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Abstract 

We investigate methods for reallocation of service capacities in open Jackson networks in order 

to minimize system’s mean total work-in-process (WIP), or its response time. We focus mainly 

on a method called node generation, by which capacity can be transferred from a node in 

echelon j to a newly generated node in echelon j+1. We compare this new procedure with the 

more conventional capacity redistribution method, by which capacity can be transferred from 

any node in echelon j to existing successor nodes in echelon j+1. Formulation of each method as 

a mathematical programming problem reveals the structure of the optimal solution for both 

problems. The motivation for considering these approaches stems from real-life settings. In 

particular, from a production line or supply chains where the two types of capacity reallocation 

are applied. We develop heuristic methods to solve relatively large networks in tractable time. 

Numerical results and analyses are presented.  

 

 

1. Introduction & Literature Review   

In this work we analyze the mean total work-in-process (WIP) of an open network of queues. We 

consider hierarchical Jackson networks without feedbacks, where each node in the network is 

modeled as a single server / /1M M  queue that routes its incoming flow to lower level nodes. 

That is, we assume that jobs flow into the network following a Poisson process, and service 

times in each node originate from an exponential distribution (specific for each node). Our 

objective is to minimize the mean total work-in-process (WIP) in the system (or equivalently to 

minimize the system’s response time) - a problem known as a complex one (Bretthauer, 2000, 

Jane and Srinivasa Raghavan 2009). This goal is achieved through a capacity reallocation 

approach within the network, either by transferring capacity to existing nodes in downstream 

levels (called capacity redistribution) or by generating new nodes in downstream levels and 
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transferring capacity to them (we call this method node generation). Most of this paper deals 

with the latter node generation method that has received little attention in the literature.  

The motivation for considering the above-mentioned approaches stems from many real-life 

settings. The original capacity reallocation problem can be found in the classic communication 

network literature. For example, when designing grid networks, servers or CPUs can be moved 

to existing or to newly generated nodes in order to minimize the system response time. Similar 

applications were related to manufacturing systems. One can envision a manufacturing system 

where the two types of capacity reallocation can be applied. Consider a factory with hierarchical 

tree-like production stations in which work is performed task by task with stations dedicated to 

specific tasks in the process. Some stations might have extra workers or machines (e.g., extra 

capacity) that can be moved either to existing downstream stations (i.e., capacity redistribution), 

or to empty downstream areas to generate new stations (i.e., node generation). Later examples 

can be taken from supply chain networks where a fixed budget can be allocated either to increase 

the distribution and storage capacity of existing distributors (e.g., by adding vehicles or 

warehouse space) or to add a new distribution subcontractor to the chain. Below we provide 

references to the above mentioned areas, although the paper focuses on the theoretical concepts 

of capacity reallocation without relating to a specific application. Note that regardless of the 

specific network application, it is well known (e.g., Bitran and Triputi, 1989A), and further 

confirmed in this paper, that capacity reallocation can vastly improve the performance of a 

queueing network.  

There is a large body of literature that addresses optimization problems related to optimal service 

and arrival rates in queueing models. For the class of queueing-network models which is 

mentioned here, the service rates at the stations typically represent capacity variables, while the 

arrival rates typically represent the flow of jobs/units of product, or rate of demand.  

The classic network-design literature is associated with communication networks and considers 

various optimization problems, often for a given networks' topology. Kleinrock (1964) modeled 

packet transmission as a Jackson network and used the model to optimize communication 

networks performance. Kleinrock and Gerla (1977) considered a design problem in 

communication networks. They looked for a minimum network cost associated with line 

capacities and flow assignments, such that an upper limit on transmission delay is satisfied. Ng 

and Hoang (1987) determined the optimal capacity and flow assignments in a special 

communication network that lead to a convex optimization problem. Kleinrock et al. (1973) 
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modeled a computer network as a Jackson network of queues and proposed several approaches 

for determining capacities and flows, leading to locally optimal solutions. Kleinrock (1976) 

provided further references and ideas for the use of queueing theory to model computer 

communication networks, and Crabill et al. (1977) provided further references on related 

optimization problems of queueing networks. Bretthauer (2000) used a branch and bound 

algorithm to find optimal service and arrival rates in Jackson queueing networks. Most of the 

above network-design papers assume that the network topology is fixed, whereas the approach in 

this paper supports modifications of the network structure. 

The use of queueing networks for modeling manufacturing systems became popular in the mid 

80's. A typical network-design problem of a manufacturing system is to select service rates that 

represent workstation capacities such that profits are maximized, while other queueing measures 

(such as an upper limit on work-in-process inventory) are satisfied. Buzacott and Yao (1986) 

reviewed the developments of closed queueing network (CQN) models and classified various 

modeling approaches. Yao and Shanthikumar (1987) presented a method for determining the 

optimal arrival rates into a manufacturing system modeled as a network of queues. Bitran and 

Tirupati (1989B) and Bretthauer and Shetty (1995) considered the problem of selecting service 

rates (capacity) from continuous and discrete sets of choices for a manufacturing queueing 

network. Buss et al. (1994) treated both the arrival and service rates as decision variables in a 

single / /1M M  station in a manufacturing system, but did not address the case of network of 

queues. Dewan and Mendelson (1990) and Stidham (1992) considered service facilities modeled 

as a single station queue where the arrival and service rates are defined as decision variables, but 

again, they did not analyze the case of a network of queues. Suri et al. (1993) examined 

performance evaluation models for different manufacturing systems, such as single stage systems 

(single queues), production lines (tandem queues), assembly lines (arborescent queues), job 

shops (open queueing network) and flexible manufacturing systems (FMS). Buzacott and 

Shanthikumar (1992, 1993), Hsu et al. (1993), Kouvelis and Tirupati (1991), Bitran and Dasu 

(1992) and Bitran and Sarkar (1994) considered performance evaluation models and analyzed 

optimization models for queueing networks. Buzacott and Shanthikumar presented an extensive 

analysis oriented toward the design of different manufacturing systems such as flow lines, 

automated transfer lines, job shops, FMSs, and multi cellular systems. They analyzed optimal 

design problems and, in particular, considered some optimization models in job shops, such as 

optimal allocation of workers to stations, optimal number of operators in the system, optimal 

allocation of jobs to stations and analysis of routing and time diversity effects in job processing. 
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Hsu et al. (1993) examined optimization models for FMS based on CQN; they also suggested the 

use of alternative techniques like algebra max-plus, fuzzy sets and expert systems. For further 

information on the use of queueing theory to analyze and design flexible manufacturing systems, 

see Gershwin (1994). Queueing models have been also used to analyze service systems. 

Bretthauer and Cote (1998) presented a method for determining discrete service rates in a health 

care queueing network. Modern call centers are often analyzed by queueing measures, such as 

the time customers are waiting for service (e.g., Mandelbaum et. al (2003) and Armony (2005)). 

The capacity reallocation in general and the node generation in particular are relevant to this 

literature branch. Note that most of the above references focus on selecting proper service and 

arrival rates of the system, unlike the considered problem in this paper that focuses on capacity 

reallocation in the system. Moreover, to the best of our knowledge, the proposed node generation 

approach has not been suggested in the literature, and expands the applicability of the approaches 

mentioned above.  

Supply chain networks have been modeled by queueing networks in recent years (Li and Ying 

2009, Ha (1997) and Suri, 1998). Reallocation of capacity in such networks can be associated 

with budget distribution among various service providers in the chain, such as raw material 

vendors, original equipment manufacturers (OEMs), logistics operators, warehouse operators, 

distributors and retailers. For example, Srinivasa Raghavan and Viswanadham (2001), Dong and 

Chen (2005), Jane and Srinivasa Raghavan (2009) and Bhaskar and Lallement (2010) presented 

analytical models for evaluating the average response time of supply chains by using various 

queueing networks models. Jane and Srinivasa Raghavan (2009) determined the optimal 

inventory level in a warehouse chain that minimizes total expected cost of carrying inventory, 

back order cost associated with serving orders in the backlog queue, and ordering cost. They 

extended their model to a three-echelon inventory model which explicitly considers the involved 

logistics processes. Bhaskar and Lallement (2011) considered a queueing network model of 

uniformly distributed arrivals in a distributed supply chain using subcontractors. Their objective 

was to compute the minimum response time, and the average number of items (optimum 

capacity) that can be delivered with this response time. Note that when considering the overall 

supply chain performance, it is often unclear whether to increase the budget of an existing 

service provider or to outsource some services to a new subcontractor. The proposed node 

generation approach aims to model such a question under specific assumptions. 
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The rest of the paper is organized as follows. Section 2 presents the node generation approach for 

a 2-level (n+1)-node network and compares it to the more-conventional capacity redistribution 

scheme. Section 3 expands the node generation method to multi-level networks and lists the 

necessary conditions for optimality. These conditions are then used to propose a heuristic for 

larger networks that are studied next. In Section 4, a numerical study of the proposed heuristic is 

presented along with sensitivity analysis of some network parameters. Section 5 summarizes the 

paper and suggests a few future research directions. 

 

2. Capacity Reallocation in Small Jackson Networks 

This chapter provides notation for a general network topology. It then explores the node 

generation procedure and the structure of its optimal solution for a 2-level (n+1)-node network, 

and compares it to the capacity redistribution solution.  

2.1 Notation and Definitions 

We start by describing the general structure of the networks we are using throughout this paper. 

The networks considered are multi-level sequential Jackson-type networks comprised of M/M/1 

queues.  Each node feeds its immediate successors and there are no feedbacks. Examples are 

given in Figure 1a for a 2-level network and in Figure 3 for an M-level network. Denote the 

external Poisson arrival rate to the network by  . Let j
i  be the capacity (service rate) of node i 

in level j, that is, the service time of each job in node i in level j is exponentially distributed with 

mean1/ j
i . Let j

i  be the Poisson arrival rate to this node. Such a node can be defined as a 

   / /1j j
i iM M 

 
queue. In this work the value of a term Z raised to the R-th power will be 

denoted as  R
Z , instead of the usual notation RZ .  

It is well known (Kleinrock, 1975) that the mean number of jobs in such a queue is given by 

[ ]
j

j i
i j j

i i

E L


 



 (provided that j j

i i  ). It is clear that, for each level j, j
i

i

  . 

The mean work in process (WIP) in the entire system is given by  

,

[ ] [ ]j
i

i j

E L E L                                                                (1) 
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As stated above, the paper focuses on studying a node generation approach for minimizing the 

total WIP in the network, while comparing it with the more commonly-used capacity 

redistribution approach. Under node generation, capacity can be transferred from a node in 

echelon (level) j to a new generated node in echelon j+1. In each echelon we limit the node 

generation process to the next level only. We do so to limit the complexity of the proposed 

approach, since the alternative requires extensive real-time knowledge about flow states in the 

entire network that is often unknown in real life scenarios. Focusing on local decision making is 

usually an acceptable paradigm in the design and control of supply chains (see Lee and Whang, 

1999). Moreover, we do not address dynamic scheduling issues that might exist in real life 

settings, possibly modeled as multi-server queues, but rather focus on the average long-lasting 

performance of the system. Relying on such an approximation enables us to model the system by 

a network of M/M/1 queues, as commonly done in relevant network literature. 

 

2.2 Node Generation in a 2-Level (n+1)-Node Network 

Consider a two-level, (n+1)-node network as depicted in Figure 1(a) and let capacity 1
1x   be 

transferred from the origin node to generate a new node in level 2. The result is depicted in 

Figure 1(b). Define 1
1kp  as the fraction of jobs directed from node 1 in level 1 to node k in level 2 

1,2,....,k n . The fraction of jobs directed to the new node is 1
1

1

1
n

k
k

p


 
 

 
 . Thus,  2 1

1k kp   for 

1, 2,...., ,k n  and the arrival rate to the new generated node is 1
1

1

1
n

k
k

p


 
 

 
 , which is denoted 

for simplicity in the general case by   . Clearly, we must obtain 2 2
k k    for all k=1,2,…, n, and 

1 1
1 1

1

1
n

k
k

x p


 
  

 
 . 
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Figure 1: (a): The initial network. 

(b): The modified network after applying node generation. 

 

Mathematical Formulation 

Our objective is to minimize the systems WIP under the node generation procedure. This 

objective can be expressed by the following mathematical program:   

1
11

11
1 1 2 1

1 1 11 1 1
1 1

1

1

                                                      (2)

1

n

kn
kk

n
k k k

k
k

p
p

Min
x p

x p




    







    
   

        
  





 

Such that, for 1, 2,..., ,k n  

1 1 1
1 1 1

1

0,  0 , 1,
n

k k
k

x p p


    

1 1 2 1
1 1 1,  k kx p       

1 1
1 1

1

1       
n

k
k

x p


 
  

 
  

(a) (b) 

(3) 
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Solution 

Differentiating the objective function (2) with respect to 1
1kp  k=1,2,…,n, as well as with respect 

to 1
1x , and then equating each derivative to zero, lead to the following optimality conditions: 

   
22

2 22 1 2 1
1 1

  ,ji

i i j j

i j
p p



   
 

 

 

 
2 1
1 1

2 22 1
1 11 11
1 1

1

  

1
n

k
k

x

p
x p



  



      

  


 

 

1
1

1
2 21 1

1 11 1
1 1

1

1

  

1

n

k
k

n

k
k

p

x
x p




  





  
 

       
  




  

Equations (4) do not yield a closed form solution. However, rewriting these equations in terms of 

‘excess capacity’ can illuminate the structure of the optimal solution. Define the ‘excess 

capacity’ of nodes as follows  

1 1 1
1 1 1 ;x      

2 2 1
1   ( 1, 2,.., )i i ip i n     , 

1
1

2 1 1
1 1

1

1  
n

ix
i

x p


 
     

 
 . 

Then, (4) can be written as  

   1
1

2 1
1

2 22 2
  i

i x

x
i


 

 

 

   1
1

1
1

1
2 21 2

1

1

  

n

k
k

x

p
 

 
 

 
 



 

(4) 

(5) 

(5) 



9 
 

That is, in the case where 1
1 0x  , the necessary conditions imply: (i) balance between the ratios 

[capacity/(excess capacity)2] for all nodes in level 2, including the newly generated node, and (ii) 

equality of [inflow/(excess capacity)2] between the origin node (from which capacity 1
1x  is 

extracted) and the newly generated node. This solution structure does not have closed form even 

for n=1, thus it is difficult to create simple rule to when to use node generation and when not to. 

The above analysis can be extended by taking into account various costs parameters that are 

often used in supply chain literature (Jain and Srinivasa Raghavan, 2009). In particular, denote 

the holding cost rate of one unit of WIP in node i in level j by j
ic  and the transfer cost of moving 

one unit of capacity to the newly generated node by d. Then, the corresponding mathematical 

program to (2) is the following: 

1
1

2 1
12 11

1 111
11 1 2 1

1 1 11 1 1
1 1

1

1

                                                      (6)

1

n

kn x
kk k

n
k k k

k
k

c p
c pc

Min dx
x p

x p




    







    
    

        
  





 

such that, for 1, 2,..., ,k n  all the original constraints hold. The solution procedure to (6) follows 

exactly the solution procedure to (2). The obtained result in terms of ‘excess capacity’ is  

   
1
1

1
1

2 12 2
1

2 22 2
  xi i

i x

c xc
i


 

 

 

   
1
1

1
1

2 1
11

11
2 21 2

1

1

  

n

kx
k

x

c p
c

d


 

  
  

 



 
Thus, one can see that adding costs to the node generation problem has no structural effect on the 

optimal solution. Yet, the generalized solution takes into account both holding and transfer costs 

in a manner that can affect the value of the transferred capacity.   

Another relevant observation is that, if the excess capacity in the parent node is allocated to the 

descendent node, the proposed node generation scheme is convex. Let us investigate the 

(7) 
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convexity of the node generation scheme by using a superposition of two networks: Network A 

is composed of the n original nodes 1,…,n in the second level, whose WIP is dictated by the flow 

the generated node receives ( ), while network B is composed of the node in the first level and 

the generated node, whose combined WIP is a function of   and 1
1x .  Note that the WIP function 

of a single node is convex with respect to its incoming flow, as the second derivative is positive. 

Thus, WIP of network A is a convex function of  , being the sum of convex functions. 

The Hessian of the WIP of network B is derived as follows: 

 
 

 
 

 
 

 

   

1 1
1 1

3 31 1
1 1

1
1

3 3 31 1 1 1
1 1 1 1

2

2 2

x x

x x

x

x x x



 

  

   

  
 
 

  
 
  

  
     



 

 

 

 

For this function to be convex, the Hessian has to be positive, i.e., all of its principal minors have 

to be non-negative. The first minor is clearly non-negative in the feasible region, while the 

second minor equals 

   
1
1

3 11 1
11 1

4 1x

xx


 


  

. Note that for 1 1
1 1x    , the condition for non-

negativity simplifies to    0
~

4 1
1

1
1  x  which is clearly satisfied, as the capacity in each 

node is not smaller from its inflow. Thus, there is a feasible global solution to the problem if the 

transferred capacity approaches the excess capacity in the parent node. 

 2.3 Redistribution in a 2-Level (n+1)-Node Network 

In this section we compare the node generation procedure with the capacity redistribution 

scheme. Consider now the same 2-level (n+1)-node basic network depicted in Figure 1(a) and 

copied in Figure 2(a). The redistribution procedure is shown in Figure 2(b), where 
1
1  ( 1, 2,.... )ky k n

 
is the capacity transferred from node 1 in level 1 to node k in level 2. The 

remaining capacity of node 1 in level 1 is 1 1
1 1

1

n

k
k

y


 . Again, 2 1
1k kp  , where 1

1kp is the 

fraction of arrivals directed from the origin node to node k in level 2. Clearly, 2

1

n

k
k

 


 . 
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Figure 2: (a): The initial 2-level (n+1)-node network. 

 (b): The modified network after applying redistribution.  

Mathematical Formulation 

As stated, the objective is to redistribute capacities so as to minimize WIP in the system. This 

objective can be expressed by the following mathematical program:   

 
1
1

2 1 1
1 1 1 1 1
1 1

1

                                                                           (8)
( )

n
k

n
k k k k

k
k

p
Min

y py


   



 
 
 

     




 

Such that, for 1, 2,..., ,k n  

1 1 1 1 1
1 1 1 1

1 1

0,  0,  1,    < ,               
n n

k k k k
k k

y p p y 
 

        

1 1 2 1 1
1 1 1 1

1

,  
n

k k k k
k

y y p   


      

Solution 

In Appendix A it is shown that the structure of the optimal solution of the above mathematical 

program implies that if (some) capacity is transferred from the origin node, it is transferred to the 

node in level 2 having the largest initial capacity. That is, assuming without loss of generality 

(a) (b) 
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that  2 2
1

1
max i

i n
 

 
 , the optimal solution satisfies 1

1 0ky   for 2k  , so that the optimal values 

of 1
11y  and  1

1kp  satisfy the optimality conditions (9) and (10) below: 

   
1
11

2 21 1 2 1 1
1 11 1 11 11

                
p

y y p



   


   
 

This follows by differentiating the corresponding Lagrangian with respect to 1
11y , and setting 

1
1 0ky   for 2k  . Similarly, by differentiating the corresponding Lagrangian with respect to 1

1kp , 

and setting 1
1 0ky   for 2k  , one obtains: 

   
2 2 1

1 11
2 22 1 2 1 1

1 1 11 11

  2,...,k

k k

y
k n

p y p

 

   


 

  
 

Appendix A demonstrates and proofs the above claimed general structure of the solution for an 

(n+1)-node network. It is easy to see that the optimal solution for n=1 is to equate the capacity of 

both levels. For the case n=2, as depicted in Figure 2(b), and under the assumption that both 
2

1 0   and 2
2 0  ,

 
the optimal value of the total WIP in Figure 2(a) is  

WIP =
 

2 2
1 1

1 2 2 2 2
1 1 1 2 1

  
      


 

     

Substituting the optimal value of 2 1
1 11p   from (9) (with 2

10    ) results in  

WIP =
 2

2 2
1 2

1 2 2
1 1 2

2
                                                (12)

  
    

 


  
 

Now, if the optimal allocation is to transfer  y capacity units from the (single) node in level 1 to 

the nodes in level 2 such that y units  0 1  are allocated to node 1 in level 2 and  1 y  

units to node 2 in level 2, then the value of the work-in-process according to (12) will be 

  2
2 2

1 1 2
1

1 1 2 2
1 1 1 2

2 1y y
WIP

y y

    
    

    
 

    
 

(10) 

(13) 

(9) 

(11) 
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This is obtained from equation (12) by replacing 1
1  by  1

1 y  , 2
1  by  2

1 y   and 2
2  by 

  2
2 1 y    following the policy of capacity redistribution. 

The other considered alternative is to allocate all y  units only to the node with the initial largest 

capacity. Without loss of generality, we assume that it is node 1 and denote the resulting WIP in 

the network with 1 ( . . =1)WIP i e  . Calculating the difference in WIP values between the two 

alternatives yields   

    2 2
2 2 2 2
1 2 2 1

1 2 2
1 2

2 2 1y a y y
WIP WIP

y

      

  

          
  
  

  2 2 2 2
1 2 2 1

2 2
1 2

2 2 1
                   

y a y y

y

    
  

    


    

It can readily be seen that if 2 2
1 2   then 1WIP WIP .  Accordingly, in order to minimize the 

total WIP in the network, we allocate additional capacity only to the node with the largest 

capacity.  

Remark: It can be intuitively explained that optimal redistribution outperforms optimal node 

generation. As pointed out by an anonymous referee, the node generation approach can be 

represented as redistribution of capacity to a node with a zero capacity. Such redistribution is 

clearly suboptimal, as the optimal approach requires transferring capacity to the node with the 

largest initial capacity, as indicated in Appendix A. In the following sections, however, we focus 

on the node generation approach. The reason is twofold. First, there are situations where capacity 

redistribution is infeasible in real settings, as discussed below, and second, to the best of our 

knowledge, the node generation approach has not been addressed before in the queueing 

networks literature. 

Finally, let us note that the above observation is consistent with known results in queueing theory 

(e.g., Yechiali (1977)), where 

                 11 /μ/MλMLE<c/cμ/MλcML<E/μc/MλcMLE  . 

That is, in terms of reducing mean queue size, a single-server M/M/1 queue with arrival rate  

c   and service rate c   is better than a multi-server M/M/c queue with same arrival rate and 

(14) 
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service rate   for each of the c parallel servers. The latter configuration is better than c parallel 

M/M/1 queues, each with arrival rate   and service rate  .  

3 Node Generation in an M-Level Network 

In many real life situations, it is more applicable to perform reallocation of capacities via node 

generation than via redistribution. For example, consider again a service system composed of a 

transfer-line of stations. Some stations might have extra workers that may be better utilized by 

moving them to empty areas as a new station dedicated to a service stage in a lower level, or by 

using the budget to hire new subcontractors in a lower stage. The goal remains to minimize the 

system WIP or response time.  

3.1 Mathematical Formulation 

We consider now a sequential M-level tree-type network as depicted in Figure 3. 

 

Figure 3. Sequential M-level open Jackson network  
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In order to formulate the problem as a mathematical programming problem we define the 

following terms: 

j
iA - the index set of all nodes in level j-1 that are connected to node i in level j (including the 

newly generated nodes in level j-1). 

j
iS - the set of all successor nodes (down the stream) of node i in level j. 

j
iW - the set of immediate successor nodes of node i in level j , clearly, j j

i iW S . 

 

Figure 4. Sequential M-level open Jackson network with generated nodes  

 

Note: We index a generated node that is allocated capacity j
ix by the index j

ix . We assume that 

only existing nodes can generate a new node. The new constructed network is depicted in Figure 

4. The configuration is such that every original node with capacity j
i  may generate a new node 
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in level j+1 contributing to it j
ix  capacity units. A new j

ix -type generated node cannot generate 

further new nodes. Thus, in level j+1 there will be at most jn  new j
ix -type nodes with positive 

capacity. Furthermore, the newly generated nodes may direct their job flow to anyone of their 

sibling node successors. We do so to avoid flow schemes that would be infeasible in the original 

structure.
 

j
ikp is the fraction of arrivals directed from node i in level j to node k in the next level. 

Our decision variables are j
ix  and  j

ikp . We denote 

j
i - the total flow rate into (and out of) node i in level j. 

1
j

i

j
x

  - the total flow rate into (and out of) node j
ix  in level j+1. 

jn - number of initial nodes in level j. 

j
i - the capacity of node i in level j after applying the node generation approach. 

The corresponding mathematical program is: 

1
1

1
1 1 1 1

    
j j

j
i

j
i

jjM n M n
xi

j j j j
j i j ii i i x

Min
x


  





   

 
 

   
 


 

Such that 

      1,...., ;  1,......,j j j j
i i ix j M i n      

1       1,...., 1;  1,......,j
i

j j j
ix

x j M i n     
 

   ,j j
i i i j    

1

1

1

n

i
i

 


  

1 1
,     1;  all nodes  in level  (including )

j
i

j j j j
i a i a i

a A

p j i j x  



   

(15) 
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, 1    1 ;  all nodes  in level  (including )
j

i

j j
i w i

w W

p j M i j x


    

, , 0   , ,j j j
i iikx p i j k    

Solution 

Forming the Lagrangian, substituting in the objective function j j j
i i ix   ,  differentiating the 

objective function (15) with respect to j
ix , and equating to zero lead to the following necessary 

conditions: 

   
1

2 2
1

    for every 1 ;  1 1
j

i

j
i

jj
x ji

j j j j
i i i x

ni j M

x



  




    

 
 

Similarly, differentiating the objective function with respect to j
ikp , where j

i  is the Lagrange 

multiplier of the constraint , 1
j

i

j
i w

w W

p


 , results in 

   
1,1

,
2 21 1 ,

     
j

i

j llj
q k q j jk

i i
j j l lq l s q qk k

k W



  



  


  




 


  

where  , , 1 1
,, ,

l j
q i

j l j l l
a qi q i a

a A S

p 

 
    represents the summation of all path probabilities from node i 

in level j to node q in level l, where , 1
,    j j j j

ii k ikp k W    . 

Note that the above formulation allows for several nodes in the first level.  

Apparently there is no simple structural solution to the sets (16) and (17). We thus present a 

heuristic procedure which is based on the optimal properties of the solution of the 2-level 

problem in Section 2.1.   

3.2 Approximating the Optimal Solution via Cuts 

(17) 

(16) 
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We propose a cut type procedure and exhibit its effectiveness on a sequential M-level tree-type 

network, as shown in Figure 3. We create cuts that are orthogonal to the direction of the flow, as 

depicted in Figure 5.  A cut fixes the flow to the successor nodes of each origin node, where the 

total flow via the cut remains unchanged before and after the node generation action. Such an 

approach enables to ignore the possible effects of a node generation on downstream nodes and 

by that avoiding a complex circular formulation. The effect is neutralized by the fact that no 

matter which decisions are made in previous levels, the flow remains the same. Therefore, one 

does not have to take into consideration any changes that have been made to the incoming flow 

of each family of sibling nodes. That is, by fixing the flow in each cut, it is possible to optimize 

capacity reallocation (via the node generation approach) in each of the cuts independently. The 

‘greediness’ impact of such a heuristic can be then handled by iteratively repeating this 

procedure, which can lead to a near-optimal solution, as will be seen below. 

 

Figure 5. Sequential M-level open Jackson network with orthogonal cuts 

We define two new terms and modify the mathematical program as follows. 
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j
i - the flow through the cut between node i in level j to its successor nodes ( j

i  is fixed before 

node generation and remains so). 

j
iB - the index set of the nodes in level j-1 that are connected to node i in level j (not including 

the generated nodes from level j-1). Note that 
j j

i iB A . 

Mathematical formulation 

1
1

1
1 1 1 1

    
j j

j
i

j
i

jjM n M n
xi

j j j j
j i j ii i i x

Min
x


  





   

 
 

   
 


 

Such that 

      1,...., ;  1,......,j j j j
i i ix j M i n      

1       1,...., 1;  1,......,j
i

j j j
ix

x j M i n     
 

   ,j j
i i i j    

1

1

1

n

i
i

 


  

1 1
,     1;  all nodes  in level  (including )

j
i

j j j j
i a i a i

a A

p j i j x  



   

, 1    1 ;  all nodes  in level  (including )
j

i

j j
i w i

w W

p j M i j x


  
 

, , 0   , ,j j j
i iikx p i j k    

1 1, ,
      1,..., 1;  1,...,j j

b bj j j
i i i

j j j j j j
i w i ix w x

w W b B w W

p p j m i n  

  
         

(18) 



20 
 

It is important to emphasize that the set of equations (18) differs from the set of equations (15) 

only by the addition of the last constraint in (18) that computes the flow through the cuts in the 

network. 

Optimal Solution Structure to the Cut-Based Approach 

Differentiating the objective function (18) with respect to j
ix  and following the first condition of 

optimality lead to equations (16). Similarly, differentiating the objective function (18) with 

respect to j
ikp  and equating to zero lead to equations (19). 

 
1

21 1
  

j
j jk

i i
j j

k k

k A



 



 
 






  

Clearly, the new set of equations (19) simplifies matters as we do not have to take into 

consideration the decisions in previous levels.  Equations (19) no longer have the second term 

that appears on the right hand side of equations (17). This term aggregates all the actions that 

were taken in previous levels with regard to the flows. Thus, by using the cut-approximation 

technique one reduces the computation complexity to a polynomial order in the network size.  

To further reduce the computation effort, we propose solving each cut independently, where the 

total incoming flow into a cut is considered fixed. The cuts can then be solved iteratively top to 

bottom, until one obtains convergence to a solution, or some stopping criterion is satisfied. To 

illustrate the efficiency of the cut-approximation method, in the following chapter we apply it to 

various networks and investigate it numerically. 

 

4. Numerical Study of the Node Generation Iterative Heuristic 

The effectiveness of the node generation method is shown in this section through several 

numerical examples. Section 4.1 presents two examples that motivate the use of the cut-

approximation method. Namely, we apply this method to both a 4-level network, and to a 16-

level network. We show that only few iterations are required for the WIP level to approach its 

minimal value. Section 4.2 presents a numerical analysis of the efficiency of the node generation 

method in 8-level networks as a function of several topological and operational parameters. 

(19) 
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These networks are also used to compare the cut-approximation method versus a simple naïve 

heuristic, where a fixed percentage of the excess capacity in a parent node is transferred to the 

newly generated node in the downstream level. The results further illustrate the advantage of the 

node generation approach over the naïve approach. 

4.1 Examples 

Example 4.1. Consider a 4-level binary network depicted in Figure 8.  Note that, in this example, 

level 1 is comprised of two nodes, rather than a single node, as used in previous figures. The 

values of the initial parameters are as follows: an arrival rate of 100  , service rates of 
1 1
1 2 145;   2 2 2 2

1 2 3 4 65;       3 3 3 3 3
1 2 3 4 5 50;            

4 4 4 4 4 4
1 2 3 4 5 6 35;             and an initial WIP of 158.6. 

 

Figure 8. Sequential 4-level binary open Jackson network. 

Applying the mathematical program (15) in Section 3.1, one obtains a new network with a 

minimal WIP of 93.6 units, an improvement of 41% with respect to the initial WIP value. The 

computational time of the above procedure on a PC with a 1.6 Ghz CPU is 3.3 seconds. 

Using the cut-approximation formulation (18) in Section 3.2 and solving each cut iteratively, we 

obtain, after four iterations only, a new network with a total WIP of 94.1 units, while the 

computation time on the same computer is 1.2 seconds.  



22 
 

Next we present how to use the node generation method after designing and constructing a new 

network. The procedure for generating networks is composed of three stages (see Appendix B). 

The first stage generates the topology of the network. To each node two successor nodes are 

allocated, either by choosing them from the already available nodes in the downstream level or 

by generating a new node (or nodes) in the next level. In the second stage, capacities and flows 

are allocated to the nodes in the network: the flow of each node is randomly distributed among 

its successor nodes, to which capacity are then allocated proportionally to their incoming flow. In 

the third stage, the node generation method is implemented by using the iterative cut-

approximation top to bottom. Overall, the procedure is based on several parameters that 

determine the network structure and its properties, namely:    the arrival rate of jobs into the 

system;    the ratio between capacity and arrival rate in the first node;    the probability of 

generating a new successor node;    the system excess-capacity decrease factor that represents 

difference in the capacities between consecutive levels; T the number of maximum iterations 

allowed by the cut-approximation method; and M the number of levels in the network. The 

pseudo-code of the networks generating algorithm is presented in Appendix B. 

Example 4.2. Based on the above, we now consider 16-level binary networks that were generated 

randomly by the procedure described above. This procedure was replicated ten times to obtain 

statistical measurements on WIP reduction via these sampled networks. The resulting networks 

contained at least 13,000 nodes each. The stopping criterion for the cut-approximation heuristic 

was defined to be a decrease in the total WIP of less than 0.01% between consecutive stages. 

This criterion was satisfied on the average after 10 iterations with an average computation time 

of 7 minutes. Figure 6 shows the decrease in the total WIP (where the initial WIP is defined as 

100%) as a function of the number of iterations for each generated network. As can be seen, an 

improvement of 12.7% with respect to the initial WIP level is obtained on the average. 

Moreover, note that after five iterations, most of the improvement is already achieved in most of 

the considered networks. The generation parameters of the networks are 0.75  , 0.8  , 2   

and 10,000  . In comparison, the average computation time for the optimal solution in the 

same networks was 91 minutes with an improvement of 14.6%. 
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Figure  6.  WIP Reduction for each of the ten 16-level networks 
 

4.2. Numerical Study of Parameters Effects  

In this section we study the effects of various network parameters on the WIP reduction where 

we test 8-level networks. The considered numerical study is composed of three parts. In the first 

part we present several examples for the convergence rate of the algorithm. Next, we analyze the 

effect of: i) capacity reduction; ii) number of levels; and iii) the ratio of capacity to flow in the 

first network level on the performance of the algorithm relative to different breadths of the 

network (defined by the probability to generate new successor nodes). For each of the mentioned 

parameters we perform 40 different runs based on sampled networks. A comparison to a naïve 

decision algorithm is given in the last part of the analysis. 

 Figure 7 demonstrates the percentage decrease in the total WIP as a function of the iteration 

number, where we fix 2   and 10,000  . Note that the effect of the capacity difference 

parameter   on the WIP value is more significant than that of   (the probability of generating a 

new successor node). As seen, the optimization process stabilizes quite rapidly – after five to six 

iterations on the average. 
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Figure 7. Examples of WIP decrease through iterations of the algorithm. 

 

 

Figure 8. Performance of Cut Method as a Function of η,  

 

Figure 8 presents the reduction of the total WIP via the node generation algorithm in relation to 

the input parameters ,  . Every point in the figure represents the average WIP percentage over 

the 40 generated networks with the following parameters: M=8 levels, an initial capacity ratio of 

2   and an arrival rate of 10,000  . Note that the average improvement of WIP is 48.11% and  

=0.85 

=0.8 

=0.75 

=0.7 
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varies in single cases between 5% to 95%. An intuitive result that can be derived here is that as   

(representing the difference in capacities between levels) increases, the reduction in the WIP 

level (i.e., the efficiency of the algorithm) increases. With a lesser significance one can notice 

that as   increases (leading to a wider network) a lower level of WIP is reached. Thus, as seen 

by other examples, the node generation method is more efficient in wider unregulated networks. 

The effect of the initial capacity ratio   is presented in Figure 9. Each point in the figure 

represents the average percentage of WIP decrease over 40 generated networks. Each network 

was generated by using the following parameters: M=8 levels, a capacity difference parameter 

0.6   and an arrival rate of 10,000  . Note that the improvement in the WIP level reduces as 

the value of   increases. This phenomenon is attributed to the fact that the network overall 

capacity is determined by   and  . Once again, for a fixed value of  , M,   and ,  a lower 

level of WIP is reached in wider networks (i.e., as   increases). 

 

Figure 9.  Improvement relative to first level ratio of capacity to flow 
  

The effect of the number of levels in the network on the WIP decrease is presented in Figure 10. 

Each point represents the reduction in the WIP level with respect to the initial WIP level, as 

averaged over 40 networks. Each network was generated by using the following parameters: a 

capacity difference parameter 0.6  ; an initial capacity ration of 2   and an arrival rate of 

10,000  . Note that as the number of levels increases, the node generated method performs 

better (leading to lower WIP values), as one might expect. Thus, when adding levels to the 

=0.7 

=0.75 

=0.8 

=0.85 
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network, these new levels have lower capacities, and therefore can benefit more from the node 

generation approach. As indicated above, the improvement increases also with the width of the 

network (larger   parameter). 

 

Figure 10.  Improvement as a function of the number of network levels 
 

The above numerical studies provide some insights about the factors and network parameters 

that influence the node generation performance. Namely, reducing the overall capacity in the 

system (by reducing either   or  ) leads to an improved performance of the proposed method, 

as well as increasing the size of the network (either by increasing its width   or the number of 

levels M),  as well as varying the capacities among nodes. 

A Comparison of the cut-approximation versus a naïve approach  

The above analysis provides insight into the affecting factors in the cut-approximation method. 

In this last part of the analysis we compare the cut-approximation approach versus a naïve and 

‘intuitive’ algorithm that computes the excess capacity in a parent node and transfers a 

predetermined percentage of it, denoted by , to the newly generated downstream nodes. It 

searches for the minimal WIP solution within a predetermined region of excess capacity ( ) for 

each cut. Thus, given the parameter (0 1)    the naïve algorithm searches for the best 

solution (minimal WIP) in a region defined by ( 0.01) ( 0.01)x         , where x is the 

amount of capacity transferred from a parent node to a new successor node. The naïve algorithm 

was analyzed by the following numerical study. Each iteration is generated by using the 

following parameters: 0.8  ; 2   and 10,000  . Table 1 shows the average improvement 

=0.7 

=0.75 

=0.8 

=0.85 
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(WIP reduction) achieved by both the cut-approximation and the naïve algorithm over 30 

replications for different values of  , M and . Note that in general the improvement of the cut-

approximation approach is significantly higher than the naïve algorithm. Yet, for some values of 

,  the naïve algorithm can approach the WIP reduction, as obtained by the cut approximation. 

This attribute is partially due to the systematic creation of the analyzed networks, while less 

organized networks do not exhibit such phenomenon. Predicting the best value of   in each cut 

and in each level requires an extensive combinatorial search on a huge number of candidates, 

which is computationally intractable, and avoided in this paper. Moreover, adding limitations on 

how much capacity can be moved to a new node can be implemented in the original model 

formulation of the node generation approach. 

 

 0.5   0.6   0.7   

Algorithm 

Network 

parameters 

M=5 M=6 M=8 M=10 M=5 M=6 M=8 M=10 M=5 M=6 M=8 M=10 

 (  10%)Naive    0.3% 0.9% 2.6% 2.8% 0.3% 1.1% 3.1% 4.4% 0.6% 0.7% 0.8% 0.7% 

 (  30%)Naive    3.2% 11.0% 32.0% 34.4% 2.4% 8.3% 24.3% 34.7% 0.1% 0.2% 0.1% 0.1% 

 (  40%)Naive    5.3% 18.3% 53.4% 57.3% 3.5% 12.1% 35.2% 50.4% 0.1% 0.1% 0.2% 0.2% 

 (  50%)Naive    6.7% 23.1% 67.4% 72.4% 4.6% 15.9% 46.3% 66.2% 0.1% 0.1% 0.1% 0.2% 

 (  70%)Naive    1.4% 1.8% 1.5% 1.5% 0.0% 0.1% 0.3% 0.5% 0.1% 0.2% 0.2% 0.1% 

Node Generation 8.3% 28.6% 83.5% 89.6% 5.2% 17.9% 52.2% 74.6% 1.2% 4.1% 11.8% 16.9% 

 

Table 1. Naïve algorithm vs. node generation. The numbers in the table represent the 

average WIP reduction with respect to its initial value. 

 

5. Conclusions and Future Research 

We have studied optimal capacity reallocation in open Jackson networks in order to minimize 

total WIP, or alternatively, system response time. We start by comparing two capacity 
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reallocation methods: capacity redistribution among existing nodes and node generation, in 

which capacity is allocated to newly generated downstream nodes. Although the former 

approach is superior in terms of overall WIP and response time, we focus on the latter approach. 

This approach has not been studied before, in spite of its applicability to real life settings in 

industrial, service and communication networks.  We show that the optimal solution for the node 

generation approach in a 2-level network yields two necessary conditions of optimality. These 

conditions dictate some balance equations after capacity transfer between each parent node and 

its successor nodes, as well as among the successor nodes themselves. These optimality 

conditions and their implementations in larger multi-level networks have been studied and 

inspired a construction of a single ancestor cut-approximation method. The basic structure that 

we propose in this approximation can be further expanded in an attempt to tackle even more 

complex problems, as shown in the last section. The effectiveness of the proposed technique 

increases with the density of the network (both its depth and width), with irregular capacities 

spread within the network and with the decrease in the network overall capacity with respect to 

the incoming stream of jobs. The effectiveness of the algorithm has been studied numerically and 

found to be significant in many cases. For example, when referring to the above given numerical 

examples, we obtained an average decrease level of WIP between 10% to 85%.  

The proposed cut-approximation approach can be used to improve the performance of ad-hoc 

supply chain segments or flexible manufacturing systems. One might consider the 

implementation of the cut-approximation techniques not only in the node generation approach, 

but also for capacity redistribution. The cut technique is a heavily constrained mathematical 

program. Relaxation or modification of these constraints has a potential for even greater 

improvement of network performance. This can be done by using the available capacities and 

without requiring a global topological optimization - a requirement that often leads to 

computational limitations. Modeling the system by multi-server queues can improve the optimal 

result for addressing reallocation of capacities with discrete resources (e.g., workers) or 

scheduling considerations.   

Another direction that can be investigated is by using local heuristics. For example, each node in 

the network can use local information of neighborhood nodes to maintain the balance constraints 

by giving or getting capacity in a fashion similar to Conway's game of life (Gardner (1970)). It 

might be of practical importance to study if these ad-hoc networks, such as peer-to-peer 

segments that exist in the internet nowadays, can improve their performance locally to a 

satisfactory degree.   
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Appendix A: Optimal Distribution of Extra Capacity among  Parallel Servers 

Consider a system with n nodes as depicted in Figure 11. Let  be the overall external arrival 
rate, to be distributed among the n nodes. Let the existing capacity of node i be 1

i  i=1,2,…,n. 

Assume that there is additional capacity  to be distributed among the n nodes such that node i 

gets iy  additional units of capacity, 
1

n

i
i

y


  . Let ip be the fraction of flow directed to node i 

and let   1 1
i i iy   .   

 

Figure 11. Capacity Distribution for n Parallel Servers 

The problem A1 below aims to obtain the minimal WIP in the network, where ,i iy p  are 

considered as decision variables, and 1
i  and  are treated as the problem parameters. 

Problem A1 

 
1

1 1
1

 ,
n

i

i i i

Min Min F y p


 

 
  

  


 

Subject to
 

1 1    1, ...,i i i n                                         

1

1
n

i
i

p


                                                                 
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1

n

i
i

y


   

1 1     1, ...,i i iy i n                

1     1,....,i ip i n                        

0   1,...,iy k n      

0 1       1,...,ip i n                                                 

Theorem A1 

    When transferring extra capacity   to one server in a system composed of n parallel / /1M M  

servers, the optimal solution in terms of minimal WIP is obtained by transferring  to the server 

with the largest initial capacity. 

Proof  

    Consider first two / /1M M  parallel servers with service intensities 1  and 2 , respectively, 

and combined arrival rate , where the objective is to minimize the WIP in the network. 

Accordingly, we solve Problem A2 below, in which the goal is to reduce the WIP of the parallel 

servers by choosing the proper arrival rate 1  to node 1. 

Problem A2 

1 1

1 1 2 1

Min
  

    
 

    
 

Subject to
 

1 1

2 1

1

1

0

0

0

0

 
  
 


 
  
 

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Since the optimal value of 1  is 
 

1 2 2 1 1

1 1
2 1

     

 

 


, the total WIP is given by 

1 2WIP WIP WIP  
 2

1 2

1 2

2  

  

 

 
. As stated before, if 1  is negative we route the flow 

only to the node with the largest capacity. 

    Now consider the system with n queues, and look at a solution in which we transfer 

  ( 0 1  ) capacity units to server k and  1    capacity units to server j, while rerouting 

the arrival rates only for those two servers. Suppose the two servers have a combined arrival rate 

of j k    .
 

Thus, the minimal WIP of the two servers as a function of   is 

 
  2

2 1k j

k j

WIP
   


 

      


  
. Since  WIP    is a concave function, the 

minimum is obtained either in the point 1   or 0  . Thus, consider 

   
   2 2

2 2
1 0

j k k j j k k j

k j k j

WIP WIP
       

   

        
  

       
.  

It follows that    1 0WIP WIP  if and only if
k j  , implying that it is optimal to allocate   

to the node with the largest capacity between the two nodes. Therefore, if one applies this notion 

repeatedly between each pair of nodes, the optimal solution is to transfer  capacity units to the 

server with the largest service intensity out of all existing nodes.   
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Appendix B: Networks-Generating Algorithm 

Our algorithm is composed of three parts: i) topology; ii) capacity; and iii) flow allocation 

and optimization. The algorithm requires several parameters for its operation, namely:   the 

arrival rate of jobs to the system,   the capacity factor of the first node (the ratio between the 

initial node capacity and arrival rate),   the probability for generating a new child node,   

system excess capacity decrease factor, T number of maximum iterations before the optimization 

process stops and M number of levels in the network. 

Let us now present the pseudo-code of the algorithm: 

I. Topology: The first part of the algorithm creates the topology of the network. For each node 

we ensure two sons either from the available nodes in the next level or a new node that is created 

and added to the next level. 

1.1 j=0, i=1.  

1.2 Draw a random number  0,1r . If ,r   choose a node on level j+1 and set it as the 

right son; else create a new node and set it as the right son. 

1.3 Draw a random number  0,1r . If ,r   choose a node on level j+1 that is not the 

right son and set it as the left son, or else create a new node and set it as the left son. 

1.4 If  ji n then 1i i  and return to stage 1.2, else continue. 

1.5 If j M then 1,   1j j i i    and return to stage 1.2 else end. 

II. Capacity and Flow Allocation: The second part of the algorithm allocates flow and capacity to 

the nodes in the network. Each node flow is randomly distributed between his successors, which 

are then allocated with capacity proportional to their flow.  

2.1 j=0, i=1, 0 0
1 1,       .  

2.2 Draw a random number  0,1r  set 1 0
1 1r   and  1 0

2 11 r     

2.3  1j j   

2.4   1
j

j ji
i


   


      
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2.5 If 1j M  , draw a random number  0,1r , set 1 1
   

j j j
iright son right sonr      and 

 1 1
    1j j j

ileft son left sonr        

2.6 If ji n then 1i i   and return to stage 2.4 

2.7 If 1j M  then 1i   and return to stage 2.3 else end. 

III. Optimization: The last part of the algorithm implements the cut approach for each cut 

iteratively, top to bottom. 

3.1 t=1,j=0, i=1.  

3.2 Set   as the initial j
i , p i ,   ,  S right son left son solve the cut and update the 

network accordingly. 

3.3 If ji n then 1i i   and return to stage 3.2 

3.4 If 1j M  then 1i  , 1j j   and return to stage 3.2. 

3.5 If t T or there is no improvement in the iteration then end, else 1,  0,  1t t j i    and 
return to stage 3.2 


