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This article investigates methods for reallocation of service capacities in open Jackson networks in order to minimize either a system’s
mean total work-in-process or its response time. The focus is mainly on a method called node generation, by which capacity can
be transferred from a node in echelon j to a newly generated node in echelon j + 1. The proposed procedure is compared with
the more conventional capacity redistribution method, by which capacity can be transferred from any node in echelon j to existing
successor nodes in echelon j + 1. Formulation of each method as a mathematical programming problem reveals the structure of the
optimal solution for both problems. The motivation for considering these approaches stems from real-life settings, in particular, from
a production line or supply chains where the two types of capacity reallocation are applied. Heuristic methods are developed to solve
relatively large networks in tractable time. Numerical results and analyses are presented.
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1. Introduction and literature review

In this work we analyze the mean total Work-In-Process
(WIP) of an open network of queues. We consider hierarchi-
cal Jackson networks without feedbacks, where each node
in the network is modeled as a single-server M/M/1 queue
that routes its incoming flow to lower level nodes. That is,
we assume that jobs flow into the network following a Pois-
son process, and service times in each node originate from
an exponential distribution (specific for each node). Our
objective is to minimize the mean total WIP in the system
(or equivalently to minimize the system’s response time)—a
problem known to be complex (Bretthauer, 2000; Jain and
Srinivasa Raghavan, 2009). This goal is achieved through a
capacity reallocation approach within the network, either
by transferring capacity to existing nodes in downstream
levels (called capacity redistribution) or by generating new
nodes in downstream levels and transferring capacity to
them (we call this method node generation). Most of this
article deals with the latter node generation method, which
has received little attention in the literature.

∗Corresponding author

The motivation for considering the mentioned ap-
proaches stems from many real-life settings. The original
capacity reallocation problem can be found in the classic
communication network literature. For example, when de-
signing grid networks, servers or CPUs can be moved to
existing or newly generated nodes in order to minimize the
system response time. Similar applications can be found
in relation to manufacturing systems. One can envision a
manufacturing system where the two types of capacity real-
location can be applied. Consider a factory with hierarchi-
cal tree-like production stations in which work is performed
task by task with stations dedicated to specific tasks in the
process. Some stations might have extra workers or ma-
chines (e.g., extra capacity) that can be moved either to
existing downstream stations (i.e., capacity redistribution)
or to empty downstream areas to generate new stations (i.e.,
node generation). Later examples can be taken from supply
chain networks where a fixed budget can be allocated either
to increase the distribution and storage capacity of existing
distributors (e.g., by adding vehicles or warehouse space)
or to add a new distribution subcontractor to the chain.
We provide references to these areas, although the article
focuses on the theoretical concepts of capacity reallocation
without relating to a specific application. Note that regard-
less of the specific network application, it is well known
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(e.g., Bitran and Triputi, 1989b), and further confirmed in
this article, that capacity reallocation can vastly improve
the performance of a queueing network.

There is a large body of literature that addresses opti-
mization problems related to optimal service and arrival
rates in queueing models. For the class of queueing net-
work models mentioned here, the service rates at the sta-
tions typically represent capacity variables, while the arrival
rates typically represent the flow of jobs/units of product
or rate of demand.

The classic network-design literature is associated with
communication networks and considers various opti-
mization problems, often for a given network’s topology.
Kleinrock (1964) modeled packet transmission as a Jackson
network and used the model to optimize communication
network performance. Kleinrock and Gerla (1977) consid-
ered a design problem in communication networks. They
looked for a minimum network cost associated with line
capacities and flow assignments, such that an upper limit
on transmission delay was satisfied. Ng and Hoang (1987)
determined the optimal capacity and flow assignments in
a special communication network that lead to a convex
optimization problem. Kleinrock et al. (1973) modeled a
computer network as a Jackson network of queues and pro-
posed several approaches for determining capacities and
flows, leading to locally optimal solutions. Kleinrock (1976)
provided further references and ideas for the use of queue-
ing theory to model computer communication networks,
and Crabill et al. (1977) provided further references on
related optimization problems of queueing networks. Bret-
thauer (2000) used a branch-and-bound algorithm to find
optimal service and arrival rates in Jackson queueing net-
works. Most of these network-design papers have assumed
that the network topology is fixed, whereas the approach in
this article supports modifications of the network structure.

The use of queueing networks for modeling manufac-
turing systems became popular in the mid-1980s. A typi-
cal network-design problem of a manufacturing system is
to select service rates that represent workstation capaci-
ties such that profits are maximized, while other queueing
measures (such as an upper limit on WIP inventory) are sat-
isfied. Buzacott and Yao (1986) reviewed the developments
of Closed Queueing Network (CQN) models and classi-
fied various modeling approaches. Yao and Shanthikumar
(1987) presented a method for determining the optimal ar-
rival rates into a manufacturing system modeled as a net-
work of queues. Bitran and Tirupati (1989a) and Bretthauer
and Shetty (1995) considered the problem of selecting ser-
vice rates (capacity) from continuous and discrete sets of
choices for a manufacturing queueing network. Buss et al.
(1994) treated both the arrival and service rates as decision
variables in a single M/M/1 station in a manufacturing
system but did not address the case of a network of queues.
Dewan and Mendelson (1990) and Stidham (1992) con-
sidered service facilities modeled as a single-station queue
where the arrival and service rates are defined as deci-
sion variables but, again, they did not analyze the case

of a network of queues. Suri et al. (1993) examined per-
formance evaluation models for different manufacturing
systems, such as single-stage systems (single queues), pro-
duction lines (tandem queues), assembly lines (arborescent
queues), job shops (open queueing network), and Flexi-
ble Manufacturing Systems (FMSs). Kouvelis and Tiru-
pati (1991), Bitran and Dasu (1992), Buzacott and Shan-
thikumar (1992, 1993), Hsu et al. (1993), and Bitran and
Sarkar (1994) considered performance evaluation models
and analyzed optimization models for queueing networks.
Buzacott and Shanthikumar (1992, 1993) presented an ex-
tensive analysis oriented toward the design of different
manufacturing systems such as flow lines, automated trans-
fer lines, job shops, FMSs, and multi-cellular systems. They
analyzed optimal design problems and, in particular, con-
sidered some optimization models in job shops, such as
optimal allocation of workers to stations, optimal number
of operators in the system, optimal allocation of jobs to
stations, and analysis of routing and time diversity effects
in job processing. Hsu et al. (1993) examined optimiza-
tion models for FMSs based on CQN; they also suggested
the use of alternative techniques such as algebra max-plus,
fuzzy sets, and expert systems. For further information on
the use of queueing theory to analyze and design FMSs,
see Gershwin (1994). Queueing models have also been used
to analyze service systems. Bretthauer and Cote (1998) pre-
sented a method for determining discrete service rates in
a health care queueing network. Modern call centers are
often analyzed using queueing measures, such as the time
customers wait for service (e.g., Mandelbaum et al. (2003),
Armony (2005)). Capacity reallocation in general and node
generation in particular are relevant concepts to this branch
of the literature. Note that most of the discussed references
focus on selecting proper service and arrival rates of the
system, unlike the problem considered in this article that
focuses on capacity reallocation in the system. Moreover,
to the best of our knowledge, the proposed node genera-
tion approach has not been suggested in the literature and
expands the applicability of the discussed approaches.

Supply chain networks have been modeled using queue-
ing networks in recent years (Ha, 1997; Suri, 1998; Li
and Ying, 2009). Reallocation of capacity in such net-
works can be associated with budget distribution among
various service providers in the chain, such as raw mate-
rial vendors, original equipment manufacturers, logistics
operators, warehouse operators, distributors, and retail-
ers. For example, Srinivasa Raghavan and Viswanadham
(2001), Dong and Chen (2005), Jain and Srinivasa Ragha-
van (2009), and Bhaskar and Lallement (2010) presented
analytical models for the evaluation of the average response
time of supply chains using various queueing network mod-
els. Jain and Srinivasa Raghavan (2009) determined the
optimal inventory level in a warehouse chain that mini-
mizes total expected cost of carrying inventory, the back
order cost associated with serving orders in the backlog
queue, and ordering cost. They extended their model to
a three-echelon inventory model that explicitly considers
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the involved logistics processes. Bhaskar and Lallement
(2011) considered a queueing network model of uniformly
distributed arrivals in a distributed supply chain using
subcontractors. Their objective was to compute the min-
imum response time and the average number of items (op-
timum capacity) that can be delivered with this response
time. Note that when considering the overall supply chain
performance, it is often unclear whether to increase the
budget of an existing service provider or to outsource some
services to a new subcontractor. The proposed node genera-
tion approach aims to model such a question under specific
assumptions.

The rest of the article is organized as follows. Section
2 presents the node generation approach for a two-level
(n + 1)-node network and compares it with the more-
conventional capacity redistribution scheme. Section
3 expands the node generation method to multi-level
networks and lists the necessary conditions for optimality.
These conditions are then used to propose a heuristic for
larger networks. In Section 4, a numerical study of the pro-
posed heuristic is presented along with sensitivity analyses
of some network parameters. Section 5 summarizes the
article and suggests a few future research directions.

2. Capacity reallocation in small Jackson networks

This section provides notation for a general network topol-
ogy. It then explores the node generation procedure and
the structure of its optimal solution for a two-level (n + 1)-
node network and compares it to the capacity redistribution
solution.

2.1. Notation and definitions

We start by describing the general structure of the networks
we use throughout this article. The networks considered are
multi-level sequential Jackson-type networks comprised of
M/M/1 queues. Each node feeds its immediate successors
and there are no feedbacks. Examples are given in Fig. 1(a)
for a two-level network and in Fig. 3 for an M-level net-
work. Denote the external Poisson arrival rate to the net-

Fig. 1. (a) The initial network and (b) the modified network after
applying node generation.

Fig. 2. (a) The initial two-level (n + 1)-node network and (b) the
modified network after applying redistribution.

work by λ. Let μ
j
i be the capacity (service rate) of node i

in level j; that is, the service time of each job in node i in
level j is exponentially distributed with mean 1/μ

j
i . Let λ

j
i

be the Poisson arrival rate to this node. Such a node can
be defined as an M(λ j

i )/M(μ j
i )/1 queue. In this work the

value of a term Z raised to the Rth power will be denoted
as (Z)R, instead of the usual notation ZR.

It is well known (Kleinrock, 1975) that the mean number
of jobs in such a queue is given by E[Lj

i ] = λ
j
i /(μ j

i − λ
j
i )

(provided that μ
j
i > λ

j
i ). It is clear that, for each level j,∑

i λ
j
i = λ.

The mean WIP in the entire system is given by:

E[L] =
∑
i, j

E
[
Lj

i

]
. (1)

As previously stated, this article focuses on studying a
node generation approach for minimizing the total WIP
in the network, while comparing it with the more com-
monly used capacity redistribution approach. Under node
generation, capacity can be transferred from a node in ech-
elon (level) j to a new generated node in echelon j + 1. In

Fig. 3. Sequential M-level open Jackson network.
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each echelon we limit the node generation process to the
next level only. We do so to limit the complexity of the
proposed approach, since the alternative requires extensive
real-time knowledge about flow states in the entire network
that is often unknown in real-life scenarios. Focusing on
local decision making is usually an acceptable paradigm in
the design and control of supply chains (see Lee and Huang
(1999)). Moreover, we do not address dynamic scheduling
issues that might exist in real-life settings, possibly mod-
eled as multi-server queues, but rather focus on the average
long-lasting performance of the system. Relying on such
an approximation enables us to model the system by a net-
work of M/M/1 queues, as commonly done in the relevant
network literature.

2.2. Node generation in a two-level (n + 1)-node network

Consider a two-level (n + 1)-node network as depicted in
Fig. 1(a) and let capacity x1

1 be transferred from the origin
node to generate a new node in level 2. The result is depicted
in Fig. 1(b). Define p1

1k as the fraction of jobs directed from
node 1 in level 1 to node k in level 2 k = 1, 2, . . . , n. The
fraction of jobs directed to the new node is (1 −∑n

k=1 p1
1k).

Thus, λ2
k = λp1

1k for k = 1, 2, . . . , n, and the arrival rate
to the new generated node is λ(1 −∑n

k=1 p1
1k), which is

denoted for simplicity in the general case by λ̃. Clearly,
we must obtain μ2

k > λ2
k for all k = 1, 2, . . . , n, and x1

1 >

λ(1 −∑n
k=1 p1

1k).

2.2.1. Mathematical formulation
Our objective is to minimize the system’s WIP under the
node generation procedure. This objective can be expressed
by the following mathematical program:

min

[
λ

μ1
1 − x1

1 − λ
+

n∑
k=1

λp1
1k

μ2
k − λp1

1k

+ λ
(
1 −∑n

k=1 p1
1k

)
x1

1 − λ
(
1 −∑n

k=1 p1
1k

)
]
, (2)

such that, for k = 1, 2, . . . , n:

x1
1 ≥ 0, p1

1k ≥ 0,

n∑
k=1

p1
1k ≤ 1,

μ1
1 − x1

1 > λ, μ2
k > λp1

1k,

x1
1 > λ

(
1 −

n∑
k=1

p1
1k

)
. (3)

2.2.2. Solution
Differentiating the objective function (2) with respect to
p1

1k k = 1, 2, . . . , n, as well as with respect to x1
1 , and

then equating each derivative to zero leads to the following

optimality conditions:

μ2
i(

μ2
i − λp1

1i

)2 = μ2
j(

μ2
j − λp1

1 j

)2 ∀i, j,

μ2
1(

μ2
1 − λp1

11

)2 = x1
1(

x1
1 − λ

(
1 −∑n

k=1 p1
1k

))2
λ(

μ1
1 − x1

1 − λ
)2 = λ

(
1 −∑n

k=1 p1
1k

)
(
x1

1 − λ
(
1 −∑n

k=1 p1
1k

))2 (4)

Equations (4) do not yield a closed-form solution. How-
ever, rewriting these equations in terms of “excess capacity”
can illuminate the structure of the optimal solution. Define
the excess capacity of nodes as follows:

�1
1 = μ1

1 − x1
1 − λ; �2

i = μ2
i − λp1

1i (i = 1, 2, . . . , n),

�2
x1

1
= x1

1 − λ
(

1 −
∑n

i=1
p1

1i

)
. (5a)

Then, Equation (4) can be written as

μ2
i(

�2
i

)2 = x1
1(

�2
x1

1

)2 ∀i

λ(
�1

1

)2 = λ
(
1 −∑n

k=1 p1
1k

)
(
�2

x1
1

)2 . (5b)

That is, in the case where x1
1 > 0, the necessary conditions

imply: (i) balance between the ratios (capacity/(excess ca-
pacity)2) for all nodes in level 2, including the newly gen-
erated node; and (ii) equality of (inflow/(excess capacity)2)
between the origin node (from which capacity x1

1 is ex-
tracted) and the newly generated node. This solution struc-
ture does not have a closed form even for n = 1; thus, it
is difficult to create a simple rule as to when to use node
generation and when not to do so.

The above analysis can be extended by taking into
account various cost parameters that are often used in
the supply chain literature (Jain and Srinivasa Raghavan,
2009). In particular, denote the holding cost rate of one
unit of WIP in node i in level j by c j

i and the transfer cost
of moving one unit of capacity to the newly generated node
by d. Then, the corresponding mathematical program to
model (2) is the following:

min

[
c1

1λ

μ1
1 − x1

1 − λ
+

n∑
k=1

c2
kλp1

1k

μ2
k − λp1

1k

+
c2

x1
1
λ
(
1 −∑n

k=1 p1
1k

)
x1

1 − λ
(
1 −∑n

k=1 p1
1k

) + dx1
1

]
, (6)

such that, for k = 1, 2, . . . , n, all of the original constraints
hold. The solution procedure to model (6) follows exactly
the solution procedure for model (2). The obtained result
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in terms of excess capacity is

c2
i μ

2
i(

�2
i

)2 =
c2

x1
1
x1

1(
�2

x1
1

)2 ∀i,

c1
1λ(

�1
1

)2 + d =
c2

x1
1
λ
(
1 −∑n

k=1 p1
1k

)
(
�2

x1
1

)2 (7)

Thus, one can see that adding costs to the node generation
problem has no structural effect on the optimal solution.
However, the generalized solution takes into account both
holding and transfer costs in a manner that can affect the
value of the transferred capacity.

Another relevant observation is that, if the excess capac-
ity in the parent node is allocated to the descendent node,
the proposed node generation scheme is convex. Let us in-
vestigate the convexity of the node generation scheme by
using a superposition of two networks: network A is com-
posed of the n original nodes 1, . . . , n in the second level,
whose WIP is dictated by the flow the generated node re-
ceives (λ̃), while network B is composed of the node in the
first level and the generated node, whose combined WIP is
a function of λ̃ and x1

1 . Note that the WIP function of a sin-
gle node is convex with respect to its incoming flow, as the
second derivative is positive. Thus, the WIP of network A is
a convex function of λ, being the sum of convex functions.

The Hessian of the WIP of network B is derived as
follows:⎛

⎜⎜⎜⎜⎝
2
(
x1

1

)
(
x1

1 − λ̃
)3 − (x1

1 + λ̃
)

(
x1

1 − λ̃
)3

− (x1
1 + λ̃

)
(
x1

1 − λ̃
)3 2 (λ)(

μ1
1 − x1

1 − λ
)3 + 2λ̃(

x1
1 − λ̃

)3

⎞
⎟⎟⎟⎟⎠ .

For this function to be convex, the Hessian has to be posi-
tive; i.e., all of its principal minors have to be non-negative.
The first minor is clearly non-negative in the feasible region,
while the second minor equals (4x1

1λ/(μ1
1 − x1

1 − λ)3) −
(1/(x1

1 − λ̃)). Note that for x1
1 → μ1

1 − λ, the condition for
non-negativity simplifies to 4λ(λ − μ1

1)(λ̃ − x1
1 ) ≥ 0, which

is clearly satisfied, as the capacity in each node is not smaller
than its inflow. Thus, there is a feasible global solution to
the problem if the transferred capacity approaches the ex-
cess capacity in the parent node.

2.3. Redistribution in a two-level (n + 1)-node network

In this section we compare the node generation procedure
with the capacity redistribution scheme. Consider now the
same two-level (n + 1)-node basic network depicted in
Fig. 1(a) and copied in Fig. 2(a). The redistribution pro-
cedure is shown in Fig. 2(b), where y1

1k(k = 1, 2, . . . , n) is
the capacity transferred from node 1 in level 1 to node k

in level 2. The remaining capacity of node 1 in level 1 is
μ1

1 −∑n
k=1 y1

1k. Again, λ2
k = λp1

1k, where p1
1k is the fraction

of arrivals directed from the origin node to node k in level
2. Clearly, λ =∑n

k=1 λ2
k.

2.3.1. Mathematical formulation
As previously stated, the objective is to redistribute capac-
ities to minimize WIP in the system. This objective can be
expressed by the following mathematical program:

min

[
λ(

μ1
1 −∑n

k=1 y1
1k

)− λ
+

n∑
k=1

λp1
1k(

μ2
k + y1

1k

)− λp1
1k

]
,

(8)

such that, for k = 1, 2, . . . , n:

y1
1k ≥ 0, p1

1k ≥ 0,

n∑
k=1

p1
1k = 1,

n∑
k=1

y1
k<μ1

1,

μ1
1 −

n∑
k=1

y1
1k > λ, μ2

k + y1
1k > λp1

1k.

2.3.2. Solution
In Appendix A it is shown that the structure of the optimal
solution of the above mathematical program implies that
if (some) capacity is transferred from the origin node, it is
transferred to the node in level 2 having the largest initial
capacity. That is, assuming without loss of generality that
μ2

1 = max1≤i≤n{μ2
i }, the optimal solution satisfies y1

1k = 0
for k ≥ 2, so that the optimal values of y1

11 and {p1
1k} satisfy

the optimality conditions (9) and (10):

λ(
μ1

1 − y1
11 − λ

)2 = λp1
11(

μ2
1 + y1

11 − λp1
11

)2 , (9)

This follows by differentiating the corresponding La-
grangian with respect to y1

11 and setting y1
1k = 0 for k ≥ 2.

Similarly, by differentiating the corresponding Lagrangian
with respect to p1

1k, and setting y1
1k = 0 for k ≥ 2, one

obtains:

μ2
k(

μ2
k − λp1

1k

)2 = μ2
1 + y1

11(
μ2

1 + y1
11 − λp1

11

)2 k = 2, . . . , n. (10)

Appendix A demonstrates and proves the claimed gen-
eral structure of the solution for an (n + 1)-node network.
It is easy to see that the optimal solution for n = 1 is to
equate the capacity of both levels. For the case n = 2, as
depicted in Fig. 2(b), and under the assumption that both
λ2

1 > 0 and λ2
2 > 0, the optimal value of the total WIP in

Fig. 2(a) is

WIP = λ

μ1
1 − λ

+ λ2
1

μ2
1 − λ2

1

+ λ − λ2
1

μ2
2 − (λ − λ2

1

) . (11)
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Substituting the optimal value of λ2
1 = λp1

11 from Equa-
tion (9) with 0 < λ2

1 < λ results in

WIP = λ

μ1
1 − λ

+
2λ −

(√
μ2

1 −
√

μ2
2

)2

μ2
1 + μ2

2 − λ
. (12)

Now, if the optimal allocation is to transfer y capacity units
from the (single) node in level 1 to the nodes in level 2 such
that αy units (0 ≤ α < 1) are allocated to node 1 in level 2
and (1 − α)y units to node 2 in level 2, then the value of the
WIP according to Equation (12) will be

WIPα = λ1
1

μ1
1 − y − λ1

1

+
2λ −

(√
μ2

1 + αy −
√

μ2
2 + (1 − α) y

)2

μ2
1 + μ2

2 + y − λ
. (13)

This is obtained from Equation (12) by replacing μ1
1 by

(μ1
1 − y), μ2

1 by (μ2
1 + αy) and μ2

2 by (μ2
2 + (1 − α)y) fol-

lowing the policy of capacity redistribution.
The other considered alternative is to allocate all y units

only to the node with the initial largest capacity. Without
loss of generality, we assume that it is node 1 and denote
the resulting WIP in the network by WIP1 (i.e., α = 1).
Calculating the difference in WIP values between the two
alternatives yields:

WIP1 − WIPα

=
2λ −

(√
μ2

1 + y −
√

μ2
2

)2
−
(

2λ −
(√

μ2
2 +
(

1 − a
)

y −
√

μ2
1 + αy

)2)
μ2

1 + μ2
2 + y − λ

=
2
√

μ2
1 + y

√
μ2

2 − 2
√

μ2
2 + (1 − a)y

√
μ2

1 + αy

μ2
1 + μ2

2 + y − λ
.

(14)

It can readily be seen that if μ2
1 > μ2

2 then WIP1 ≤ WIPα.
Accordingly, in order to minimize the total WIP in the
network, we allocate additional capacity only to the node
with the largest capacity.

Remark 1: It can be intuitively explained that optimal
redistribution outperforms optimal node generation. As
pointed out by an anonymous referee, the node generation
approach can be represented as the redistribution of ca-
pacity to a node with a zero capacity. This redistribution is
clearly suboptimal, as the optimal approach requires trans-
ferring capacity to the node with the largest initial capac-
ity, as indicated in Appendix A. In the following sections,
however, we focus on the node generation approach. The
reason has two parts. First, there are situations where ca-
pacity redistribution is infeasible in real settings, as will be
discussed in the following section, and, second, to the best
of our knowledge, the node generation approach has not
been addressed before in the queueing networks literature.

Finally, let us note that the observation in Remark 1
is consistent with known results in queueing theory (e.g.,

Yechiali (1977)), where:

E[L(M(c × λ)/M(c × μ)/1)] < E[L(M(c × λ)/M(μ)/c)]
< c × E[L(M(λ)/M(μ)/1)].

That is, in terms of reducing mean queue size, a single-
server M/M/1 queue with arrival rate c × λ and service
rate c × μ is better than a multi-server M/M/c queue with
the same arrival rate and service rate μ for each of the
c parallel servers. The latter configuration is better than
c parallel M/M/1 queues, each with arrival rate λ and
service rate μ.

3. Node generation in an M-level network

In many real-life situations, it is more applicable to per-
form reallocation of capacities via node generation than via
redistribution. For example, consider again a service system
composed of a transfer line of stations. Some stations might
have extra workers that may be better utilized by moving
them to empty areas as a new station dedicated to a ser-
vice stage in a lower level or by using the budget to hire
new subcontractors in a lower stage. The goal remains to
minimize the system WIP or response time.

3.1. Mathematical formulation

We consider now a sequential M-level tree-type network as
depicted in Fig. 3.

In order to formulate the problem as a mathematical
programming problem we define the following terms:

Aj
i = the index set of all nodes in level j − 1 that are con-
nected to node i in level j (including the newly generated
nodes in level j − 1);

Sj
i = the set of all successor nodes (downstream) of node i
in level j;

Wj
i = the set of immediate successor nodes of node i in
level j, clearly, Wj

i ⊆ Sj
i .

Note 1: We index a generated node that is allocated ca-
pacity xj

i by the index xj
i . We assume that only existing

nodes can generate a new node. The new constructed net-
work is depicted in Fig. 4. The configuration is such that
every original node with capacity μ

j
i may generate a new

node in level j + 1 contributing to it xj
i capacity units. A new

xj
i -type generated node cannot generate further new nodes.

Thus, in level j + 1 there will be at most n j new xj
i -type

nodes with positive capacity. Furthermore, the newly gen-
erated nodes may direct their job flow to any one of their
sibling node successors. We do so to avoid flow schemes
that would be infeasible in the original structure. p j

ik is the
fraction of arrivals directed from node i in level j to node k
in the next level. Our decision variables are xj

i and p j
ik. We

denote:
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Fig. 4. Sequential M-level open Jackson network with generated
nodes.

λ
j
i = the total flow rate into (and out of) node i in level j;

λ
j+1

xj
i

= the total flow rate into (and out of) node xj
i in level

j + 1;
n j = number of initial nodes in level j;
μ̃

j
i = the capacity of node i in level j after applying the node
generation approach.

The corresponding mathematical program is

min

⎡
⎣ M∑

j=1

n j∑
i=1

λ
j
i

μ̃
j
i − λ

j
i

+
M−1∑
j=1

n j∑
i=1

λ
j+1

xj
i

x j
i − λ

j+1

xj
i

⎤
⎦ ,

such that:

μ̃
j
i = μ

j
i − xj

i j = 1, . . . , M; i = 1, . . . , n j ,

μ̃
j+1

xj
i

= xj
i j = 1, . . . , M − 1; i = 1, . . . , n j ,

μ̃
j
i > λ

j
i ∀i, j,

n1∑
i=1

λ1
i = λ,

λ
j
i =
∑
a∈Aj

i

p j−1
a,i λ j−1

a j > 1; all nodes i in level j (including xj
i ),

∑
w∈Wj

i

p j
i,w = 1 1 ≤ j < M; all nodes i in level j (including xj

i ),

xj
i , p j

ik, λ
j
i ≥ 0 ∀i, j, k. (15)

3.1.1. Solution
Forming the Lagrangian, substituting in the objective func-
tion μ̃

j
i = μ

j
i − xj

i , differentiating the objective function
(15) with respect to xj

i , and equating to zero leads to the

following necessary conditions:

λ
j
i(

μ̃
j
i − λ

j
i

)2 =
λ

j+1

xj
i(

xj
i − λ

j+1

xj
i

)2 for every 1 ≤ i ≤ n j ;

1 ≤ j ≤ M − 1. (16)

Similarly, differentiating the objective function with respect
to p j

ik, where φ
j
i is the Lagrange multiplier of the constraint∑

w∈Wj
i

p j
i,w = 1, results in

μ̃
j+1
k(

μ̃
j+1
k − λ

j+1
k

)2 +
∑

q,l∈s j
i

μ̃l
q × �

j+1,l
k,q(

μ̃l
q − λl

q

)2 = φ
j
i , k ∈ Wj

i ,

(17)
where �

j,l
i,q =∑a∈Al

q∩Sj
i
�

j,l−1
i,a × pl−1

a,q represents the summa-
tion of all path probabilities from node i in level j to node
q in level l, where �

j, j+1
i,k = p j

ik∀k ∈ Wj
i .

Note 2: The above formulation allows for several nodes
in the first level.

Apparently there is no simple structural solution to the
sets (16) and (17). We thus present a heuristic procedure
that is based on the optimal properties of the solution of
the two-level problem in Section 2.1.

3.2. Approximating the optimal solution via cuts

We propose a cut type procedure and exhibit its effective-
ness on a sequential M-level tree-type network, as shown in
Fig. 3. We create cuts that are orthogonal to the direction
of the flow, as depicted in Fig. 5. A cut fixes the flow to the
successor nodes of each origin node, where the total flow
via the cut remains unchanged before and after the node
generation action. Such an approach enables us to ignore
the possible effects of a node generation on downstream
nodes and thus avoid a complex circular formulation. The
effect is neutralized by the fact that no matter which de-
cisions are made in previous levels, the flow remains the
same. Therefore, one does not have to take into considera-
tion any changes that have been made to the incoming flow
of each family of sibling nodes. That is, by fixing the flow
in each cut, it is possible to optimize capacity reallocation
(via the node generation approach) in each of the cuts in-
dependently. The “greediness” impact of such a heuristic
can be then handled by iteratively repeating this procedure,
which can lead to a near-optimal solution, as will be shown
later in this article.

We define two new terms and modify the mathematical
program as follows:

�
j
i = the flow through the cut between node i in level j to its
successor nodes (� j

i is fixed before node generation and
remains so);
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Fig. 5. Sequential M-level open Jackson network with orthogonal
cuts.

B j
i = the index set of the nodes in level j − 1 that are
connected to node i in level j (not including the generated
nodes from level j − 1). Note that B j

i ⊂ Aj
i .

3.2.1. Mathematical formulation

min

⎡
⎣ M∑

j=1

n j∑
i=1

λ
j
i

μ̃
j
i − λ

j
i

+
M−1∑
j=1

n j∑
i=1

λ
j+1

xj
i

x j
i − λ

j+1

xj
i

⎤
⎦ ,

such that:

μ̃
j
i = μ

j
i − xj

i j = 1, . . . , M; i = 1, . . . , n j ,

μ̃
j+1

xj
i

= xj
i j = 1, . . . , M − 1; i = 1, . . . , n j ,

μ̃
j
i > λ

j
i ∀i, j,

n1∑
i=1

λ1
i = λ,

λ
j
i =
∑
a∈Aj

i

p j−1
a,i λ j−1

a j > 1; all nodes i in level j (including xj
i ),

∑
w∈Wj

i

p j
i,w = 1 1 ≤ j < M; all nodes i in level j (including xj

i ),

xj
i , p j

ik, λ
j
i ≥ 0 ∀i, j, k,∑

w∈Wj
i

p j
i,wλ

j
i +

∑
b∈B j

i

∑
w∈Wj

i

p j
xj−1

b ,w
λ

j
x j−1

b
= �

j
i

j = 1, . . . , m − 1; i = 1, . . . , n j . (18)

It is important to emphasize that the set of Equations (18)
differs from the set of Equations (15) only by the addition
of the last constraint in Equation (18) that computes the
flow through the cuts in the network.

3.2.2. Optimal solution structure to the cut-based approach
Differentiating the objective function (18) with respect to
xj

i and following the first condition of optimality leads
to Equations (16). Similarly, differentiating the objective
function (18) with respect to p j

ik and equating to zero leads
to Equations (19):

μ̃
j+1
k(

μ̃
j+1
k − λ

j+1
k

)2 = φ
j
i k ∈ Aj

i . (19)

Clearly, the new set of Equations (19) simplifies matters
as we do not have to take into consideration the decisions
in previous levels. Equations (19) no longer have the sec-
ond term that appears on the right-hand side of Equations
(17). This term aggregates all of the actions that were taken
in previous levels with regard to the flows. Thus, by using
the cut-approximation technique, one reduces the compu-
tational complexity to a polynomial order in the network
size.

To further reduce the computational effort, we propose
solving each cut independently, where the total incoming
flow into a cut is considered fixed. The cuts can then be
solved iteratively top to bottom, until one obtains con-
vergence to a solution or some stopping criterion is satis-
fied. To illustrate the efficiency of the cut-approximation
method, in the following section we apply it to various
networks and investigate it numerically.

4. Numerical study of the node generation iterative
heuristic

The effectiveness of the node generation method is shown
in this section through several numerical examples. Section
4.1 presents two examples that motivate the use of the cut-
approximation method. Namely, we apply this method to
both a 4-level network and a 16-level network. We show
that only a few iterations are required for the WIP level to
approach its minimal value. Section 4.2 presents a numeri-
cal analysis of the efficiency of the node generation method
in 8-level networks as a function of several topological and
operational parameters. These networks are also used to
compare the cut-approximation method versus a simple
naı̈ve heuristic, where a fixed percentage of the excess ca-
pacity in a parent node is transferred to the newly generated
node in the downstream level. The results further illustrate
the advantage of the node generation approach over the
naı̈ve approach.

4.1. Examples

Example 4.1: Consider the 4-level binary network depicted
in Fig. 6. Note that, in this example, level 1 is com-
prised of two nodes, rather than a single node, as used
in previous figures. The values of the initial parameters
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Fig. 6. Sequential four-level binary open Jackson network.

are as follows: an arrival rate of λ = 100, service rates
of μ1

1 = μ1
2 = 145; μ2

1 = μ2
2 = μ2

3 = μ2
4 = 65; μ3

1 = μ3
2 =

μ3
3 = μ3

4 = μ3
5 = 50; μ4

1 = μ4
2 = μ4

3 = μ4
4 = μ4

5 = μ4
6 =

35; and an initial WIP of 158.6.
Applying the mathematical program (15) presented in

Section 3.1, we obtained a new network with a minimal
WIP of 93.6 units, an improvement of 41% with respect
to the initial WIP value. The computational time for this
procedure on a PC with a 1.6 GHz CPU was 3.3 seconds.

Using the cut-approximation formulation (18) presented
in Section 3.2 and solving each cut iteratively, we obtained,
after four iterations only, a new network with a total WIP
of 94.1 units; the computation time on the same computer
was 1.2 seconds.

Next we present how to use the node generation method
after designing and constructing a new network. The pro-
cedure for generating networks is composed of three stages
(see Appendix B). The first stage generates the topology of
the network. To each node two successor nodes are allo-
cated, either by choosing them from the already available
nodes in the downstream level or by generating a new node
(or nodes) in the next level. In the second stage, capaci-
ties and flows are allocated to the nodes in the network:
the flow of each node is randomly distributed among its

successor nodes, to which capacity is then allocated pro-
portionally to their incoming flow. In the third stage, the
node generation method is implemented by using the iter-
ative cut-approximation technique top to bottom. Overall,
the procedure is based on several parameters that deter-
mine the network structure and its properties, namely λ

the arrival rate of jobs into the system; θ the ratio between
capacity and arrival rate in the first node; φ the probability
of generating a new successor node; η the system’s excess-
capacity decrease factor that represents the difference in
the capacities between consecutive levels; T the number
of maximum iterations allowed by the cut-approximation
method; and M the number of levels in the network. The
pseudo-code of the networks generating algorithm is pre-
sented in Appendix B.

Example 4.2: Based on the results obtained in Example 1,
we now consider 16-level binary networks that were gener-
ated randomly by the previously described procedure. This
procedure was replicated 10 times to obtain statistical mea-
surements on WIP reduction via these sampled networks.
The resulting networks contained at least 13 000 nodes
each. The stopping criterion for the cut-approximation
heuristic was defined to be a decrease in the total WIP
of less than 0.01% between consecutive stages. This crite-
rion was satisfied on the average after 10 iterations with
an average computation time of 7 minutes. Figure 7 shows
the decrease in the total WIP (where the initial WIP is de-
fined as 100%) as a function of the number of iterations for
each generated network. As can be seen, an improvement
of 12.7% with respect to the initial WIP level is obtained on
average. Moreover, note that after five iterations, most of
the improvement is already achieved in most of the consid-
ered networks. The generation parameters of the networks
were η = 0.75, φ = 0.8, θ = 2, and λ = 10 000. In compar-
ison, the average computation time for the optimal solution
in the same networks was 91 minutes with an improvement
of 14.6%.

4.2. Numerical study of parameter effects

In this section we study the effects of various network pa-
rameters on the WIP reduction where we test eight-level

Fig. 7. WIP reduction for each of the ten 16-level networks (color
figure provided online).
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Fig. 8. Examples of WIP decrease through iterations of the algo-
rithm (color figure provided online).

networks. The considered numerical study is composed of
three parts. In the first part we present several examples for
the convergence rate of the algorithm. Next, we analyze the
effect of (i) capacity reduction; (ii) number of levels; and (iii)
the ratio of capacity to flow in the first network level on the
performance of the algorithm relative to different breadths
of the network (defined by the probability to generate new
successor nodes). For each of the mentioned parameters we
performed 40 different runs based on sampled networks. A
comparison to a naı̈ve decision algorithm is given in the
last part of the analysis.

Figure 8 demonstrates the percentage decrease in the to-
tal WIP as a function of the iteration number for fixed
values of θ = 2 and λ = 10 000. Note that the effect of
the capacity difference parameter η on the WIP value is
more significant than that of φ (the probability of generat-
ing a new successor node). As seen, the optimization pro-
cess stabilizes quite rapidly—after five to six iterations on
average.

Figure 9 presents the reduction of the total WIP via
the node generation algorithm in relation to the input
parameters η, φ. Every point in the figure represents the
average WIP percentage over the 40 generated networks
with the following parameters: M = 8 levels; an initial ca-
pacity ratio of θ = 2; and an arrival rate of λ = 10 000.
Note that the average improvement of WIP is 48.11% and
varies in single cases between 5 and 95%. An intuitive re-
sult that can be derived here is that as η (representing the

Fig. 9. Performance of the cut method as a function of η, φ (color
figure provided online).

Fig. 10. Improvement relative to first level ratio of capacity to
flow (color figure provided online).

difference in capacities between levels) increases, the reduc-
tion in the WIP level (i.e., the efficiency of the algorithm)
increases. With a lower significance one can notice that as
φ increases (leading to a wider network) a lower level of
WIP is reached. Thus, as seen by other examples, the node
generation method is more efficient in wider unregulated
networks.

The effect of the initial capacity ratio θ is presented in
Fig. 10. Each point in the figure represents the average per-
centage of WIP decrease over the 40 generated networks.
Each network was generated by using the following pa-
rameters: M = 8 levels; a capacity difference parameter
η = 0.6; and an arrival rate of λ = 10 000. Note that the
improvement in the WIP level reduces as the value of θ in-
creases. This phenomenon is attributed to the fact that the
network’s overall capacity is determined by η and θ . Once
again, for a fixed value of θ , M, λ, and η, a lower level of
WIP is reached in wider networks (i.e., as φ increases).

The effect of the number of levels in the network on the
WIP decrease is presented in Fig. 11. Each point repre-
sents the reduction in the WIP level with respect to the
initial WIP level, as averaged over the 40 networks. Each
network was generated by using the following parameters:
a capacity difference parameter η = 0.6; an initial capac-
ity ratio of θ = 2; and an arrival rate of λ = 10 000. Note
that as the number of levels increases, the node generation
method performs better (leading to lower WIP values), as
one might expect. Thus, when adding levels to the net-
work, these new levels have lower capacities and therefore
can benefit more from the node generation approach. As

Fig. 11. Improvement as a function of the number of network
levels (color figure provided online).
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Table 1. Naı̈ve algorithm versus node generation. The numbers in the table represent the average WIP reduction (in percent ages)
with respect to its initial value

η = 0.5 η = 0.6 η = 0.7

Algorithm network
parameters M = 5 M = 6 M = 8 M = 10 M = 5 M = 6 M = 8 M = 10 M = 5 M = 6 M = 8 M = 10

Naı̈ve (ε = 10%) 0.3 0.9 2.6 2.8% 0.3 1.1 3.1 4.4 0.6 0.7 0.8 0.7
Naı̈ve (ε = 30%) 3.2 11.0 32.0 34.4 2.4 8.% 24.3 34.7 0.1 0.2 0.1 0.1
Naı̈ve (ε = 40%) 5.3 18.3 53.4 57.3 3.5 12.1 35.2 50.4 0.1 0.1 0.2 0.2
Naı̈ve (ε = 50%) 6.7 23.1 67.4 72.4 4.6 15.9 46.3 66.2 0.1 0.1 0.1 0.2
Naı̈ve (ε = 70%) 1.4 1.8 1.5 1.5 0.0 0.1 0.3 0.5 0.1 0.2 0.2 0.1
Node generation 8.3 28.6 83.5 89.6 5.2 17.9 52.2 74.6 1.2 4.1 11.8 16.9

previously indicated, the improvement increases also with
the width of the network (larger φ parameter).

The reported numerical studies provide some insights
about the factors and network parameters that influence the
node generation performance. Namely, reducing the overall
capacity in the system (by reducing either θ or η) leads to
an improved performance of the proposed method, as well
as increasing the size of the network (either by increasing
its width φ or the number of levels M), as well as varying
the capacities among nodes.

4.3. A Comparison of the cut-approximation versus a naı̈ve
approach

The presented analysis provides insight into the factors that
influence the cut-approximation method. In this last part of
the analysis we compare the cut-approximation approach
versus a naı̈ve and “intuitive” algorithm that computes the
excess capacity in a parent node and transfers a predeter-
mined percentage of it, denoted by ε, to the newly gener-
ated downstream nodes. It searches for the minimal WIP
solution within a predetermined region of excess capacity
(�) for each cut. Thus, given the parameter ε (0 ≤ ε ≤ 1)
the naı̈ve algorithm searches for the best solution (min-
imal WIP) in a region defined by � × (ε − 0.01) ≤ x ≤
� × (ε + 0.01), where x is the amount of capacity trans-
ferred from a parent node to a new successor node. The
naı̈ve algorithm was analyzed by the following numerical
study. Each iteration was generated using the following
parameters: φ = 0.8; θ = 2; and λ = 10 000. Table 1 shows
the average improvement (WIP reduction) achieved by both
the cut-approximation and naı̈ve algorithms over 30 repli-
cations for different values of η, M, and ε. Note that in gen-
eral the improvement of the cut-approximation approach
is significantly higher than the naı̈ve algorithm. However,
for some values of ε, the naı̈ve algorithm can approach the
level of WIP reduction obtained by the cut approximation.
This attribute is partially due to the systematic creation of
the analyzed networks, since less organized networks do
not exhibit this phenomenon. Predicting the best value of
ε in each cut and in each level requires an extensive com-
binatorial search on a huge number of candidates, which is

computationally intractable and is avoided in this article.
Moreover, adding limitations on how much capacity can be
moved to a new node can be implemented in the original
model formulation of the node generation approach.

5. Conclusions and future research

We have studied optimal capacity reallocation in open
Jackson networks in order to minimize total WIP or, al-
ternatively, system response time. We started by comparing
two capacity reallocation methods: capacity redistribution
among existing nodes and node generation, in which capac-
ity is allocated to newly generated downstream nodes. Al-
though the former approach is superior in terms of overall
WIP and response time, we focused on the latter approach.
This approach has not been studied before, in spite of its
applicability to real-life settings in industrial, service, and
communication networks. We showed that the optimal so-
lution for the node generation approach in a two-level net-
work yields two necessary conditions of optimality. These
conditions dictate some balance equations after capacity
transfer between each parent node and its successor nodes,
as well as among the successor nodes themselves. These
optimality conditions and their implementations in larger
multi-level networks were also studied and inspired the con-
struction of a single-ancestor cut-approximation method.
The basic structure that we proposed in this approximation
could be further expanded in an attempt to tackle even
more complex problems, as shown in the last section. The
effectiveness of the proposed technique increased with the
density of the network (both its depth and width), with ir-
regular capacities spread within the network and with the
decrease in the network’s overall capacity with respect to the
incoming stream of jobs. The effectiveness of the algorithm
was studied numerically and found to be significant in many
cases. For example, in the numerical examples, we obtained
an average decrease level of WIP of between 10 and 85%.

The proposed cut-approximation approach can be used
to improve the performance of ad hoc supply chain seg-
ments or FMSs. One might consider the implementation
of the cut-approximation techniques not only in the node
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generation approach but also for capacity redistribution.
The cut technique is a heavily constrained mathematical
program. Relaxation or modification of these constraints
has the potential for even greater improvement of net-
work performance. This can be done by using the avail-
able capacities and without requiring a global topological
optimization—a requirement that often leads to compu-
tational limitations. Modeling the system by multi-server
queues can improve the optimal result for addressing real-
location of capacities with discrete resources (e.g., workers)
or scheduling considerations.

Another direction that would be of interest to investigate
is the use of local heuristics. For example, each node in the
network can use local information about neighborhood
nodes to maintain the balance constraints by giving or
getting capacity in a fashion similar to Conway’s game of
life (Gardner, 1970). It might be of practical importance to
study whether these ad hoc networks, such as peer-to-peer
segments that exist on the Internet nowadays, can improve
their performance locally to a satisfactory degree.
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Appendix A: Optimal distribution of extra capacity
among n parallel servers

Consider a system with n nodes as depicted in Fig. A1.
Let λ be the overall external arrival rate, to be distributed
among the n nodes. Let the existing capacity of node i be
μ1

i i = 1, 2, . . . , n. Assume that there is additional capacity

 to be distributed among the n nodes such that node i gets
yi additional units of capacity,

∑n
i=1 yi = 
. Let pi be the

fraction of flow directed to node i and let μ̃1
i = μ1

i + yi .

Fig. A1. Capacity distribution for n parallel servers.

The problem A1 aims to obtain the minimal WIP in the
network, where yi , pi are considered as decision variables,
and μ1

i and λ are treated as the problem parameters.

Problem A1

min

{
n∑

i=1

λ1
i

μ̃1
i − λ1

i

}
≡ minF (y, p) ,

subject to

μ̃1
i > λ1

i i = 1, . . . , n,
n∑

i=1

pi = 1,

n∑
i=1

yi = 
,

μ̃1
i = μ1

i + yi , i = 1, . . . , n,

λ1
i = pi × λ, i = 1, . . . , n,

yi ≥ 0, k = 1, . . . , n,

0 ≤ pi ≤ 1, i = 1, . . . , n.

Theorem A1. When transferring extra capacity 
 to one
server in a system composed of n parallel M/M/1 servers,
the optimal solution in terms of minimal WIP is obtained by
transferring 
 to the server with the largest initial capacity.

Proof. Consider first two M/M/1 parallel servers with ser-
vice intensities μ1 and μ2, respectively, and combined ar-
rival rate λ, where the objective is to minimize the WIP in
the network. Accordingly, we solve problem A2, in which
the goal is to reduce the WIP of the parallel servers by
choosing the proper arrival rate λ1 to node 1. �

Problem A2

min
{

λ1

μ1 − λ1
+ λ − λ1

μ2 − λ + λ1

}
,

subject to

μ1 − λ1 > 0,

μ2 − λ + λ1 > 0,

λ − λ1 ≥ 0,

λ1 ≥ 0.

Since the optimal value of λ1 is (μ1
√

μ2 − μ2
√

μ1+ λ
√

μ1)/

(
√

μ1
2 +
√

μ1
1), the total WIP is given by

WIP = WIP1 + WIP2 = 2λ − (√μ1 − √
μ2
)2

μ1 + μ2 − λ
.

As stated before, if λ1 is negative we route the flow only to
the node with the largest capacity.

Now consider the system with n queues and look at a
solution in which we transfer α × 
(0 ≤ α ≤ 1) capacity
units to server k and (1 − α)
 capacity units to server j,
while rerouting the arrival rates only for those two servers.
Suppose the two servers have a combined arrival rate of
λ j + λk ≡ ϒ . Thus, the minimal WIP of the two servers as
a function of α is

WIP(α) = 2ϒ − (
√

μk + α × 
 −√μ j + (1 − α) × 
)2

μk + μ j + 
 − ϒ
.

Since WIP(α) is a concave function, the minimum is
obtained either in the point α = 1 or α = 0. Thus, consider:

WIP(1) − WIP (0)

=
(√

μ j + 
 − √
μk
)2 − (√μk + 
 − √

μ j
)2

μk + μ j + 
 − ϒ

= −2
√

μ j + 

√

μk + 2
√

μk + 

√

μ j

μk + μ j + 
 − ϒ
.

It follows that WIP(1) > WIP(0) if and only if μk < μ j ,
implying that it is optimal to allocate 
 to the node with the
largest capacity between the two nodes. Therefore, if one
applies this notion repeatedly between each pair of nodes,
the optimal solution is to transfer 
 capacity units to the
server with the largest service intensity out of all existing
nodes.
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Appendix B: Networks-generating algorithm

Our algorithm is composed of three parts: (i) topology;
(ii) capacity; and (iii) flow allocation and optimization.
The algorithm requires several parameters for its opera-
tion, namely, λ the arrival rate of jobs to the system; θ the
capacity factor of the first node (the ratio between the ini-
tial node capacity and arrival rate); φ the probability for
generating a new child node; η system excess-capacity de-
crease factor; T number of maximum iterations before the
optimization process stops; and M number of levels in the
network.

Let us now present the pseudo-code of the algorithm.

I. Topology: The first part of the algorithm creates the
topology of the network. For each node we ensure two
sons either from the available nodes in the next level or
a new node that is created and added to the next level.
1.1. j = 0, i = 1.
1.2. Draw a random number r (0, 1). If r > φ, choose

a node on level j + 1 and set it as the right son;
else create a new node and set it as the right son.

1.3. Draw a random number r (0, 1). If r > φ, choose
a node on level j + 1 that is not the right son and
set it as the left son, or else create a new node and
set it as the left son.

1.4. If i < n j then i = i + 1 and return to stage 1.2,
else continue.

1.5. If j < M then j = j + 1, i = i + 1 and return to
stage 1.2, else end.

II. Capacity and flow allocation: The second part of the
algorithm allocates flow and capacity to the nodes in
the network. Each node flow is randomly distributed
between his successors, which are then allocated with
capacity proportional to their flow.
2.1. j = 0, i = 1, μ0

1 = θ × λ, λ0
1 = λ.

2.2. Draw a random number r (0, 1) set λ1
1 = r × λ0

1
and λ1

2 = (1 − r ) × λ0
1.

2.3. j = j + 1.

2.4. μ
j
i = λ

j
i
λ

× (λ + (1 − θ ) × η j ).
2.5. If j < M − 1, draw a random number r (0, 1),

set λ
j+1
right son = r × λ

j
i + λ

j+1
right son and λ

j+1
left son =

(1 − r ) × λ
j
i + λ

j+1
left son.

2.6. If i < n j then i = i + 1 and return to stage 2.4.
2.7. If j < M − 1 then i = 1 and return to stage 2.3,

else end.
III. Optimization: The last part of the algorithm imple-

ments the cut approach for each cut iteratively, top to
bottom.
3.1. t = 1, j = 0, i = 1.

3.2. Set ϑ as the initial λ
j
i , p = i , S =

{right son, left son}, solve the cut, and update the
network accordingly.

3.3. If i < n j then i = i + 1 and return to stage 3.2.
3.4. If j < M − 1 then i = 1, j = j + 1 and return to

stage 3.2.
3.5. If t = T or there is no improvement in the it-

eration then end, else t = t + 1, j = 0, i = 1 and
return to stage 3.2.
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