]=04536, E[L]=0.7667.

Example 2. Next consider the values 1 =7 > u=4,% =5 > u, =2,y =5, = 2 and a small abandonment rate ¢ = 0.1. The calculations
lead to

T=5724x10%, §=-4881x10%2, U=5035x10"%, V=8735x10"%, ky(1)=5854x10%,
2 5

Poo=1.234x10"", P,y =3.617x107", P, =5, Pu=3,

That is, even with 4 > u, 4o > p,, and with small &, the system does not explode.

ElLo] =30, E[L,]=76.0714, E[L]=106.0714.

2.5. Extreme cases

We denote by G (2). Py, P! E[L{"], E[L”], k" (z) for j = 0,1 the PGFs, steady-state probabilities, expected values and the functions k; cor-
responding to the following extreme cases, wherei=1,2,...,7

Since it is not a straightforward procedure to derive the results for the following extreme cases directly from the general case, we treat
each case by itself.

1. pu, — 0.

Assume that i, — 0. That is, when j = 0, no service is rendered. The system in this case alternates between a regular M/M/1 queue and
an M/M/oco-type queue in which the service rate is replaced by the abandonment rate.

In this case, (z),z1,z;,M and N are as given in Sections 2.2 and 2.3, and

K@) =e ¥z -2%@n-27 K@=e¥z-z)"@-27".

Solving a differential equation similarly as in Section 2.3 gives

”Luplo 0 /3

00 Zz

) 4 g Zl-,
fk%”(z)

K (%)
nu 10sz, </x(;dx
eky (2)

To obtain the probabilities P and P(llo) we repeat the process from Section 2.4 and derive two equations connecting P and P\{),

s [t } |
v+nZTZ£_/1 500 }

Now, l(nowmg PO0 and Pm, any probability P{;’ and P!
ferentiating G )(z) and G )(z), respectively.
For the set of parameters A=4,u=7J1o=2,y=2,n=2and £ =1 we get

Gy'(2) =

= 2.

Ply = eki)(

2 kY (x
Py = -k (1) }z(i)) dx -

(D for n > 1, can be calculated progressively by using the balance equations, or by dif-

in»

L)
o BX)
2.7y—0,n>0.
With 7 — 0 we have P = 0, and therefore P{?) = 0 for all n.

The model now transforms 1r1to a state mdependent M/M/1-type queue augmented w1th state-dependent abandonment rates.
In this case, since 7 — 0, k® (z) = e~z and therefore, utilizing (2.11), we can write G (z) as

) :“0 Gt [ oy
Gy'(z) = P 5 e cx< dx.

dx = —0.072553, / kz(())dx =0.010429, P{)=0.12983, P! =0.18762.
Z

We write

liu

/ e ik — <)—0) N (Gamma <,u 0) Gamma (M g AOZ)) ;
7 ¢ ¢ gre

where Gamma(z) = [;° t“'e~dt, and Gamma(o,z) = [;° t*'e~tdt is the incomplete Gamma function (see [9, p. 47]).
The above gives
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Ho iz

Z ox Y ?
/ e X dx = <—°> / ettt de,
0 S 0

and therefore

igZ

C2(z) = ¥ty (202) T EEPR) /7 ettt dr. (2.23)

By setting z =1 in (2.23) (using G0 (1) =1) we get szo). That is,
o1

‘0
i Mo o ¢
Pézo) = e’?l')),o‘ g’]’?o {,“0/ et dt ,

and therefore

11 2

: ] ;
G (z) = e 1072 { / Cetttdr / Ce ittt e, (2.24)
0 0

Once P is known, we can derive PY for all n by using the formula

n

On: nHlLl

j=1

-1,2,...,

mf‘ﬂ'

where
n -1
H # = f-Gamma(l +&) (f”“ Gamma(l +n+ﬂ0)> )
j=1 IuO +.]é < f

We thus have

ng:P&)(AO)"éGamma(l+%><“”“ Gamma<1+n+'u°>> , n=12...

3.y>0,n—0.

In this case we have P =0, and therefore P$) = 0 for all n > 0, resulting in G’(z) = 0. Our system then becomes a regular
M(A)/M(p)/1 system.

4. ¢ — co.

This system can be described as an M/M/1-type queue, where the system suffers disastrous breakdowns, occurring when the server is at
its functioning phase. A failure of the system rejects all customers present, and a repair process starts immediately. There are no arrivals
during the repair process.

A transition-rate diagram for this case is depicted in Fig. 2.2.

With ¢ — oo, the differential equation (2.7) gives Gf;”/ (z) = 0. Also, G(O‘” (2) = PE)‘B) for all 0 < z < 1. Substituting z = 1 gives

G =P =Py =

To calculate P!} we use Eq. (2.6) and get

Poz — u(1 —2z)P\y
G¥(z) = 10 g; Py (2.25)
By setting z = z; in (2.25) we get

PPzt = p(1 - 21)Pig,
and therefore
P — mz _
O p+m -z)

A H A

. I N Y T
In ;77/—' :77‘/—”
I7

J=0

L: O 1 2 e n n+1 Tt

Fig. 2.2. Transition-rate diagram when ¢ — oo.
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With known P$ and P\?, G¥(z) is obtained in a closed form as follows:
60z - 2 10 =2 ) i
! B(z) Ay +mz—2)(1 —z1)’
since f(z) = —A(z —z1)(z — z2).

Gg‘“ (z) can also be represented as a power series in the following way:

Y (2) = - m . o
1@ p+m(d-z) , (1__) ;Mw (1 -2z

i 4) () — 5~ p@n i 4) _ o
Since G\¥(z) = 1 oP\2 2", it follows that P\?) = R foralln > 0.

As an illustration we take the set 1 =2, 1 =2,7=1and y = 3. Then, z; = 0.5, z, = 2, P§) = 0.25 and P{} = 0.375.
Comparing to the general model, we use Eqgs. (2.15) and (2.16) with 4o = 3, , = 0.5 and ¢ = 10,000, and get

T =20000.69, S=-3332.6613, U=3332.892, V =0.6928888, ky(1)=0.99963, Pg = 0.249873, P;o=0.374898.

5.¢£—0.

Assume ¢ — 0. Then the system reduces to the model described in Yechiali and Naor [22]. The condition for stability is jt — 2 > 0 (jtand 2
are as defined before).

In this case no differential equations are involved and one has to solve two algebraic equations, (2.4) and (2.5), connecting c§f> (z) and
G (2). The solution gives

651z = 1= AMHPZ+ HoP@PR] o) ) _ (1= 27HoP2 + LA(@)PrG]
0 Mz —o(z)p(2) ! Mz — a(z)B(z)
Defining
h(z) = —4202” + (Ao + oo + Ao + Mo + P2)Z* — (Mo + Ao + [iflo + Mo + VH)Z + [ilo,
we get

5) NPz + toP(2)PG; ), _ THoPioz + Hou(2)Ply
GO (Z) h(Z) ’ Gl (Z) - h(Z)

By using the single root of h(z) in (0,1), denoted as zo, Pt and P{3) are obtained:

po _ M- )20 po _ V- 7)o ‘
O po(1—z0)(—7z0)" 1 p(1 - 20) (Ko — J0Z0)
6. Both y and # tend to 0.
Assume y — 0, — 0, while % — r for some constant r > 0. Then,
p® _ N r © __7 1

Oe —

y+nﬂl+r’ 1e _y+nﬂ1+r'

The overall generating function, G®(z) = G’ (z) + G\”(z), can be expressed as a probabilistic mixture between cases 2 and 3 as follows:

C*(2) = Pe) - G2+ P - G (2)

implying that
G9(z) = B P / ettt 1dt /7 ettt dt +—1 =
1+r 0 1+r u—iz
Also, in this case we have Py = ;- Py, and P = ;1 P{y.

Define G® (0) = P as the proportion of time the system is empty. Then, P'S' = P& + P —

i -1
6 _ T ol 0ale Tt (1~
P, _1+re Aoé {,uo/ e 't dt +1+ <1 M).

As an illustration, take 2=4,u=8,4=3,1,=3 and ¢=2. P¥ =0507, and P{) =0.5. Now, for r=2 P =2/3.0.506859+
1/3-0.5 =0.50457.

7. Both y and # tend to oc.

Assume y — oo, ] — oo, such that #/y — r for some constant r > 0. That is, the system oscillates rapidly between phases 0 and 1. It
follows that

(3)
15Po0 + 1 Pio- That is,

PO =P vn > 0.

1n
That is, the fraction of time where there are n customers in the system is divided between the phases by the ratio r, implying that
Gy (2) =16 (2) (2.26)

and
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(7) _ p(7)
P, = 1Py,
Alternatively,

7 __" r p__7

1
T T Ty T

Now, in order to calculate G{(z) and G{"’(z) we utilize Eq. (2.7), which transforms into

/ Ao+ AT o+ WITN 7y MPYY + Pl
G 7y _ (20 _Ho G (z) = H0 0700 2.27
0 (Z) Cj Zé 0 (Z) Zé ( )
The solution of Eq. (2.27) is
(7) (7)
Gg) (Z) _ (:uplo ‘;:uOPOO) e(/iozz./r)zz unt;w /Ze t/’~o+£/1/r)uulintﬂ/" ]du. (228)
C 0

Note that, as opposed to Eq. (2.23) (which describes ng)(z) when y — 0 and # > 0), in (2.28) the parameters 41 and u play a role.
Finally, for deriving Pg)) and PYO), we use the following two equations:

The first equation results from substituting z= 1 in (2.28) and using GEZ)(l) =r/1+r.

The second equation relating Py} and P{} is P§) = rP{}).
3. The c-server case
3.1. The model

Consider now the multi-server case with 1 < ¢ < oo servers. As before, the system alternates between phases 0 and 1, as described in
Section 2.1. When the system operates in phase 0, each and every server becomes slower with the same rate y,. A transition-rate diagram
is depicted in Fig. 3.1.

3.2. Balance equations and generating functions

The set of balance equations is given by

j=0
n=0: (4 +7)Poo = 7P10 + (Uy + &)Por, (3.1)
1<n<c—1: o+ +n(ly+E)Pon = 2oPon-1 + NP1n + (M4 1)(Uy + E)Pops1,
n > c:(do+7+Ccly+n&Pon = Z0Pon-1 + NP + (Cly + (N + 1)E)Ponsa,
i=1
n=0: ()+ 7’])P10 = /,LP]] + '})POO, (3 2)
1<n<c—1:(A+nu+n)Pin=2P1p1+ YPon + (n+ 1) UP1 ns1,
n = c:(A+cpu+ NPy = AP1u_1 + YPon + CUP1 i1
Clearly, the proportions of time the system stays in each of the two levels remain unaffected and are given by Eq. (2.3).
Using the same procedure as in Section 2.1, we get an algebraic equation for G;(z) and a differential equation for Go(z), given by
72Go(2z) — (1 — 2)A4(2)
Gi(z) = ,
@ 5@
and
—_ nv72
GB(Z) _ OCC(Z)ﬁC(Z) ”/Z Go(z) — ’/IIUZAl (Z) + /'tO[))E(Z)AO(Z) , (33)

z(1-2)p:(2) ¢z (2)

SID PR i FRdh s PR PR

A Uo+E Ay 2u,+28 A, cly+c& Ay cly+(c+DE A

L: 0 1 2 e c c+1 e

Fig. 3.1. Transition-rate diagram with c servers.
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where Aj(z) = S50 (c — n)Pjz" for j = 0,1; o (2) = (Foz — cltp)(1 — 2) + 9z and B.(z) = (2z — cu)(1 — z) + yz. The roots z; . and z, of f.(z) are

: - —
LECpHT ("Zf‘”'” 4 where z,. > 1> 71 > 0.

3.3. Solution of the differential equation (3.3)

The similarity of Eq. (3.1) to Eq. (2.7) implies that the former’s solution is given by Eq. (2.11) with the modifications: Ao(z) replacesPqo;
A1 (z) replacesPyo; zj replaces z; for j = 1,2, and f.(z) replaces f(z). We thus get

n c-1 _ ”‘Ic(")" “0 c-1 Z kq, C(x)x
LY o€ MPn [y ey T (cPon [ d

’<1c() , 2L 2,
Go(z) = n 34
T e e g S e .
e ' 22 e
where
_z_cip _INe
kic(z)=e <z (z1.-2)% (z2c —2)" ¢,
igz _cky
kac(z) =€z (Z—210)F (Z2c —2)" ¢,
M _th(ZZC_]) :ZZC(Zlc_l)
¢ ZZ,C_ZI.C ’ ¢ Z2‘c_zl.c

Eq. (3.4) expresses Gy (z) in terms of 2c boundary probabilities Pog, Po1, - .. Poc_1, P10, P11, - - . P1c_1. Those 2c probabilities are required in order
to completely determine Go(z).We derive these probabilities in the next section.

3.4. Derivation of the probabilities Py, Po1, .. .,Poc_1,P10,P11,--.,P1c_1

Atz=1,Go(1) = thus from (the lower part of) Eq. (3.4) we get

l1+‘
ko o - ks $C IC
B e me || G e [ e e
=0 Z1c c n=0

For z =z, k1¢(z1.) = 0, implying that the numerator in the upper part of (3.4) vanishes. That is,

c-1 -1
%Z(c_n)m/ ie(x Zc— P/ k” k@)X g o,
é JO ﬁc —0

The above gives two equations in the boundary probabilities. The remaining 2c — 2 equations connecting Poo, Po1, - - - Poc_1, P10, P11, - - - P1c-1
are taken from the balance equations (3.1) and (3.2) forj =0,1 and n=0,1,...,c — 2 (each phase contributes ¢ — 1 equations).
In order to derive the mean queue sizes, E[Lo] and E[L;], one can use a direct approach. By taking vertical cuts in Fig. 3.1 we get

;Lpln +AOPOH = (n+ 1)/1P1,n+1 + (Tl+ 1)(,”0 + é)PO,nHy O g n g Cc— 17
AP1n + AoPon = CUP i1 4 (Clty + (N +1)E)Popi1, <N

Summing over n gives

c-1 c-1

APya + JoPou = JU(CP1s =Y (€ = 1)P1y) + fg(CPou — > (€ — M)Poy) + EE[Lo] = 4(cP1. — A1(1)) + fho(CPos — Ag(1)) + EE[Lo).
n=0 n=0
That is,
ElLo] — A —cft+ A1 (1) + pAo(1) _

4
The derivation of E[L,] is done similarly as in Eq. (2.22)
P — Cft) + (= )P + PpigAo(1) + AL (1)(y + )
né '

Finally, the mean total number of customers in the system is E[L] = E[Lo] + E[L4].

Ellh] =G () =

Numerical Example. We consider the case ¢ = 2. The probabilities Py, Pg1, P10, P11 are needed in order to completely determine Gy(z).
From Section 3.4, the set of four equations connecting these four probabilities is

Enkan(1) ! kaa(x) ka2 (X)x / koo (x) / kzz
- =nu2P dx +nuP dx + py2P dx + poPo dx,
77+V ’7.“ 10 JZ19 /32( ) ’7.“ " 213 /;Z(X) HO % 213 X ,uo z
nu /Z“ ki2(x) nu /Z” kio@)x Uy /Z” ki (x .uo /Z” ko (x
=2P dx + =P dx = —=22P, d Po1
e R® & R® ET% X

(Z0 4 7)Poo = nP1o + (g + E)Por, (A4 1)P1o = 1P11 + yPoo.

In Table 3.2 we compare numerically the values of the boundary probabilities when c=1 and when c¢=2, where
A=3,u=30=21y=1,y=2,n=1and £ =1.
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Table 3.2
Boundary probabilities and mean queue sizes.

Poo Poy Pqo P11 E[Lo] E[L] E[L]
c=1 0.0689 0.0749 0.1258 0.1218 0.7796 1.9366 2.7162
c=2 0.1147 0.1157 0.2276 0.2270 0.3917 0.8300 1.2217

Remark. Extreme cases, similar to those studied in Section 2.5, can be analyzed for the many-server case. We skip those derivations.

4. Infinite number of servers
4.1. The model

We now consider a service system with an infinite number of servers. That is, we deal with customers’ abandonments occurring in an
M/M /oo queueing system operating in a 2-phase random environment. As in Sections 2 and 3, when the system switches to phase j = 0, the
service rate of all servers decreases to y,. The Transition-rate diagram is given in Fig. 4.1. It follows that, from analytic point of view, one
can consider a combined slow service rate and abandonment rate, 1, + &, as a global departure rate for each individual customer when the
system is in phase j = 0.

A related model has been fully investigated by Baykal-Gursoy and Xiao [4], and further studied by Paz and Yechiali [17]. In [4], a service
system with an infinite number of servers subject to random interruptions of exponentially distributed durations is considered. During
interruptions, all servers work at lower efficiency, compared to their normal functioning rate. However, the Poisson arrival rate in both
environments remains the same, where in our work the Poisson arrival rate changes with the change of environment. Nevertheless, a solu-
tion for our model can be obtained from [4] with only a few modifications. For the sake of completeness in the next section we present the
balance equations and exhibit a closed-form formula for the partial generating functions, Go(z) and G;(z). We also calculate, by a slightly
different approach than the one described in [4], the values of E[L,] and E[L,], which gives us a formula for E[L], the mean total number of
customers in the system.

4.2. Balance equations and generating functions
As in Sections 2 and 3, Pj, denotes the steady-state probability of the system being in state (j, n) if the system is in environmentj,j = 0, 1,

and n customers are present.
The steady-state balance equations are

j: {HZO:(}L0+V)P00:ﬂp10+(ﬂo+f)Po17 (41)
— n>0:((do+y+nl+&)Pon = 20Pon-1+ HP1n + (N + 1) (o + E)Pons1, '
j= {n=0:(2+17)P10=”/P00+,uP117 (4.2)
— n>=0: (2-5—11-&-1’1/,{)1)”1 = AP1nq +yP0n+(n+1),uP1_n+1. '
Multiplying both sides of (4.1) and (4.2) by z" and summing over all n yield the differential equations
v V /10 n
Gy(2) — + V}Gz:fv—G 2), 43
N e e G e rer @3
7 I/ B Y
6\~ [y + 2|6 =~ Gato) (44)

Before presenting the solution of Egs. (4.3) and (4.4), we notice that Py, and P,, are the same as in Sections 2 and 3, and are given in (2.3).
Furthermore, (4.3) and (4.4) yield, respectively

S 20 YGo(2) — 1G1(2)
Go(@) = 2 Gole) + T LIS, (45)
and
by 1G1(2) — yGo(2)
Gi(2) = ﬁcl (2) + Tui-z (4.6)

nu A (n+hu A4

0 /I'Ili + : ﬂ() 2(/"0 +§) ﬂl) n(lul) + :) ﬂli (n+1)(/’lli +§) ﬂl)

L: 0 1 2 T n n+1 Tt

Fig. 4.1. Transition-rate diagram for the M/M/oc case.
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Substituting z = 1 in results (4.5) and (4.6), using Go(1) = viTln Gi(1) = T/n and applying L'Hopital rule, gives two equations with the two vari-
ables, G,(1) and G} (1), resulting in

e NG+ e+ )
ColD) = Elbol = G s + i) tg + 8
/ _ _ Y(Aon + Ay + Uy + &)
G =BT = o on T (1 i + )

Hence,

E[L} _ E[Lo] + E[L]} — M)Z + AOVI(”I + :u) + “/(VI(; + ;“0) + ;“(/'LO + 5)) . (47)

P +mu+(n+ Wl + <)
Setting o = 4 reduces (4.7) to Eq. (3.6) in [4].
Note that, in this case (c = ), it is possible to derive the mean total number of customers in the system without actually calculating the
PGFs.
To get Go(z) and G, (z) we repeat the process described in [4], with a few modifications. We write

;/] _i1-z) ~
Go(z) =——-e 7 -M(a+1,b+1,2p(1 -2)), 48
o)=L ( p(1-2) 49
Nko +&) + 71 aia ; a p
Gi(z) =20 L=/ VAR o= Ma7b72 1-2z ——Ma+]7b+172 1-z ’ 49
(@) = THe Tt [M(a.b.2p(1 - 2)) ~  M( p(1-2) (49)
where

a=

n n Y ~ 1</1 0 >

., b==+ ., pP=5l-—"7""),
I K Ho+< P=2 K Ho+¢
,Z

and M(a, b, z) is the Kummer function with the following power series representation:

where

am=a(a+1)(a+2)---(a+n-1) and qg =1,

bm=bb+1)(b+2)---(b+n—-1) and by =1.
Now, with known Gy(z) and G;(z), Poo and Pyo can be calculated directly by substituting z= 0 in the generating functions. The rest of the
probabilities may be calculated progressively from the balance equations or by repeated differentiation of the PGFs.

Numerical Example. With the same values used in Section 3.4, we get
Poo = Go(0) = 0.12262, P19 = G1(0) = 0.24524, E[L] = %, ElLi] = %, EL=1.

As expected, Py and Py in the ¢ = co case are greater then in the ¢ = 2 case, and E[L] for ¢ = c is smaller than when ¢ = 2.

We note that those neat numerical results for E[Ly] and E[L,] are a consequence of the following:

Theorem. (Proved in [17]) In an M/M/oc queue in a m-phase random environment, with arrival and service rates /; and [ in phase j,
1 < j < m, the steady-state probabilities satisfy Pj, = Pj, - Psn (Where Pj, = 3" (Pjn and P.,; = Z}LPJ,,), if and only if /;/u;=constant for all j.
Furthermore, if J;/py=constant, E[L] = J;/ ;.

Indeed, for this example, § = ;¢ =1 = E[L].

4.3. Extreme cases

Clearly, when considering the cases when p, — 0, or when ¢ — 0, we get the same representations for Go(z) and G;(z) as in (4.8) and
(4.9), respectively, with only a simple modification. It is also easy to verify, again by utilizing (4.8) and (4.9), that for the cases
y—0,1>0o0rn— 0,7 >0, we get the generating function of an M(4o)/M (i, + &)/oc system or M(Z)/M(u)/co system, respectively.

A more interesting case is when ¢ — oco. A transition rate diagram for this would look similar to Fig. 2.2 with service rates nu for all
n=0.

Clearly, Go(z) = Pgo = Po. = ﬁ Substituting this result in Eq. (4.6) leads to a differential equation for G;(z) as follows:

/ A n - m
Gila) - {ﬁﬂm —zj @)=z (410)

The solution of (4.10) is
Vi iz - /l _u 11
Gi(2)=—"——¢€i(1—-2)7 [ e ®(1—-u) du.

Another interesting extreme case arises when both 7 and # tend to oo, with a constant ratio 7/ = r > 0. Similarly to case 7 in Section 2.5, we
get that Go(z) = rGy(2). To derive Go(z) we use Eq. (4.8) and let y and  tend to oo, with ratio r > 0. We thus get,
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a_ (Wt or
b+ (uy+or’

implying that, for all n,

dm _, ( (Ko + )T )
by nr—r \pt+ (g + 1)

and therefore

lim M(a+1,b+1,2p(1-2)) =y (M) 1' — exp [(1 —2r(A(fo + &) — 2]

e N\ KA tOr ot 12+ p(po + E)r
Finally,
T A+ Aot
o =y o[-0 -2 (5 g )

and
Gi(2) = 1/1Go(2).
We also have

= G @es = (God) + G @l =5 = 2 o

which can be obtained directly from (4.7), when y, — oo while /7y — r.

5. Conclusions

We have introduced and analyzed customers’ impatience that arises as a result of a slowdown in the servers’ service rate. We studied
three Markovian models: the single server case, the multiple server case and the infinite-server case. For each model we derived explicit
expressions for the PGF of the number of customers in the system, both when the servers are slow and when the system functions nor-
mally. We also calculated the mean total number of customers in the system. In the M/M/1 and M/M/c (c < oo) queues we solved a dif-
ferential equation in order to derive the PGFs. When analyzing the M/M/oco queue, we made use of a related model studied in [4]. Several
extreme cases were examined and numerical results were presented.
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