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The asymmetric simple inclusion process (ASIP), a lattice-gas model of unidirectional transport and
aggregation, was recently proposed as an “inclusion” counterpart of the asymmetric simple exclusion process.
In this paper we present an exact closed-form expression for the probability that a given number of particles
occupies a given set of consecutive lattice sites. Our results are expressed in terms of the entries of Catalan’s
trapezoids—number arrays which generalize Catalan’s numbers and Catalan’s triangle. We further prove that the
ASIP is asymptotically governed by the following: (i) an inverse square-root law of occupation, (ii) a square-root
law of fluctuation, and (iii) a Rayleigh law for the distribution of interexit times. The universality of these results
is discussed.
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I. INTRODUCTION

The asymmetric simple inclusion process (ASIP) is a unidi-
rectional lattice-gas flow model which was recently introduced
[1,2] as an “inclusion” counterpart of the asymmetric simple
exclusion process (ASEP) [3–5]. In both processes, random
events cause particles to hop unidirectionally, from one site
to the next, along a one-dimensional lattice. In the ASEP,
particles are subject to exclusion interactions that keep them
singled apart, whereas in the ASIP particles are subject to
inclusion interactions that coalesce them into inseparable
particle clusters. The ASIP links together the ASEP with
the tandem Jackson network (TJN) [6,7]—a fundamental
service model in queueing theory. From a queueing per-
spective, the ASIP’s “gluing” of particles into inseparable
particle-clusters manifests unlimited “batch service” [8–12]
and the model thus can be understood as a TJN with this
additional property. The ASIP is briefly described as follows.
Particles enter a lattice with rate λ at its leftmost site and hop
from one site to the next in clusters. In each hopping event
the entire particle content of a site translocates as one to the
next site and immediately coalesces with the particle content
therein. The clusters continue to hop and coalesce with other
clusters until they finally exit the lattice from its rightmost site.

Even the simplest ASIPs—homogeneous ASIPs, in which
the hopping rates do not depend on the position along
the lattice—were shown to display an intriguing showcase
of complexity, including power-law occupations statistics,
diverse forms of self-similarity, and a rich limiting behavior
[13,14]. However, several of the aforementioned “complexity
results” relied only on Monte Carlo studies, as an exact
expression for the joint stationary probability distribution
of particle occupations is not known. Obtaining an exact,
closed-form, solution of the model is undoubtedly difficult,
as coalescence introduces strong correlations between the
occupations of different lattice sites. In Ref. [1], an iterative
scheme for the computation of the probability generating
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function (PGF) of this steady-state distribution was presented.
And yet the PGF turns out to be analytically tractable only
for very small ASIPs—a fact that is manifest in the rapid
growth in its complexity as a function of lattice size [1].
Homogenous ASIPs were nevertheless proven optimal with
respect to various measures of efficiency [1], thus further
indicating their special importance.

The main goal of this paper is to present an exact closed-
form expression for the probability that a given number of
particles occupies a given set of consecutive lattice sites on
a homogeneous ASIP lattice. These probabilities, which we
term the incremental load probabilities (to be defined precisely
below), are marginals of the joint occupation distribution.
Progress can be made with their analysis by using the empty-
interval method, a method which has proven useful in the study
of aggregation in closed systems [15,16]. The calculation of
these probabilities in our open system is based on a combina-
torial analysis of the incremental load and on the solution of
a boundary value problem that governs its distribution. This
approach yields exact, closed-form, results expressed in terms
of the entries of Catalan’s trapezoids [17]—number arrays
which generalize Catalan’s numbers and Catalan’s triangle
[18–21]. It is interesting to note that Catalan’s numbers and the
entries of Catalan’s triangle (also called ballot numbers) also
show up in the exact solution for the steady-state probability
distribution of the ASEP [22,23]. The similarities between the
combinatorial analyses of the ASIP and ASEP suggest that the
two models may be linked on a fundamental level.

The incremental load probabilities provide valuable infor-
mation on the ASIP steady state and furnish an analytical proof
for the numerical results obtained in Ref. [13]. In particular, we
prove that (i) the probability that the kth lattice site is nonempty
decays like 1/

√
k, (ii) the variance of the occupancy of the

kth lattice site grows like
√

k, and (iii) the ASIP’s outflow
is governed by Rayleigh-distributed interexit times. Thus, in
this paper we present a substantial advance towards the exact
solution of the ASIP model.

Before presenting the exact expression for the incremental
load probabilities, we follow a complementary approach
which is based on mapping the original problem onto its
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diffusion limit counterpart. This approach shows that the
incremental load probabilities in lattice segments that are far
away downstream have asymptotic scaling forms which we
compute. Some of these scaling forms were previously found
in Ref. [24] using an alternative discrete approach. Here we
present a “real-space” analysis performed in a continuum limit.
Our analysis yields physical insight into the behavior of the
model and allows us to derive some new asymptotic scaling
forms. More importantly, the diffusion-limit approach reveals
that the asymptotics of the incremental load probabilities are
universal, in the sense that they do not depend on the details
of the process which feeds particles into the ASIP lattice.

The paper is organized as follows. Section II reviews the
ASIP, as well as the motivation for studying this model.
The main results of this paper are summarized in Sec. III
where we also introduce the notion of incremental load. In
Sec. IV the ASIP is described as a coagulation model and the
empty-interval method is adapted to its analysis. In Sec. V a
continuum diffusion limit is carried out and asymptotic results
are obtained; various implications of these results are discussed
in Sec. VI. Section VII further deepens the probabilistic
analysis of the incremental load and the associated boundary-
value problem. In this section we obtain expressions for the
incremental load which may be efficiently computed even for
inhomogeneous ASIPs. In Sec. VIII we return to homogeneous
systems, for which we solve the boundary value problem and
obtain a set of exact, closed-form, results. Section IX concludes
the paper with an overview and future outlook.

A note about notation: Throughout the paper 〈ξ 〉 and σ 2(ξ )
will denote, respectively, the mathematical expectation and
variance of a real-valued random variable ξ .

II. THE ASIP MODEL

In this section we briefly review the ASIP. This process was
introduced and explored in Refs. [1,13,14] and is described as
follows. Consider a one-dimensional lattice of n sites indexed
k = 1, . . . ,n. Each site is followed by a gate—labeled by
the site’s index—which controls the site’s outflow. Particles
arrive at the first site (k = 1) following a Poisson process �0

with rate λ, the openings of gate k are timed according to
a Poisson process �k with rate μk (k = 1, . . . ,n), and the
n + 1 Poisson processes are mutually independent. Note that
from this definition it follows that the times between particle
arrivals are independent and exponentially distributed with
mean 1/λ and that the times between the openings of gate
k are independent and exponentially distributed with mean
1/μk (k = 1, . . . ,n). A key feature of the ASIP is its “batch
service” property: at an opening of gate k all particles present
at site k transit simultaneously and in one batch (one cluster)
to site k + 1, thus joining particles that may already be present
at site k + 1 (k = 1, . . . ,n − 1). At an opening of the last
gate (k = n) all particles present at site n exit the lattice
simultaneously.

Denoting the number of particles present in site k (k =
1, . . . ,n) by Xk , the ASIP’s dynamics can be schematically
summarized as follows:
(i) first site (k = 1):

X1,X2, . . .
λ−→ X1 + 1,X2, . . . ; (1)

(ii) interior sites (1 < k � n − 1):

. . . ,Xk−1,Xk,Xk+1, . . .
μk−→ . . . ,Xk−1,0,Xk+1 + Xk, . . . ;

(2)

(iii) last site (k = n):

. . . ,Xn−1,Xn

μn−→ . . . ,Xn−1,0 . (3)

Throughout most of the paper we focus on homogeneous
ASIPs. In this subclass of ASIPs, the rates {μk}—which, in
general, differ—are identical: μ1 = · · · = μn.

As was briefly mentioned above, the ASIP is related to
several prominent models both in statistical physics and in
queueing theory. For completeness, we review in the rest of
this section some of these models and their connections to the
ASIP. Readers whose interest lies mainly in the new results
regarding the ASIP may safely skip ahead to Sec. III.

1. Tandem Jackson network

The tandem Jackson network (TJN) is a fundamental
service model in queueing theory [6,7]. Queueing theory is
the scientific field focused on the modeling and analysis of
queues [25]. The “traditional” applications of queueing theory
are common and widespread in telecommunications [26–28],
traffic engineering [29], and performance evaluation [30–32].
More recently, some “nontraditional” applications of queueing
theory have attracted interest—examples including human
dynamics [33–36], gene expression [37–40], intracellular
transport [41], and nonequilibrium statistical physics [42–48].
The TJN (at least in its most basic version) is a sequential
array of Markovian “single server queues”: Each site can
accommodate an unlimited number of particles, and whenever
a gate opens between two consecutive sites only one particle
can pass through the gate. From a queueing perspective, the
ASIP’s “gluing” of particles into inseparable particle-clusters
manifests unlimited “batch service.” Thus, the ASIP can be
viewed as a TJN with this additional property [8–12].

The TJN is named after R. R. P. Jackson, who was the
first to introduce and analyze it [6,7]. Jackson worked for
the operational research branch of the London airport and was
inspired to study the TJN by a visit to a factory in which aircraft
engines were overhauled in successive stages. Computing the
steady-state distribution of the model, Jackson has shown that
it has a product form, i.e., that the joint probability distribution
is a product of the marginal probability distributions associated
with each site. This form asserts that particle occupancies in
distinct sites are statistically independent of one another and
stands in sharp contrast to the correlated occupancies that are
observed in the ASEP [5] and ASIP [1].

The TJN is perhaps the simplest queue network imaginable
and it is only natural to ask what happens when the model is
extended to take into account networks of arbitrary topology
and general particle routing schemes. The answer to this
question was provided by J. R. Jackson, who showed that
the steady-state distribution of these systems is still given by a
product form [49]. The shared surname with R. R. P. Jackson
has, however, caused confusion among many (including the
authors of this paper) and this is a good opportunity to set
things straight: The TJN and the product form associated with
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it are known as Jackson’s theorem (R. R. P.), whereas Jackson’s
networks are due to J. R. Jackson [50].

It is important to note that Jackson networks are not
limited to constant arrival and hopping rates. J. R. Jackson
recognized the fact that real production systems may, as
the amount of work-in-process grows, reduce the rate at
which new work is injected or increase the rate at which
processing takes place, and have, consequently, generalized
many of the results that appear in his original publication [51].
Most importantly, Jackson networks were extended to capture
scenarios in which the arrival rate depends almost arbitrarily
upon the total number of particles in the system and hopping
rates depend almost arbitrarily upon the number of particles
present at the site of origin. Jackson’s work was the first
significant development in queueing networks theory [52] and
has recently received wide-spread recognition when reprinted
in a special issue dedicated to the “ten most influential titles
of Management Science’s first fifty years” [53].

2. Models of coagulation-aggregation and of condensation

The ASIP can be viewed as a model of coagulation
and aggregation of particles into ever-growing clusters. Such
reaction-diffusion models have been extensively studied since
the pioneering work of Smoluchowski [54] and continue to
raise interest even today [55,56]. In recent years, these models
have received attention also as simplified versions of models of
condensation. In the latter, fragmentation processes compete
with the coagulation reactions, leading to a phase transition in
which a macroscopic fraction of particles (or other microscopic
constituents) condense into a microscopic fraction of space.

Two of the simplest models of coagulation and aggregation
are the coalescence-diffusion model,

· · · AA · · · 1−→ · · · 0A · · · , · · · A0 · · · 1−→ · · · 0A · · · , (4)

where A represents an occupied site and 0 represents an empty
site, and the aggregation-diffusion model,

· · · AlAl′ · · · 1−→ · · · 0Al+l′ · · · ,
(5)

· · ·Al0 · · · 1−→ · · · 0Al · · · ,

where Al represents a site occupied by l > 0 particles and 0
represents an empty site [15]. In both Eqs. (4) and (5) the
rates—with no loss of generality—are set to be 1.

The studies dedicated to the models described in Eqs. (4)
and (5) were, by and large, carried out in a one-dimensional
ring topology. Under these conditions many statistical proper-
ties can be calculated exactly using the empty-interval method
[15,16], a method we shall present in Sec. IV. The ASIP, with
homogeneous unit rates {μ1 = · · · = μn = 1} can be viewed
as a generalization of aggregation-diffusion models to an open
system. Indeed, the bulk ASIP dynamics of Eq. (2) is identical
to the dynamics of Eq. (5). Similarly, when one disregards
the number of particles occupying each site (Xk) and focuses
only on whether sites are occupied (Xk > 0 or Xk = 0), the
ASIP dynamics turns into an open-boundary version of Eq. (4).
Previous studies of open-boundary aggregation models have
been carried out in Refs. [24,57]. The results presented herein
can be viewed as extensions and generalizations of these
works.

The dynamics of Eq. (5) on a ring lead to a trivial steady
state: a single cluster consisting of all particles drifts through
the system. However, when one adds fragmentation processes
to these dynamics the steady state becomes nontrivial and
the system may exhibit a condensation phase transition: a
disordered phase exists at low densities, while above some
critical density the disordered “fluid” background coexists with
a condensate, i.e., a single cluster which carries a finite fraction
of all particles [58]. This behavior is observed, for instance,
in the “chipping model,” where (5) is complemented by a
process in which a single particle may chip off the cluster at
site l and hop to l + 1 [59–61]. Although the phase diagram
of the chipping model has been calculated exactly [60,61], its
stationary distribution is not known, thus limiting the analysis
of the model. Most insight into such condensation transitions
comes from another prototypical toy model: the zero-range
process.

In the zero-range process (ZRP), particles hop along the
lattice one at a time and do not coalesce into clusters. However,
the hopping rate of a particle out of a site is a function
of the number of particles in that site, thus modeling an
interaction between particles of the same site (the lack of
interaction between particles of different sites is the origin
for the name of the model) [58,62,63]. The ZRP has received
much attention in recent years and has been used to study,
for example, vehicular traffic jams [63–65]; clustering in
shaken compartmentalized granular gases [66,67]; gelation
(the formation of a macroscopically linked hub) in complex
networks [15,68,69]; and, quite generally, phase separation in
one-dimensional driven systems [70].

Mathematically, the ZRP (at least in its most well-studied
form) is equivalent to a Jackson queueing network, and thus
its stationary distribution has a known factorized form as
discussed above. Using this product measure, it can be shown
that for certain choices of the hopping rates which model
attractive interactions, the system undergoes a condensation
phase transition. Similar analysis has also been employed
in the study of condensation in generalized mass transport
models that have a factorized steady state [58,71–74]. Such
models allow hopping of clusters of particles and transport of
continuous mass (rather than discrete particles) [71,72], and
also interactions between neighboring sites [73,74].

3. Asymmetric simple exclusion process

The ASIP is an exactly solvable “inclusion” counterpart
of the asymmetric simple exclusion process (ASEP)—a
fundamental model in nonequilibrium statistical physics [3–5].
While both models share the aforementioned sites-gates lattice
structure, the dynamics of the ASEP is governed by exclusion
interactions which do not allow sites to be occupied by more
than a single particle at a time. To pinpoint the difference
between the models consider the two following characteristic
capacities: (i) site capacity csite, the number of particles that can
simultaneously occupy a given site; and (ii) gate capacity cgate,
the number of particles that can be simultaneously transferred
through a given gate when it opens. In the ASIP csite = ∞
and cgate = ∞ while in the ASEP csite = 1 and cgate = 1.
This description shows that the ASIP links together the ASEP
with the TJN, as the latter is characterized by csite = ∞ and
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cgate = 1. Despite its simple one-dimensional structure and
dynamics, the ASEP displays complex and intricate behavior
[3–5,22].

The ASEP has a long history, having first appeared in
the literature as a model of bio-polymerization [75] and of
stochastic transport phenomena in general [76]. Over the
years, the ASEP and its variants were used to study a wide
range of physical phenomena: transport across membranes
[77], transport of macromolecules through thin vessels [78],
hopping conductivity in solid electrolytes [79], reptation of
polymer in a gel [80], traffic flow [81], gene translation [82,83],
surface growth [84,85], sequence alignment [86], molecular
motors [87], and the directed motion of tracer particles in the
presence of dynamical backgrounds [88–91].

III. A SUMMARY OF KEY RESULTS

In this section we present a short summary of the key results
established in this paper. Some of the results proven herein
were previously observed in numerical simulations [13]. In
the present work we derive them analytically and considerably
generalize them. In what follows we consider a homogeneous
ASIP with μ1 = · · · = μn = μ and set Xk to be a random
variable which represents the fluctuating number of particles
present in site k in the steady state. We open this section with
a series of asymptotic (large k) results for the distribution and
moments of Xk . The asymptotic results presented herein all
stem from the main result of this paper—an exact derivation of
the steady-state distribution of the ASIP’s incremental load—
with which we conclude this section.

A. Occupation probabilities

In Ref. [13] Monte Carlo simulations concluded that the
probability that site k is occupied, Pr(Xk > 0), decays like
1/

√
k (as k → ∞). Here we analytically prove that

Pr(Xk > 0) = 1 − Pr(Xk = 0) � 1√
πk

, (6)

where “�” denotes asymptotic equivalence to leading order in
k. We further obtain a scaling form for the probability that site
k is occupied by 1 	 l 	 k particles,

Pr(Xk = l) � μ

λk
φ

(
μl

λ
√

k

)
, (7)

where

φ(u) = 1√
4π

ue−u2/4. (8)

The results of Eqs. (6)–(8) are shown below to exhibit
universality with respect to the precise statistics of the arrival
process that feeds particles into the lattice, i.e., the arrival
process need not be Poissonian for these results to hold.
Furthermore, Eq. (6) is also universal in a stronger sense,
as it is independent even of the arrival rate λ, and thus
completely insensitive to the arrival process, at least for most
arrival processes. The extent to which this claim is correct
is discussed, along with other universality related issues,
in Sec. V.

B. Conditional mean occupancy

In Ref. [1] it was shown that in homogeneous ASIPs the
mean occupancy of site k at steady state is given by

〈Xk〉 = λ/μ (9)

(k = 1, . . . ,n). Thus, combining the general result of Eq. (9)
with the result of Eq. (6), we obtain that the conditional mean
occupancy of site k, conditioned on the information that the
site is not empty, is given by

〈Xk|Xk > 0〉 � λ

μ

√
πk. (10)

The power-law asymptotics of Eqs. (6) and (10) imply that the
stationary occupation of “downstream” sites (large k) exhibits
large fluctuations. On the one hand, a downstream site is rarely
occupied: Pr(Xk > 0) � 1/

√
πk. On the other hand, when

a downstream site is occupied, then its conditional mean is
dramatically larger than its mean—the former being of order
O(

√
k), while the latter being of order O(1).

C. Fluctuations

A square-root law of fluctuation, in which the variance in the
occupancy of site k grows like

√
k, was numerically observed

in Ref. [13]. Here we prove that

σ 2(Xk) � 4λ2

μ2

√
k

π
. (11)

Equation (11) is obtained by substituting Eq. (7) into the
second moment 〈X2

k〉 = ∑∞
l=1l

2 Pr(Xk = l), approximating
the second moment by a corresponding integral and noting
that σ 2(Xk) � 〈X2

k〉 (as the mean 〈Xk〉 is constant in k).

D. Interexit times

Consider the times at which particle clusters exit site k, and
let Tk denote the time elapsing between two such consecutive
exit events at steady state. Here we prove that the probability
density of the scaled interexit time Tk/

√
πk is asymptotically

governed by the Rayleigh distribution

PTk/
√

πk(t) � πt

2
exp(−πt2/4) (12)

(t > 0), as previously anticipated by Monte Carlo simulations
[13].

E. Incremental load

The ASIP’s overall load is the total number of particles
present in the lattice at steady state. The steady-state dis-
tribution of the overall load was comprehensively analyzed
in Ref. [1]. Generalizing the concept of the overall load we
consider a “lattice interval,” contained within the ASIP lattice,
which starts at site k and consists of m consecutive sites,
{k,k + 1, . . . ,k + m − 1} (k,m = 1,2,3, . . . ). The ASIP’s in-
cremental load corresponding to this lattice interval at steady
state is given by

L(k,m) =
k+m−1∑

i=k

Xi. (13)
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Clearly, the number of particles occupying site k, L(k,1),
and the overall load, L(1,n), are both special cases of the
incremental load L(k,m). The main result of this paper is
an exact closed-form expression for the distribution of the
incremental load

Pl(k,m) ≡ Pr(L(k,m) = l) (14)

(l = 0,1,2, . . . ). This expression, presented in Eq. (70), is
given in terms of the entries of Catalan’s trapezoids [17].

IV. THE ASIP AS A COAGULATION MODEL

As discussed in Sec. II, coagulation models similar to
the ASIP have been analyzed successfully using the empty-
interval method and its generalization to nonempty intervals.
In this method, one studies the steady-state distribution of the
incremental load defined in Eq. (13), and the time evolution of
its associated time-dependent counterpart

L(t ; k,m) =
k+m−1∑

i=k

Xi(t), (15)

where Xi(t) denotes the number of particles present in site i at
time t (t � 0). In this section we review the method and show
how it is applied to the analysis of the ASIP.

We begin with the probability that the lattice interval {k,k +
1, . . . ,k + m − 1} is empty at time t ,

P0(t ; k,m) ≡ Pr(L(t ; k,m) = 0). (16)

The empty-interval method is based on the fact that it is
possible to write a closed-form evolution equation for the
probabilities P0(t ; k,m) as follows.

Consider a homogeneous ASIP. By rescaling time, the
homogeneous gate opening rate and the particle arrival rate
can be normalized to μ → 1 and λ → λ/μ correspondingly.
Accordingly, from this point onward we will assume, without
loss of generality, that μ = 1 and that λ is measured in units
of the gate opening rate. For k > 1 and m > 1, the probability
P0(t ; k,m) evolves according to the equation

∂

∂t
P0(t ; k,m) = [P0(t ; k,m − 1) − P0(t ; k,m)]

− [P0(t ; k,m) − P0(t ; k − 1,m + 1)]. (17)

The term P0(t ; k,m − 1) − P0(t ; k,m) appearing on the right-
hand side of Eq. (17) manifests the probability that sites
{k,k + 1, . . . ,k + m − 2} are empty and site k + m − 1 is
occupied, in which case the particle cluster at site k + m − 1
might hop (with rate 1) to site k + m and thus leave the
interval {k, . . . ,k + m − 1} empty, as illustrated in Fig. 1.
Similarly, the term P0(t ; k,m) − P0(t ; k − 1,m + 1) appearing
on the right-hand side of Eq. (17) manifests the probability
that sites {k,k + 1, . . . ,k + m − 1} are empty and site k − 1
is occupied, in which case the particle cluster at site k − 1
might hop to site k (with rate 1), thus rendering the interval
{k,k + 1, . . . ,k + m − 1} nonempty, as illustrated in Fig. 2.

Equation (17) remains valid for m = 1 and k > 1 provided
that we impose the boundary condition

P0(t ; k,0) ≡ 1, (18)

FIG. 1. (Color online) The nonempty interval {k, . . . ,k + m − 1}
becomes empty if, and only if, all interval sites other than site k +
m − 1 are empty and the particles that occupy site k + m − 1 hop to
site k + m.

i.e., degenerate intervals (which contain no sites) are by
convention always empty. For k = 1 and m � 1 the evolution
is given by

∂

∂t
P0(t ; 1,m) = [P0(t ; 1,m − 1) − P0(t ; 1,m)] − λP0(t ; 1,m).

(19)

The term P0(t ; 1,m − 1) − P0(t ; 1,m) appearing on the right-
hand side of Eq. (19) manifests the probability that sites
{1,2, . . . ,m − 1} are empty and site m is occupied, in which
case the particle cluster at site m might hop (with rate 1)
to site m + 1 and thus leave the interval {1, . . . ,m} empty.
Also, P0(t ; 1,m) is the probability that the interval {1, . . . ,m}
is empty, in which case a particle might arrive to site 1 (with
rate λ), thus rendering the interval {1, . . . ,m} nonempty.

The empty-interval method can be generalized to capture
the evolution of the probability Pl(t ; k,m) that there are exactly
l particles at sites {k,k + 1, . . . ,k + m − 1} at time t [15,16],

Pl(t ; k,m) ≡ Pr(L(t ; k,m) = l). (20)

The empty-interval probabilities P0(t ; k,m) are, hence, a
special case of Pl(t ; k,m) with l = 0. The counterparts of
Eqs. (17)–(19) are as follows (see Appendices A and B for the
derivations). For k > 1 and m > 1 the evolution is given by

∂

∂t
Pl(t ; k,m)

= +[Pl(t ; k,m − 1) − 2Pl(t ; k,m) + Pl(t ; k,m + 1)]

− [Pl(t ; k,m + 1) − Pl(t ; k − 1,m + 1)]. (21)

FIG. 2. (Color online) The empty interval {k, . . . ,k + m − 1}
becomes nonempty if, and only if, site k − 1 is occupied and the
particles that occupy it hop to site k.
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Equation (21) remains valid for m = 1 and k > 1 provided
that we impose the boundary condition

Pl(t ; k,0) = δl,0, (22)

where δl,0 is the Kronecker δ symbol. Note that, remarkably,
Eqs. (21) for Pl(t ; k,m) do not couple different values of
l. A coupling enters only through the boundary condition
Pl(t ; 1,m) (m � 1) whose time evolution is given by

∂

∂t
Pl(t ; 1,m) = +[Pl(t ; 1,m − 1) − Pl(t ; 1,m)]

− λ[Pl(t ; 1,m) − Pl−1(t ; 1,m)] . (23)

Note that setting l = 0 in Eqs. (21)–(23), while taking into
account that the probability to observe a negative number of
particles is zero by definition, indeed yields Eqs. (17)–(19).

V. CONTINUUM LIMITS OF THE
STEADY-STATE EQUATIONS

The main result of this paper is an exact expression for
the steady-state solution of Eqs. (17)–(23). Before presenting
and deriving this exact solution (see Secs. VII and VIII) we
provide in the current section a derivation of the asymptotic
scaling forms that this solution attains for large values of k,
i.e., for lattice intervals located far away downstream. As
discussed above, some of the asymptotic results presented
in this section have been obtained before in Ref. [24] using
Laplace transform methods. Here we present an alternative
“real-space” derivation, which yields new physical insight into
the solutions and highlights their universal nature.

The asymptotic analysis of Eqs. (17)–(23) is based on
the following continuum-limit assumption: if the steady-
state probability Pl(k,m) changes slowly as a function of
the variables k and m, then this discrete function may be
approximated by one which is continuous both in k and
m. Thus, one can expand to leading order all terms in the
equation around Pl(k,m). In this continuum limit, the discrete
Laplacian in the first square brackets of Eq. (21) approximately
equals a continuous Laplacian and, similarly, the second square
brackets is approximately ∂

∂k
Pl(k,m). Therefore, in the steady

state, where the left-hand side of Eq. (21) vanishes, one
finds that Pl(k,m) satisfies a diffusion equation where the site
number k plays the role of time as follows:

∂

∂k
Pl(k,m) = ∂2

∂m2
Pl(k,m) . (24)

This continuum approximation will be shown a posteriori to
be valid when k � m.

Equation (24) should be solved with the appropriate
boundary conditions in “space” (i.e., in m) and “time” (i.e.,
in k). The spatial (m = 0) boundary condition of Eq. (24) is
given in Eq. (22), Pl(k,0) = δl,0. The temporal (k = 1) initial
condition is the steady-state solution of Eq. (23), which was
found to be [1]

Pl(1,m) =
(

l + m − 1

l

)(
1

1 + λ

)m(
λ

1 + λ

)l

. (25)

Before proceeding with the study of Eq. (24), let us discuss
its relation with the behavior of an ASIP on a ring. Unlike
the open boundary ASIP on which we focus, on a ring the

steady-state behavior of the model is trivial: A single occupied
site circulates throughout the system unidirectionally. The
relaxation to this steady state, however, has an interesting
scaling form which has been studied extensively in the context
of coagulation models (4) and (5). In particular, it is known
that in a spatially homogeneous ring, the probability to find l

particles in an interval of m sites evolves (in a continuum limit)
according to the diffusion equation (24) with k replaced by
time. In other words, as one progresses from left to right along
a stationary open-boundary ASIP, the probability to see empty
or occupied intervals changes (in space) just like the temporal
evolution of the corresponding probability on a ring. This
mapping between the two problems provides an interesting
physical picture: It suggests that the open-boundary ASIP can
be thought of as a sort of a “conveyor belt,” along which the
coagulation reaction proceeds. A single steady-state snapshot
of the open-boundary ASIP is, in this sense, similar to the
entire temporal evolution of the coagulation model on a ring.

It is well known that the diffusion equation on an infinite
line has, at times which are large compared with (the square
of) the spatial extent of the initial condition, a scaling form
of a spreading Gaussian. Having arrived at the diffusion
equation (24), it is not too surprising that a similar scaling
solution is found for it at large k. This solution, however,
is not Gaussian, due to the boundary condition (22), which
is either a source at the origin when l = 0 or a sink when
l � 1. In Secs. V A and V B below, we separately describe
and derive the scaling solutions for these two cases. A
third, somewhat more subtle, scaling solution is found when
considering the joint limit of l ∼ √

k � 1. In this case, k is
not large enough in comparison with the spatial extent of the
“initial condition” (25) in order for the usual scaling of the
diffusion equation to apply. Nonetheless, Pl(k,m) is found to
have a universal scaling form in the variable l/

√
k. This scaling

form is discussed in Sec. V C. The universality of the obtained
scaling forms and the conditions under which the continuum
approximation is valid are discussed in Sec. V D.

A. The case of l = 0

As with the usual (probability conserving) diffusion in its
late stages, the large k solution of Eq. (24) is given by a scaling
form. This form can be found by substituting the ansatz

Pl(k,m) = k−βf

(
m√
k

)
(26)

in Eq. (24), yielding the ordinary differential equation

f ′′(u) + u

2
f ′(u) + βf (u) = 0 (27)

for the scaling function f (u), where u = m/
√

k is the
corresponding scaling variable.

In the case of l = 0 (i.e., the probability to see empty
intervals), the boundary condition P0(k,0) = 1 implies that
β = 0 and f (0) = 1. The solution of Eq. (27) with this bound-
ary condition is given by f (u) = 1 + C erf(u/2), where C

is an integration constant and erf(x) ≡ 2/
√

π
∫ x

0 exp(−y2)dy

is the error function. For large u this solution approaches
1 + C. Since limm→∞ P0(k,m) → 0 (i.e., there is a vanishing
probability that all sites from k onwards are empty), the
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constant C must equal −1, yielding the scaling solution
f (u) = erfc(u/2), i.e.,

P0(k,m) � erfc

(
m

2
√

k

)
, (m 	 k), (28)

where erfc is the complementary error function defined as
erfc(x) ≡ 1 − erf(x). Here and in the next two Secs. we
indicate in brackets the limiting regime in which the obtained
scaling solutions are valid. These are explained below in
Sec. V D.

B. The case of 1 � l � √
k

When l � 1, Eq. (24) should be solved under the absorbing
boundary condition Pl(k,0) = 0, which by use of Eq. (26)
implies that f (0) = 0. The corresponding solution of Eq. (27)
is

f (u) = C u 1F1(β + 1/2; 3/2; −u2/4), (29)

where C is once again an integration constant and 1F1(a; b; z)
is the Kummer hypergeometric function. The values of β and
C can be determined by using the fact that the quantity � =∫∞

0 mPl(k,m)dm is conserved by the diffusion equation (24)
with an absorbing boundary condition, i.e., it can be shown that
d�/dk = 0 [92]. The discrete counterpart of this conservation
law, which results from Eq. (21), states that

�l ≡
∞∑

m=1

(m − 1)Pl(k,m) (30)

is independent of k in the steady state. For the scaling
solution given by the combination of Eqs. (26) and (29),
�l � k1−β

∫
uf (u)du = k1−β

√
4πC, and we therefore find

that β = 1, for which f (u) = Cu exp(−u2/4) [93], and C =
�l/

√
4π , i.e.,

Pl(k,m) � �lm√
4πk3/2

e− m2

4k (1 � l 	
√

k; m 	 k). (31)

The value of �l is found from the initial condition (25) to be

�l =
∞∑

m=1

(m − 1)Pl(1,m) = (l + 1)/λ2. (32)

To see this, note that up to a multiplication by λ−1, Eq. (25)
is the probability mass function of a sum of l + 1 independent
geometric random variables with mean λ−1.

Note that the scaling form (31) is valid only in the
asymptotic regime when the diffusive length

√
k is much larger

than the spatial spread of the initial condition, which in our case
is of the same order of �l . In other words, for any fixed l � 1,
Eq. (31) is a good approximation at “times” where

√
k � l.

In the next subsection we examine what happens at “times”√
k ∼ l, which are not large enough for the initial condition to

be washed out by the diffusion.

C. The case of l ∼ √
k

When l ∼ √
k and k is not large enough for the diffusion

to reach its asymptotic scaling regime, there seems to be no a
priori reason to expect a scaling solution to Eq. (24). However,
a closer inspection of the initial condition (25) reveals that
such a scaling solution does exist and, surprisingly, is also

universal. We now derive this scaling solution; its universality
is discussed in the next subsection.

The key observation now is that the dependence on the
number of particles l enters only through the initial condition
of Eq. (25), which in the limit we study, and as a function
of m, is narrowly centered around m � l/λ. This once again
follows from the fact that the initial condition of Eq. (25)
is proportional to the probability mass function of a sum
of l + 1 independent geometric random variables with mean
λ−1. Therefore, according to the central limit theorem, the
distribution of this sum can be approximated, when l → ∞,
by a Gaussian distribution whose mean is given by 〈m〉 =
(l + 1)/λ � l/λ. Recalling that the standard deviation scales
as

√
l, and is therefore negligible with respect to the mean,

we can further approximate the Gaussian probability density
function by a Dirac δ function, i.e.,

Pl(1,m) � λ−1 δ(m − l/λ). (33)

The solution of the diffusion equation (24) with an
absorbing boundary at the origin and the initial condition (33)
is found (e.g., by the method of images [94]) to be

Pl(k,m) � 1√
4πλ2k

[
e− (m−l/λ)2

4k − e− (m+l/λ)2

4k

]
(1 	 l 	 k; m 	 k). (34)

Equation (34) is a joint scaling solution in the scaling variables
m/

√
k and l/

√
k. If one is further interested in the limit of

m 	 l, one may expand and obtain to leading order a “thermal
dipole,”

Pl(k,m) � ml√
4πλ2k3/2

e
− l2

4λ2k (m 	 l 	 k). (35)

Note that, as explained below, Eqs. (34) and (35) are valid not
only at the scale of l ∼ √

k but in fact for all 1 	 l 	 k.

D. Remarks on the scaling solutions

In this subsection we remark on the limits of validity of the
scaling solutions obtained above and discuss their universality.

The validity of the scaling solutions obtained in the previous
sections relies on the continuum approximation of the exact
(discrete) Eq. (21) by the continuous Eq. (24). A straight-
forward calculation shows that the solutions (28), (31), (34),
and (35) satisfy

Pl(k,m + 1) − Pl(k − 1,m + 1)

= ∂

∂k
Pl(k,m)

[
1 + O

(
m

k
,
l

k

)]
(36)

and similarly for the discrete m-Laplacian. Therefore, the
continuum approximation is valid as long as m,l 	 k. Note
in particular that the continuum limit does not require m to be
large, and thus the results are valid even for m = 1.

An important feature of the scaling solutions (28), (31),
(34), and (35) is their universality with respect to the details
of the how particles arrive at the first site: While the arrival
process dictates the distribution of L(1,m), i.e., the initial
condition Pl(1,m), the scaling solutions are rather insensitive
to it. In other words, one may say that the arrival process which
feeds particles into the ASIP “conveyor belt” does not affect
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the load statistics far away downstream. As discussed shortly,
universality breaks down for some exotic initial conditions
with fat tails but is otherwise expected to hold for a rather
large class of arrival processes.

For the scaling solutions (28) and (31), the origin of
universality is easily understood from the diffusion picture
of Eq. (24): It is well known that solutions of the diffusion
equation converge at late times to scaling functions that are
independent of the initial condition (as long as the tail of the
initial condition decays rapidly enough) [92]. We now note that
P0(1,m) � P0(2,m − 1) � 1/2m−1 for any arrival process, as
can be clearly seen by considering a limiting scenario in
which the arrival process is such that the first site is always
occupied. Hence, the initial condition P0(1,m) decays (at least)
exponentially fast in m and the pathological case of heavy tails
is excluded. As a result, Eq. (28) is not only independent of λ in
the case of Poissonian arrivals but also completely insensitive
to nature of the arrival process altogether.

Equation (31) is also universal, except for the prefactor
�l given by Eq. (32). This prefactor (and only it) depends
on the details of the arrival process and is thus nonuniversal.
However, when l � 1 and for initial conditions which can
be approximated by Eq. (33) (see discussion shortly), the
prefactor attains the universal form �l � l/λ2. This form
still “remembers” the mean arrival rate λ but is otherwise
independent of the arrival process. Its dependence on λ is both
mathematically unavoidable, due to the conservation of �l ,
and physically reasonable, as the mean number of particles
per site in Eq. (9) depends on λ. The universality of Eq. (31)
breaks down for fat-tailed Pl(1,m) for which �l diverges.

The universality of Eqs. (34) and (35) has a somewhat
more subtle origin. As explained above, these scaling forms
are valid even though k is not large enough to “wash out” the
initial condition Pl(1,m). Rather, they emerge exactly when the
diffusive length

√
k is of the order of the initial length scale∑

m mPl(1,m) ∼ l. The validity of these scaling functions
rests on the approximation in Eq. (33), which itself is a result
of the central limit theorem. Therefore, the scaling forms (34)
and (35) hold whenever the arrival process is such that L(1,m)
lends itself to one of the many extensions and generalizations
of the central limit theorem. This universality is demonstrated
by a specific exactly solvable example in Appendix C.

The scaling forms (34) and (35) will hold even when the
central limit theorem breaks down, as long as the standard
deviation in L(1,m) is negligible with respect to its mean in
the limit of m → ∞. When this is the case, the distribution of
L(1,m) is sharply peaked around its mean thus asserting the
existence of an approximation of the type appearing in Eq. (33).
The basin of attraction for this type of behavior is very large.
Indeed, for a general arrival process, Little’s law [95] asserts
that 〈L(1,m)〉 = λ̄m, where λ̄ is the effective arrival rate (long
term average of the number of particles arriving per unit time)
and m is the average time a particle spends in the system.
On the other hand, fluctuations in L(1,m) are only caused by
arrivals to the first site and departures from the last site. And
so, given the universality of Eq. (28), if the typical fluctuation
due to an arrival event is finite and when m is large, fluctuations
in L(1,m) will be dominated by departure events. Hence, the
standard deviation in L(1,m) will be of order

√
m and, most

importantly, negligible with respect to the mean.

VI. IMPLICATIONS OF THE INTERPARTICLE
DISTRIBUTION FUNCTION

In this section we use the results of Sec. V to derive the
scaling properties of the ASIP which were presented in Sec. III.

A. Occupation probabilities

We begin by examining the probability that a site is
occupied. Substituting m = 1 in Eq. (28) and expanding to
first order in k, we recover Eq. (6). The occupation-number
distribution of a single site, Pl(k,1), is found by substituting
m = 1 in Eq. (35). Recalling that we have rescaled time such
the μ = 1, we recover the scaling form reported in Eqs. (7)
and (8). In fact, combining (31) with (35) we may write a
uniform approximation which is asymptotically exact for all
l � 1 in the limit of k � 1 as follows:

Pl(k,1) � �l√
4πk3/2

e
− l2

4λ2k , (37)

where �l is given in (32). An interesting picture emerges from
the above-mentioned results. Downstream sites with k � 1 are
mostly empty. However, conditioned on being occupied, their
occupation is typically of the order of

√
k [see Eq. (10)], and

in fact its distribution has the scaling form of Eq. (37). Below,
in Sec. VIII, we derive an exact expression for this occupation
probability which is correct even for small k.

B. Interparticle distance probability

Another quantity of interest is the interparticle distance
probability Q(k,m), which is defined as the conditional
probability that the next occupied site after site k is site k + m

given that site k itself is occupied. The scaling solutions found
in Sec. V allow us to calculate Q(k,m). To do so, we first
examine the unconditional probability (1 − P0(k,1))Q(k,m)
that sites k and k + m are both occupied and the m − 1 sites
in between the two are empty. This probability is given by

(1 − P0(k,1))Q(k,m)

= P0(k + 1,m − 1) − [P0(k + 1,m) − P0(k,m + 1)]

− [P0(k,m) − P0(k,m + 1)] − P0(k,m + 1). (38)

The first term in Eq. (38) is the probability that sites {k +
1, . . . ,k + m − 1} are empty. From this probability one must
subtract (i) the probability that these sites are empty, site k is
occupied, and site k + m is empty (the second term, in square
brackets); (ii) the probability that these sites are empty, site k

is empty, and site k + m is occupied (the third term, in square
brackets); and (iii) the probability that all m + 1 sites from k

to k + m are empty (the last term). Rearranging and passing,
as before, to a continuum limit yields

(1 − P0(k,1))Q(k,m)

= +[P0(k,m + 1) − 2P0(k,m) + P0(k,m − 1)]

− [P0(k + 1,m) − P0(k,m) − P0(k + 1,m − 1)

+P0(k,m − 1)]

�
(

∂2

∂m2
− ∂

∂m∂k

)
P0(k,m)|k,m . (39)
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Substituting Eq. (28) we see that the ∂2/∂m2 term dominates
in the large k limit, and we obtain

Q(k,m) � f ′′(u)

k(1 − P0(k,1))
= ue−u2/4

2
√

k
, (40)

where once again f (u) = erfc(u/2) and u = m/
√

k.

C. Interexit times

For an ASIP in steady state let the random variable Tk denote
the time elapsing between two consecutive time epochs at
which particles exit site k. Equation (40) allows us to evaluate
the typical order of magnitude of Tk in the limit of k � 1.
Indeed, given that site k is occupied, it will take (on average)
a single time unit for particles to hop out of it—resulting in a
first exit event. On the other hand, we know that Q(k − m,m)
is the probability that k − m is the nearest occupied site in
the upstream direction. The average distance to the nearest
occupied site is, hence,

k−1∑
m=1

mQ(k − m,m) �
√

k

∫ √
k

0

u2e−u2/4(1−u/
√

k)

2
√

1 − u/
√

k

du �
√

πk .

(41)

Thus, 1 + √
πk sites on average are to be traversed at an

average “speed” of one site per unit time for the second exit
event to occur. When k is large, Tk is clearly dominated by
this traversal time. The error incurred by neglecting the time
awaited until the occurrence of the first exit event is negligible
and we may safely conclude that 〈Tk〉/

√
πk � 1.

We can further go on and compute the asymptotic distribu-
tion of the interexit time. To see how, note that in the limit of
k � 1, the reasoning given above asserts that the probability
density of the random variable Tk may be approximated by

P Tk
(t) �

k−1∑
m=1

tme−t

m!
Q(k − m,m), (42)

where tme−t /m! is the probability density for the traversal time
of m + 1 sites. In Appendix D we show that the sum in (42)
can be evaluated using a saddle-point approximation to yield
Eq. (12).

VII. INCREMENTAL LOAD ANALYSIS

The analysis conducted so far was based on a continuum
limit approximation of Eq. (21) at steady state. Using this
approach we were able to analyze homogenous ASIPs and
obtain an asymptotic solution for the probabilities Pl(k,m)
in the limit k � m,l. We now set forth to obtain an exact
solution for this problem. In order to demonstrate the gen-
eral applicability of the approach described hereinafter we
develop it in the context of general ASIPs (not necessarily
homogeneous). Setting off from the stochastic law of motion
of the incremental load, we go on to derive the boundary
value problem which governs its steady-state distribution. An
algorithm for the solution of this problem is presented along
with iterative schemes for the computation of occupation
probabilities and factorial moments. In the next section we
return to the case of homogeneous ASIPs.

A. The incremental load

In this subsection we revisit the notion of incremental load,
which generalizes the notion of overall load. In what follows
we consider an infinite lattice with countably many sites, and
analyze the ASIP’s incremental load in detail. We consider
the lattice interval starting at site k and consisting of m sites
[{k,k + 1, . . . ,k + m − 1} (k,m = 1,2,3, . . .)] and remind the
reader that the ASIP’s incremental loads L(k,m) and L(t ; k,m)
are given by Eqs. (13) and (15), respectively.

Throughout this section we shall employ the natural bound-
ary conditions L(t ; k,0) = 0 and L(k,0) = 0. The probability
generating functions (PGFs) of the incremental loads L(k,m)
and L(t ; k,m) are given, respectively, by

G (z; k,m) = 〈zL(k,m)〉 (43)

and

G(t,z; k,m) = 〈zL(t ;k,m)〉 (44)

(|z| � 1). Note that the boundary conditions L(t ; k,0) = 0 and
L(k,0) = 0 imply, respectively, the following PGF boundary
conditions:

G(z; k,0) = 1 and G(t,z; k,0) = 1. (45)

B. The case of k = 1

In this subsection we analyze the special case of lattice
intervals initiating at the first lattice site k = 1. This special
case yields the overall load which was analyzed in Ref. [1]
via the ASIP’s multidimensional PGF. Here we analyze this
special case via the method of incremental loads. This serves
to illustrate the method which will later be used to derive new
results for k > 1.

Consider the lattice interval starting at site 1 and consisting
of m sites and observe its incremental load at times t and
t ′ = t + � (where � → 0). During the time interval (t,t ′)
exactly two events, illustrated in Fig. 3, can change the
incremental load. One event is the arrival of a particle to
the lattice—in which case the arriving particle enters the
first site and, hence, L(t ′; 1,m) = L(t ; 1,m) + 1; this event
occurs with probability λ� + o(�). The other event is the
opening of gate m—in which case all particles present in site
m transit to site m + 1 and, hence, L(t ′; 1,m) = L(t ; 1,m − 1);

FIG. 3. (Color online) During the time interval (t,t + ), the
incremental load L(t ; 1,m) can change either due to the arrival of
a particle to the first site or due to the opening of gate m.
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this event occurs with probability μm� + o(�). Note that the
boundary condition L(t ; 1,0) = 0 indeed fits in naturally. If
neither of these two events take place, a scenario occurring
with probability 1 − (λ + μm)� + o(�), then the incremental
load is left unchanged: L(t ′; 1,m) = L(t ; 1,m). Thus, the
stochastic connection between the incremental loads L(t ; 1,m)
and L(t ′; 1,m) is given by

L(t ′; 1,m)

=

⎧⎪⎨
⎪⎩

L(t ; 1,m) + 1 w.p. λ� + o(�),

L(t ; 1,m − 1) w.p. μm� + o(�),

L(t ; 1,m) w.p. 1 − (λ + μm)� + o(�),

(46)

and we note that “w.p.” is used here as a shorthand for the term
“with probability.”

Shifting from the incremental loads L(t ; 1,m) and
L(t ′; 1,m) to their respective PGFs, Equation (46) yields the
following PGF dynamics:

∂

∂t
G(t,z; 1,m) = [λ(z − 1) − μm]G(t,z; 1,m)

+μmG(t,z; 1,m − 1). (47)

The derivation of Eq. (47) is given in Appendix E. At
steady state the time dependence vanishes, and the differential
equation (47) reduces to the steady-state equation

G(z; 1,m) = μm

μm + λ(1 − z)
G(z; 1,m − 1). (48)

A straightforward iterative solution of Eq. (48), using the
PGF boundary condition G(z; 1,0) = 1, yields the following
explicit form for the PGF of the incremental load at steady
state:

G(z; 1,m) =
m∏

i=1

1

1 + λ
μi

(1 − z)
. (49)

Note that the terms λ/μi appearing in Eq. (49) are the ratios
of the particles’ inflow rate to the gates’ opening rates, as well
as the mean occupancies at steady state (λ/μi = 〈Xi〉) [1].

Equation (49) has several important implications. First,
Eq. (49) implies that at steady state the overall load L(1,1)
of a single-site ASIP (n = 1) follows a geometric distribution.
Indeed, setting m = 1 in Eq. (49) yields the PGF of the fol-
lowing geometric probability distribution: Pr (L(1,1) = l) =
(1 − p1)lp1 (l = 0,1,2 · · · ), where p1 = μ1/(μ1 + λ). Sec-
ond, the product-form structure of Eq. (49) implies that at
steady state the overall load L(1,m) admits the stochastic
representation

L(1,m) =
m∑

i=1

Gi, (50)

where {G1, . . . ,Gm} is a sequence of independent geometri-
cally distributed random variables: Pr(Gi = l) = (1 − pi)lpi

(l = 0,1,2, . . . ), with pi = μi/(μi + λ) (i = 1, . . . ,m). The
overall load L(1,m) is, hence, equal, in law, to the sum
of the overall loads of m independent single-site ASIPs
with respective parameters (λ,μ1), . . . ,(λ,μm). Thus, the

distribution of the overall load L(1,m) is given by

Pl(1,m) = Pr (L(1,m) = l)

=
∑

l1,...,lm

⎛
⎝ m∏

i=1

pi(1 − pi)
li

⎞
⎠δ

⎛
⎝l −

∑
i

li

⎞
⎠, (51)

where the Dirac δ function guarantees that
∑

i li = l. Third,
setting z = 0 in Eq. (49) [or l = 0 in Eq. (51)] yields the
probability that the lattice interval {1, . . . ,m} is empty

P0(1,m) = Pr (L(1,m) = 0) =
m∏

i=1

μi

μi + λ
. (52)

C. The case k > 1

In this subsection we analyze the general case of lattice
intervals initiating at an arbitrary lattice site, k > 1. While the
special case k = 1 could be analyzed via the ASIP’s joint
PGF, an analogous analysis of the general case k > 1 via
this method is prohibitively hard. However, as we shall now
demonstrate, the analysis of the general case k > 1 is well
attainable following an approach parallel to the one applied in
the previous subsection.

Consider the lattice interval starting at site k (k > 1) and
consisting of m sites and observe its incremental load at times
t and t ′ = t + � (where � → 0). During the time interval
(t,t ′) exactly two events, illustrated in Fig. 4, can change the
incremental load. One event is the opening of gate k − 1,
in which case all particles present in site k − 1 transit to
site k and, hence, L(t ′; k,m) = L(t ; k − 1,m + 1); this event
occurs with probability μk−1� + o(�). The other event is
the opening of gate k + m − 1, in which case all particles
present in site k + m − 1 transit to site k + m and, hence,
L(t ′; k,m) = L(t ; k,m − 1); this event occurs with probability
μk+m−1� + o(�). As noted in Sec. VII B, the boundary
condition L(t ; k,0) = 0 fits in naturally. If neither of these
two events take place, a scenario occurring with probability
1 − (μk−1 + μk+m−1)� + o(�), then the incremental load is
left unchanged: L(t ′; k,m) = L(t ; k,m). Thus, the stochastic
connection between the incremental loads L(t ; k,m) and

FIG. 4. (Color online) During the time interval (t,t + ), the
incremental load L(t ; k,m) can change either due to the opening
of gate k − 1 or due to the opening of gate k + m − 1.
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L(t ′; k,m) is given by

L(t ′; k,m)

=

⎧⎪⎨
⎪⎩

L(t ; k − 1,m + 1) w.p. μk−1�,

L(t ; k,m − 1) w.p. μk+m−1�,

L(t ; k,m) w.p. 1 − (μk−1 + μk+m−1)�.

(53)

Shifting from the incremental loads L(t ; k,m) and
L(t ′; k,m) to their respective PGFs, Eq. (53) yields the
following PGF dynamics:

∂

∂t
G(t,z; k,m) = −(μk−1 + μk+m−1)G(t,z; k,m)

+μk−1G(t,z; k − 1,m + 1)

+μk+m−1G(t,z; k,m − 1). (54)

The derivation of Eq. (54) is given in Appendix F. At
steady state the time dependence vanishes, and the differential
equation (54) reduces to the steady-state equation

G(z; k,m) = μk+m−1

μk−1 + μk+m−1
G(z; k,m − 1)

+ μk−1

μk−1 + μk+m−1
G(z; k − 1,m + 1). (55)

For any fixed z, Eq. (55) defines a two-dimensional boundary
value problem for G(z; k,m). The problem and an algorithm
for its solution are illustrated in Fig. 5.

Equation (55) can also be used to establish an explicit
iterative scheme for the computation of the PGF G(z; k,m)
in terms of the PGFs {G(z,k − 1,i)}i=2,...,m+1. Specifically,

G(z; k,m) = �(k,m) + �(k,m)

×
m∑

i=1

μk−1

μk−1 + μk+i−1

G(z; k − 1,i + 1)

�(k,i)
, (56)

where

�(k,m) =
m∏

j=1

μk+j−1

μk−1 + μk+j−1
(57)

and where the boundary condition G(z; 1,m) is given by
Eq. (49). The derivation of Eq. (56) is given in Appendix G.

D. Occupation probabilities and factorial moments

Based on the incremental-load results established hitherto,
in this subsection we derive recursive equations for the
occupation probabilities and the factorial moments of the
incremental loads. We begin with the occupation probabilities
and then turn to the factorial moments.

In terms of the PGF G(z; k,m) the steady-state probability
of finding exactly l particles (l = 0,1,2, . . . ) in the interval
{k,k + 1, . . . ,k + m − 1} is given by

Pl(k,m) = 1

l!

dl

dzl
G(z; k,m)

∣∣∣∣
z=0

, (58)

with P0(k,m) = G(0; k,m). Taking the lth derivative of Eq. (56)
with respect to the variable z, setting z = 0, and dividing by

FIG. 5. (Color online) Top panel: Equation (55) defines a bound-
ary value problem for G(z; k,m). The PGF G(z; k,m) is determined
by a weighted average of its southern and northwestern neighbors
in the positive quadrant of the (k,m) plane. The boundary PGFs
G(z; k,0) and G(z; 1,m) are given by Eqs. (45) and (49), respectively.
Bottom panel: A three-step algorithm can be used in order to solve
the boundary value problem for the PGF G(z; k,m): (i) start at the left
boundary and solve for the column that stands to its right; (ii) treat
the newly solved column as the new left boundary and iterate; and
(iii) stop at the kth column and obtain the desired solution.

l!, Eq. (58) yields the following recursion for the occupation
probabilities:

Pl(k,m) = �(k,m)δl,0 + �(k,m)

×
m∑

i=1

μk−1

μk−1 + μk+i−1

Pl(k − 1,i + 1)

�(k,i)
. (59)
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Equation (59), together with the boundary condition in
Eq. (51), establishes an explicit iterative scheme for the
computation of the occupation probabilities Pl(k,m) in terms
of the occupation probabilities {Pl(k − 1,i)}i=2,...,m+1.

Analogously, one can further derive recursive equations
for the factorial moments of the incremental load L(k,m). In
terms of the PGF G(z; k,m), the factorial moments Ml(k,m)
(l = 1,2,3, . . . ) are given by

Ml(k,m) ≡
〈

l−1∏
i=0

(L(k,m) − i)

〉
= dl

dzl
G(z; k,m)

∣∣∣∣
z=1

. (60)

Hence, taking the lth derivative of Eq. (56) with respect to
the variable z and setting z = 1, Eq. (60) yields the following
recursive equation for the factorial moments:

Ml(k,m)

= �(k,m)
m∑

i=1

μk−1

μk−1 + μk+i−1

Ml(k − 1,i + 1)

�(k,i)
. (61)

Equation (61), together with the boundary condition

Ml(1,m) = dl

dzl

m∏
i=1

1

1 + λ
μi

(1 − z)

∣∣∣∣
z=1

, (62)

establishes an explicit iterative scheme for the computation
of the factorial moments Ml(k,m) in terms of the factorial
moments {Ml(k − 1,i)}i=2,...,m+1.

VIII. INCREMENTAL LOAD: EXACT RESULTS

In this section we return to the analysis of homogeneous
ASIPs and provide exact results for the occupation probabili-
ties and the factorial moments of the incremental load L(k,m).
These results are given in terms of the Catalan trapezoid—a
generalization of the well-known Catalan numbers which
appear in many combinatorial settings [18]. We start in
Sec. VIII A with a prelude on the Catalan numbers and their
extensions, as these numbers will prove instrumental in our
analysis. Then, in Sec. VIII B, we present exact results for
incremental load probabilities and factorial moments. We
conclude in Sec. VIII C, in which we provide a derivation
of the results presented in Sec. VIII B along with exact results
for the probability generating function of the incremental load.

A. The Catalan numbers

Named after the French-Belgian mathematician Eugène
Charles Catalan, these numbers arise in various problems in
combinatorics. For concreteness we shall henceforth address
the Catalan numbers in the following context. Consider a string
of numbers composed of n (+1)’s and n(−1)’s, arranged in
a row from left to right, such that the sum over every initial
substring is non-negative. What is the total number of different
such strings? The solution to this combinatorial problem is
given by the nth Catalan number [18] as follows:

C(n) =
(

2n

n

)
−
(

2n

n − 1

)
(63)

TABLE I. (Color online) Some entries of Catalan’s triangle.
Entries on the left boundary are highlighted in bold. Null entries
positioned to the right of the diagonal k = n are left blank. All other
entries follow the recursive rule given in Eq. (65). A specific example,
20 + 7 = 27, is highlighted in magenta. The entries on the diagonal of
Catalan’s triangle, highlighted in blue, are the Catalan numbers. The
second and third diagonals, highlighted in green and red, respectively,
coincide with the main diagonals of Catalan’s trapezoids of order
m = 2 and m = 3.

n/k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429

(n = 1,2,3, . . . ), with C(0) = 1 by definition. Specifically,
the first Catalan numbers are given by {1,1,2,5,14,42,132,

429, . . . }.
One can generalize the combinatorial problem mentioned

above by considering a string of n (+1)’s and k (−1)’s. In this
case, the number of different strings for which the sum over
every initial substring is non-negative is given by

C(n,k) =

⎧⎪⎨
⎪⎩

1 k = 0(
n + k

k

)− (
n + k

k − 1

)
1 � k � n

0 k > n

(64)

(n = 0,1,2, . . . ; k = 0,1,2, . . . ).
The numbers C(n,k) are referred to—in combinatorial

mathematics—as the entries of Catalan’s triangle [18–21].
These numbers facilitate the solution to Bertrand’s ballot
problem: “In an election where candidate A receives n votes
and candidate B receives k votes, what is the probability that A
will not trail behind B throughout the entire count of votes?”.
Indeed, the answer to Bertrand’s problem is given by the ratio
C(n,k)/(n + k

k ).
Catalan’s triangle, illustrated in Table I, has the following

iterative construction. By definition, all entries that are
positioned on the left boundary of the triangle (k = 0) are
given by the boundary condition C(n,0) = 1; in Table I, these
entries are highlighted in bold. Entries positioned to the right
of the main diagonal k = n are zero; in Table I, these entries are
indicated by empty squares. All the other entries of Catalan’s
triangle follow the recursion

C(n,k) = C(n − 1,k) + C(n,k − 1) , (65)

i.e., each entry is a sum of the entry above it and the entry to its
left; in Table I, a specific example, 20 + 7 = 27, is highlighted
in magenta. Entries on the diagonal of Catalan’s triangle (k =
n) are the Catalan numbers C(n,n) = C(n); in Table I these
entries are highlighted in blue.

The combinatorial meaning of Eq. (65) and its validity
for 1 � k � n become immediately clear after conducting a
binary partition of all admissible strings according to their last
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digit +1 or −1. Indeed, since k � n the sum over a string of
n (+1)’s and k (−1)’s is non-negative. Moreover, if the string
ends with +1 there are exactly C(n − 1,k) ways to choose the
order of the first n − 1 (+1)’s and k (−1)’s such that the sum
over every initial substring is non-negative. Similarly, if the
string ends with a −1 there are exactly C(n,k − 1) ways to
choose the order of the first n (+1)’s and k − 1 (−1)’s such
that the sum over every initial substring is non-negative. Thus,
Eq. (65) readily follows.

Further generalizing the combinatorial problem discussed
so far we now consider the number of different strings of
n (+1)’s and k (−1)’s for which the sum over every initial
substring is larger than, or equal to, a threshold level 1 − m

(m = 1,2,3, . . . ). In Ref. [17] it is shown that this number is
given by

Cm(n,k) =

⎧⎪⎨
⎪⎩
(
n + k

k

)
0 � k < m(

n + k

k

)− (
n + k

k − m

)
m � k � n + m − 1

0 k > n + m − 1

(66)

(n = 0,1,2, . . . ; k = 0,1,2, . . . ; m = 1,2,3, . . . ). Note that
C1(n,k) = C(n,k) by definition. Indeed, setting m = 1 in
Eq. (66) yields Eq. (64). More generally, it can be said that the
numbers appearing in Eq. (66) generalize Catalan’s triangle to
form a countable family of trapezoid arrays. Fixing the value
of the index m, we henceforth refer to Cm(n,k) as the entries
of the Catalan’s trapezoid of order m. Catalan’s trapezoid of
order m = 2 and of order m = 3 are given in Table II.

TABLE II. (Color online) Some entries of Catalan’s trapezoid of
order m = 2 (top) and m = 3 (bottom). Entries on the left and upper
boundaries are highlighted in bold. Null entries positioned to the
right of the diagonal k = n + m − 1 are left blank. All other entries
follow the recursive rule given in Eq. (67). Two specific examples,
429 + 572 = 1001 and 117 + 83 = 200, are highlighted in magenta.
The main diagonals of Catalan’s trapezoids of order m = 2 and m =
3, highlighted in green and red, respectively, coincide with the second
and third diagonals of Catalan’s triangle (highlighted, in Table I, in
green and red, respectively).

n/k 0 1 2 3 4 5 6 7 8

0 1 1
1 1 2 2
2 1 3 5 5
3 1 4 9 14 14
4 1 5 14 28 42 42
5 1 6 20 48 90 132 132
6 1 7 27 75 165 297 429 429
7 1 8 35 110 275 572 1001 1430 1430

n/k 0 1 2 3 4 5 6 7 8 9

0 1 1 1
1 1 2 3 3
2 1 3 6 9 9
3 1 4 10 19 28 28
4 1 5 15 34 62 90 90
5 1 6 21 55 117 207 297 297
6 1 7 28 83 200 407 704 1001 1001
7 1 8 36 119 319 726 1430 2431 3432 3432

The iterative construction Catalan’s trapezoids is similar to
that of Catalan’s triangle. All elements on the left boundary
(k = 0) of the trapezoid are given by the boundary condition
Cm(n,0) = 1, all elements on the upper boundary of the
trapezoid (n = 0; 0 � k � m − 1) are given by the boundary
condition Cm(0,k) = 1, and all elements positioned to the right
of the diagonal k = n + m − 1 are set to be zero. The rest of
the elements in the trapezoid follow a recursive rule similar to
the one given in Eq. (65), albeit replacing the numbers C(n,k)
by the numbers Cm(n,k) as follows:

Cm(n,k) = Cm(n − 1,k) + Cm(n,k − 1), (67)

i.e., each entry is a sum of the entry above it and the entry to
its left. Finally, we note an important identity that will come
in handy later,

Cm(n,n + m − 1) = C1(n + m − 1,n). (68)

That is, the main diagonal of Catalan’s trapezoid of order m

coincides with the mth diagonal of Catalan’s triangle. This
identity is easily verified by use of Eqs. (64) and (66).

B. Occupation probabilities and factorial moments

We are now in a position to present exact steady-state
results for both the occupation probabilities and the factorial
moments of the incremental load in the homogenous ASIP. In
what follows we return to the convention by which μ = 1 and
λ is measured in units of the gate opening rate. The results
presented herein will be expressed in terms of the entries of
Catalan’s trapezoids Cm(n,k). Detailed proofs are given in the
following subsection.

We start with the incremental load L(1,m). Substituting
pi → 1/(1 + λ) in Eq. (51) we obtain the probabilities Pl(1,m)
given by Eq. (25). Similarly, substituting λ/μi → λ in Eq. (62)
we obtain the corresponding factorial moments

Ml(1,m) = (m + l − 1)!

(m − 1)!
λl . (69)

We now turn to the incremental load L(k,m), with k > 1.
In what follows we show that the occupation probabilities
Pl(k,m) (l = 0,1,2, . . . ) are given by

Pl(k,m)= δl,0

k∑
j=2

C1(k + m − j − 1,k − j )

22k+m−2j

+
k+m−1∑

j=2

Cm(k − 2,m + k − 1 − j )Pl(1,j )

22k+m−2−j
. (70)

and that the factorial moments Ml(k,m) (l = 1,2, . . . ) are
given by

Ml(k,m) =
k+m−1∑

j=2

Cm(k − 2,m + k − 1 − j )Ml(1,j )

22k+m−2−j
. (71)

We note that the sums in Eqs. (70) and (71) contain a finite
number of explicitly known summands and thus can be used
for exact and efficient calculation of Pl(k,m) and Ml(k,m).
Moreover, in the case of single-site lattice intervals (m = 1)
the sums in Eqs. (70) and (71) can be computed [given Eqs. (25)
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and (69) and by use of any standard computer algebra software]
to be expressed in terms of standard functions. Specifically,
the probability distribution and the factorial moments of the
random variable Xk are given by

Pl(k,1) = δl,0

(
1 − (k − 1/2)√

π(k)

)
+ (1 + l)(k − 3/2)λl

2
√

π(k)(1 + λ)2+l

× 2F1

(
2 − k,2 + l,4 − 2k;

2

1 + λ

)
(72)

and

Ml(k,1) = 2lλl(1 + l/2)(k + l/2 − 1/2)√
π(k)

, (73)

where (x) and 2F1(a,b,c; x) are the  function and hyper-
geometric function, respectively. For large k, an asymptotic
analysis of the exact expressions (70) and (72), yields the
asymptotic results of Sec. V. The details of this asymptotic
analysis are sketched in Appendix H.

C. The probability generating function

In this subsection we derive an expression for the proba-
bility generating function G(z; k,m) and prove the validity of
Eqs. (70) and (71). Substituting λ/μi → λ in Eq. (49) we see
that the probability generating function of the incremental load
L(1,m) is given by

G(z; 1,m) =
(

1

1 + λ(1 − z)

)m

. (74)

We now turn to derive an expression for G(z; k,m) in the case
of k > 1. Our derivation is based on an insightful probabilistic
interpenetration of the boundary value problem that appears
in Eq. (55) and the main idea behind it is illustrated in Fig. 6.
An alternative derivation which is algebraic in nature is given
in Appendix I.

The first step in our derivation is to note that Eq. (55) is
linear with respect to the PGFs that compose it. It follows that
G(z; k,m) can be expressed as a weighted sum over known
boundary PGFs of the type G(z; 1,m) and G(z; k,0). Iterating
Eq. (55) in an attempt to find the contribution of a specific
boundary PGF to the unknown PGF G(z; k,m), we consider a
path in the first quadrant of the (k,m) plane that (i) is composed
of steps in the south (↓) and northwest (↖) directions only,
(ii) connects the point (k,m) with a specific boundary point
(k′,m′) whose position is associated with the last two argu-
ments of the boundary PGF whose contribution we are trying
to assess, and (iii) does not pass through any other boundary
point. A path that complies with the above-mentioned condi-
tions will henceforth be named a legitimate path.

The number of northwest steps in a legitimate path is
given by k − k′, the number of south steps is given by
k − k′ + m − m′, and the total number of steps is given by
2k − 2k′ + m − m′. Since we are dealing with a homogeneous
ASIP, Eq. (55) asserts that each step in the path contributes a
multiplicative factor of exactly 1/2. The contribution due to a
single legitimate path connecting the points (k,m) and (k′,m′)
is, hence, (1/2)2k−2k′+m−m′

G(z; k′,m′). Taking into account

FIG. 6. (Color online) Expressing G(z; k,m) as a weighted sum
over known boundary functions. All boundary functions must be
properly weighted and taken into account. The weight of each
boundary function is given by the number of legitimate paths leading
to it, multiplied by 1/2 raised to the power of the path length. Paths
are made out of south (↓) and northwest (↖) steps only and must not
pass through another boundary function except the one lying at the
end of the path. Some boundary functions can be reached via several
different paths while others cannot be reached at all (the latter are
discarded in the computation of the sum).

all possible legitimate paths and summing over all boundary
points we have

G(z; k,m) =
∑

(k′,m′)∈boundary

[N (k,m,k′,m′)

× (1/2)2k−2k′+m−m′
G(z; k′,m′)], (75)

where N (k,m,k′,m′) is the number of legitimate paths that
start at (k,m) and end at (k′,m′).

In order to proceed we consider a random walker that
chooses, with equal probability at each step, between a south
(↓) and northwest step (↖). Assume that the random walker
starts its walk at the point (k,m) and let P

k,m
hit (k′,m′) be the

probability that the random walker hits the boundary point
(k′,m′) before it hits any other boundary point. From this
definition it readily follows that

P
k,m
hit (k′,m′) = N (k,m,k′,m′)(1/2)2k−2k′+m−m′

. (76)

We will now show that

P
k,m
hit (j,0) =

(
1

2

)2k+m−2j

C1(k + m − j − 1,k − j ) (77)

(m = 1,2, . . . ; k = 2,3, . . . ; j = 2,3, . . . ,k) and that

P
k,m
hit (1,j ) =

(
1

2

)2k+m−2−j

Cm(k − 2,m + k − 1 − j ) (78)

(m = 1,2, . . . ; k = 2,3, . . . ; j = 2,3, . . . ,k + m − 1).
In every legitimate path connecting the point (k,m) with

the point (j,0) (j = 2,3, . . . ,k) the last step is always directed
to the south. The remaining steps, k − j northwest and
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k − j + m − 1 south, must be ordered into a path that connects
the point (k,m) to the point (j,1) without hitting the south
boundary first. Similarly, in every legitimate path connecting
the point (k,m) with the point (1,j ) (j = 2,3, . . . ,k + m − 1)
the last step is always directed to the northwest. The re-
maining steps, k − 2 northwest and k − 1 + m − j south,
must be ordered into a path that connects the point (k,m)
to the point (2,j − 1) without hitting the south boundary
first. Recalling the combinatorial interpretation of Cm(n,k),
one can easily convince him- or herself that N (k,m,j,0) =
Cm(k − j,k − j + m − 1) and N (k,m,1,j ) = Cm(k − 2,k −
1 + m − j ). Equation (78) now follows immediately from
Eq. (76). Equation (77) follows from Eq. (76) by use of the
“diagonal identity” Cm(k − j,k + m − j − 1) = C1(k + m −
j − 1,k − j ).

The PGF of the incremental load L(k,m) can now be ob-
tained by substituting Eq. (76) into Eq. (75), omitting terms for
which N (k,m,k′,m′) = 0 and utilizing Eqs. (77) and (78) to get

G(z; k,m) =
k∑

j=2

G(z; j,0)P k,m
hit (j,0)

+
k+m−1∑

j=2

G(z; 1,j )P k,m
hit (1,j ) . (79)

Taking the lth derivative of Eq. (79) with respect to the variable
z and setting z = 1, Eq. (71) follows by use of Eq. (60) and
the fact that G(z; j,0) = P0(j,0) = 1. Substituting Eqs. (77)
and (78) into Eq. (79) we conclude that

G(z; k,m) =
k∑

j=2

G(z; j,0)

(
1

2

)2k+m−2j

C1(k + m − j − 1,k − j ) +
k+m−1∑

j=2

G(z; 1,j )

(
1

2

)2k+m−2−j

Cm(k − 2,m + k − 1 − j ) .

(80)

The occupation probabilities in Eq. (70) then can be read
off from Eq. (80) after substituting G(z; j,0) = 1 and
G(z; 1,j ) = ∑∞

l=0Pl(1,j )zl .

IX. CONCLUSION AND OUTLOOK

In this paper we studied incremental load probabilities
in the ASIP model, analyzed their asymptotic behavior,
and discussed their implications. Introducing the notion of
incremental load, and analyzing it via two complementary
approaches—a continuum diffusion-limit approach and an
exact probabilistic-combinatorial approach—we analytically
derived expressions for the occupation probabilities of the
ASIP’s lattice intervals, their corresponding factorial mo-
ments, and for the probability distribution of the ASIP’s
interexit time. Spanning both exact results and asymptotic
behaviors, the analysis presented herein joins the recently
published Ref. [14] to provide the most comprehensive
description of the ASIP’s steady-state statistics to date.

Our work is yet another step towards a more profound
understanding of the ASIP’s complex dynamical behavior and
is part of a long-term goal—the elucidation of the ASIP’s
steady-state distribution in full detail. As an intermediate step,
it is natural to turn to the study of correlations between the
occupations of several disjoint intervals. The empty interval
method was employed in the study of correlations for ASIPs
on a ring [16] and may thus also prove useful for open
boundary ASIPs. This question is especially interesting in
light of the picture discussed above of an open ASIP as a
“conveyor belt”: If a single snapshot of an open boundary ASIP
is similar to the temporal evolution of the ASIP on a ring, it
would be interesting to examine the relation between two-point
correlation functions in the former and two-time correlation
functions in the latter. Furthermore, it would be interesting
to see whether this conveyor belt picture can be useful in
the analysis of other models of condensation, including the

ZRP and the chipping model (a related study of the latter has
recently appeared in Refs. [96,97]).

Other interesting questions remain open, many of which
are related to the concept of universality. To this end, it would
be very interesting to examine the robustness, and inevitable
collapse, of the results presented herein with respect to a large
range of perturbations. For example, it would be interesting
to further consider the effect of nonhomogeneous hopping
rates on cluster formation and delineate the conditions under
which nonhomogeneity is asymptotically averaged out. While
some progress in this direction has already been made [14],
much still remains to be done. Modifying the ASIP a bit,
one may ask how does a dependence of the hopping rate on
cluster size affect the observed statistics? Another question
is what happens when particles arrive to sites other than
the first? Finally, the analysis of a generalized ASIP with
non-Markovian hopping (e.g., with nonexponential hopping
times) would be both interesting and rather challenging, as it
will inevitably require different methods than the ones applied
herein. This line of investigation was recently pursued in
studies on non-Markovian ZRPs [98,99] and non-Markovain
ASEPs [100]. In both cases it was found that non-Markovian
dynamics may trigger condensation and change the nature of
the condensed phase.

As discussed above, the ASIP is related to other models
of driven particle transport, including the TJN and the
ZRP, the ASEP, and models of coagulation and aggregation.
Unlike the homogeneous TJN and ZRP which have stationary
translationally invariant product measures, the ASIP steady
state is nonhomogeneous even when rates are homogenous,
and occupations of different sites are highly correlated. This
situation is somewhat similar to that of an open-boundary
ASEP, but it is interesting to note that while in the ASEP the
mean density is site dependent and occupation fluctuations
are bounded, in the ASIP the mean density is constant while
fluctuations diverge as one progresses along the lattice. Despite
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the differences between the three, the ASIP, ASEP, and TJN
can all be seen as limiting cases of a single generalized model.
Making any progress with the analysis of this unified model
would of course be very interesting, but undoubtedly this is
an extremely difficult task. Nonetheless, the appearance of
similar combinatorial expressions in the stationary description
of the ASEP and the ASIP (Catalan’s numbers and triangle in
the former, Catalan’s trapezoid in the latter) hints that perhaps
some progress is possible in this direction.
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APPENDIX A: DERIVATION OF EQ. (21)

In this Appendix we present the derivation of Eq. (21). To
do so, we define two auxiliary probability functions,

P̂ left
l (t ; k,m) ≡ Pr(L(t ; k,m) = l and Xk−1(t) = 0)

(A1)
P̂

right
l (t ; k,m) ≡ Pr(L(t ; k,m) = l and Xk+m(t) = 0).

These are the probabilities that sites {k, . . . ,k + m − 1} are
occupied by l particles, and the site immediately to their left
or right is empty. Next, note that the probability that sites
{k − 1, . . . ,k + m − 1} support l particles and site k − 1 is not
empty is exactly Pl(t ; k − 1,m + 1) − P̂ left

l (t ; k,m). Similarly,
the probability that sites {k, . . . ,k + m − 2} support l particles
and site k + m − 1 is not empty is exactly Pl(t ; k,m − 1) −
P̂

right
l (t ; k,m − 1). Although the auxiliary probabilities are

needed in order to write down the equation of motion for
Pl(t ; k,m),

∂

∂t
Pl(t ; k,m) = (

Pl(t ; k − 1,m + 1) − P̂ left
l (t ; k,m)

)
+ (Pl(t ; k,m − 1) − P̂

right
l (t ; k,m − 1)

)
− (Pl(t ; k,m) − P̂ left

l (t ; k,m)
)

− (Pl(t ; k,m) − P̂
right
l (t ; k,m − 1)

)
, (A2)

they cancel out in Eq. (A2) and Eq. (21) readily follows.

APPENDIX B: DERIVATION OF EQ. (23)

The derivation of Eq. (23) is similar to the derivation of
Eq. (21) albeit replacing terms corresponding to the entry of
particles into the interval from the left [first and third lines
of the right-hand side of Eq. (A2)] with terms corresponding
to the arrival of a particle to the first site. The resulting

equation is

∂

∂t
Pl(t ; 1,m) = λPl−1(t ; 1,m) − λPl(t ; 1,m)

+ (Pl(t ; 1,m − 1) − P̂
right
l (t ; 1,m − 1)

)
− (Pl(t ; 1,m) − P̂

right
l (t ; 1,m − 1)

)
. (B1)

Once again, the auxiliary probabilities cancel out, yielding
Eq. (23).

APPENDIX C: UNIVERSALITY OF EQS. (34) AND (35):
AN EXPLICIT EXAMPLE

In this appendix we demonstrate how the asymptotic scaling
forms (34) and (35) emerge for an explicit example of an ASIP
with a generalized arrival process. As explained in Sec. V D,
the universality is a result of the central limit theorem for the
distribution of L(1,k), which leads to Eq. (33). The scaling
forms are obtained by showing, for the specific example
considered below, that the central limit theorem applies. We
also present a formal argument that heuristically explains why
the central limit theorem is expected to apply for a much larger
class of arrival processes.

Consider an ASIP in which particles may enter the first
site not only one by one but also in batches of n = 2,3,4, . . .

particles. The arrival of a batch of n particles is assumed to be
a Poisson process with rate λn. The occupation of the first site
thus increases according to the rule

X1,X2, . . .
λn−→ X1 + n,X2, . . . (C1)

[this is a generalization of Eq. (1)], and otherwise the ASIP
dynamics remains unchanged. The goal of the current calcula-
tion is to find the initial condition Pl(1,m) that is generated by
this arrival process and to analyze the conditions under which
the central limit theorem leads to the approximation (33).

The equation equivalent to (23) for this generalized ASIP
is

∂

∂t
Pl(t ; 1,m)= [Pl(t ; 1,m − 1) − Pl(t ; 1,m)]

−
∞∑

n=1

λn[Pl(t ; 1,m) − Pl−n(t ; 1,m)]. (C2)

Multiplying by zl and summing over l leads, in the steady
state, to

G(z; 1,m − 1) − G(z; 1,m) = [fλ(1) − fλ(z)]G(z; 1,m),

(C3)

where fλ(z) is the generating function for λn,

fλ(z) ≡
∞∑

n=1

λnz
n. (C4)

Iterating (C3) and using G(z; 1,0) = 1 yields

G(z; 1,m) = [1 + fλ(1) − fλ(z)]−m. (C5)

One observes that the distribution of L(1,m) has a product
form and is equal to the distribution of a sum of i.i.d. random
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variable whose generating function is

g(z) ≡ [1 + fλ(1) − fλ(z)]−1, (C6)

[compare with Eq. (74)]. The central limit theorem for this sum
applies when the mean and variance of these i.i.d. variables
is finite, i.e., when g′(1),g′′(1) < ∞. It is easy to verify that
g′(1) = f ′(1) and g′′(1) = 2f ′′(1) + [f ′(1)]2. Thus, as long as∑

n n2λn < ∞, one obtains for m � 1

Pl(1,m) ∼ δ(l − m〈λ〉) = 〈λ〉−1δ(m − l/〈λ〉), (C7)

where we have defined 〈λ〉 ≡ ∑
n nλn.

Let us now motivate in a heuristic fashion why the central
limit theorem is expected to hold for a much larger class of
arrival processes. Assume that the arrival process is such that
Eq. (C3) is replaced by

G(z; 1,m − 1) − G(z; 1,m) = A(z)G(z; 1,m), (C8)

where A(z) is a formal notation for the operator associated
with the arrival process. The formal solution of this equation
is G(z; 1,m) = [1 + A(z)]−m [compare with Eq. (C5)]. If
the operator [1 + A(z)]−1 is characterized by a nonvanishing
spectral gap, i.e., there is a finite difference between its largest
and second-largest eigenvalues, then when m → ∞ one has
asymptotically G(z; 1,m) ∼ gmax(z)m, where gmax(z) denotes
the largest eigenvalue of [1 + A(z)]−1 for some fixed value of
z. If, in addition, gmax(z) is the PGF of a random variable with
finite variance, a central limit theorem holds for L(1,m) and
an approximation of the form (33) is valid.

APPENDIX D: SADDLE-POINT EVALUATION OF EQ. (42)

In this section we show how Eq. (12) follows by applying a
saddle-point approximation (also known as Laplace’s method)
to the sum in Eq. (42) in the limit k → ∞. The first step is
to apply Stirling’s approximation to the probability density of
the traversal time

tme−t

m!
� e−t+m log(t/m)+m

√
2πm

. (D1)

Next we substitute Eqs. (D1) and (40) into Eq. (42) to obtain

P Tk
(t) �

k−1∑
m=1

e−t+m log(t/m)+m

√
2πm

me−m2/4(k−m)

2(k − m)
. (D2)

Setting u = m/
√

k we rewrite (D2) as

P Tk
(t) �

∑
u

e−t+u
√

k log(t/u
√

k)+u
√

k√
2πu

√
k

ue−u2/4(1−u/
√

k)

2(
√

k − u)
, (D3)

where the sum runs over values u = k−1/2,2k−1/2, . . . ,k1/2 −
k−1/2. We now observe that

PTk
(
√

kt) �
∑

u

k1/4u1/2

√
8π (k − √

ku)
e
√

kf (u) (D4)

with

f (u) ≡ u log(t/u) + u − t − u2/(4
√

k − 4u). (D5)

For large k, the sum in Eq. (D4) may be approximated
by an integral, which can be evaluated using a saddle-point
approximation. We thus search for a saddle point u∗ for which
f ′(u∗) = 0 and find it to be

u∗ = t − t2/2
√

k + O(k−1) (D6)

(u∗ is computed limk→∞
√

kf ′(u∗) = 0). Evaluating the inte-
gral approximation of the sum in Eq. (D4) to leading order, we
find

PTk
(
√

kt) �
∫ √

k

0

k3/4u1/2

√
8π (k − √

ku)
e
√

kf (u)du

= te−t2/4

2
√

k
+ O(k−1) . (D7)

We now observe that the probability density function of the
normalized interexit time Tk/

√
πk is related to the probability

density function of Tk in the following way:

PTk/
√

πk(t) =
√

πkPTk
(
√

πkt) . (D8)

Equation (12) follows immediately.

APPENDIX E: DERIVATION OF EQ. (47)

Conditioning on the occupancy vector X(t) and utilizing
the Markovian dynamics of Eq. (46) we have

〈zL(t ′;1,m)〉 = 〈〈zL(t ′;1,m)|X(t)〉〉
= (λ�)〈zL(t ;1,m)+1〉 + (μm�)〈zL(t ;1,m−1)〉

+ (1 − (λ + μm)�)〈zL(t ;1,m)〉 + o(�). (E1)

Equation (47) is obtained after rearranging terms in Eq. (E1),
dividing by �, taking � → 0, and using the PGF notation of
Eq. (43).

APPENDIX F: DERIVATION OF EQ. (54)

Conditioning on the occupancy vector X(t) and utilizing
the Markovian dynamics of Eq. (53) we have

〈zL(t ′;k,m)〉 = 〈〈zL(t ′;k,m)|X(t)〉〉
= (μk−1�)〈zL(t ;k−1,m+1)〉+ (μk+m−1�)〈zL(t ;k,m−1)〉

+ (1 − (μk−1 + μk+m−1)�)〈zL(t ;k,l)〉 + o(�).

(F1)

Equation (54) is obtained after rearranging terms in Eq. (F1),
dividing by �, taking � → 0, and using the PGF notation of
Eq. (43).
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APPENDIX G: DERIVATION OF EQ. (56)

We prove Eq. (56) by showing that the probability generating function G(z; k,m) it defines satisfies Eq. (55). To this end we
apply mathematical induction on the index k. We start by showing that Eq. (56) holds for k = 2 and an arbitrary value of m.
Indeed, for k = 2 Eq. (56) reads

G(z; 2,m) = �(2,m) + �(2,m)
m∑

j=1

μ1

μ1 + μ1+j

G(z; 1,j + 1)

�(2,j )
. (G1)

Substituting Eq. (G1) into Eq. (55) and utilizing Eq. (49) we have

�(2,m)

⎛
⎝1 +

m∑
j=1

μ1

μ1 + μ1+j

∏j+1
i=1

μi

μi+λ(1−z)

�(2,j )

⎞
⎠ ?= + μ1+m

μ1 + μ1+m

�(2,m − 1)

⎛
⎝1 +

m−1∑
j=1

μ1

μ1 + μ1+j

∏j+1
i=1

μi

μi+λ(1−z)

�(2,j )

⎞
⎠

+ μ1

μ1 + μ1+m

m+1∏
j=1

μj

μj + λ(1 − z)
. (G2)

Canceling matching terms on both sides of Eq. (G2) gives the trivial identity 0 = 0 and proves our claim.
We finish the proof by showing that if Eq. (56) holds for k � 2, it holds for k + 1 as well. Indeed, replacing k by k + 1 in

Eqs. (55) and (56) we substitute Eq. (56) into Eq. (55) and obtain

�(k + 1,m)

⎛
⎝1 +

m∑
j=1

μk

μk + μk+j

G(z; k,j + 1)

�(k + 1,j )

⎞
⎠ ?= +μk+m�(k + 1,m − 1)

μk + μk+m

⎛
⎝1 +

m−1∑
j=1

μk

μk + μk+j

G(z; k,j + 1)

�(k + 1,j )

⎞
⎠

+ μk�(k,m + 1)

μk + μk+m

⎛
⎝1 +

m+1∑
j=1

μk−1

μk−1 + μk+j−1

G(z; k − 1,j + 1)

�(k,j )

⎞
⎠. (G3)

Canceling matching terms on both sides gives

G(z; k,m + 1) = �(k,m + 1)

⎛
⎝1 +

m+1∑
j=1

μk−1

μk−1 + μk+j−1

G(z; k − 1,j + 1)

�(k,j )

⎞
⎠, (G4)

which coincides with Eq. (56) for G(z; k,m + 1) and concludes our proof.

APPENDIX H: ASYMPTOTIC ANALYSIS OF EQ. (70)

In this Appendix we sketch the asymptotic analysis of the exact expression for the occupation probabilities (70) and show
how the results of Sec. V, and in particular Eqs. (6), (31) and (32), and (35), can be obtained from it. We concentrate here solely
on the case of m = 1; the calculation for other values of m is similar but somewhat more lengthy.

For the case m = 1, the sum in (70) can be rewritten, by substituting the definition (66) and the “initial condition” (25), as

P0(k,1) =
k−2∑
i=0

(
2i + 1

i

)
1

2i + 1
2−(2i+1) +

k−2∑
i=0

(
k − 1 + i

i

)
k − 1 − i

k − 1 + i
2−(k−1+i)(1 + λ)−(k−i) (H1)

for l = 0, while for l � 1 it has the form

Pl(k,1) = S(2,k), (H2)

where we define

S(j1,j2) ≡
(

λ

1 + λ

)l j2∑
j=j1

j − 1

2k − j − 1

(
2k − j − 1

k − 1

)(
l + j − 1

l

)
2−(2k−j−1)(1 + λ)−j . (H3)

To obtain these relations we have used the binomial identity (n − 1
k ) − (nk) = n−2k

n
(nk).

We first evaluate the sums in Eq. (H1) for large
k. The first sum can be calculated exactly and equals
1 − (k − 1/2)/

√
π(k) � 1 − 1/

√
πk. The main contribu-

tion to the second sum is from values of i which are close

to k. It can be shown, by expanding the summand for
k � k − i, that the second sum decays to zero as k−3/2 and
is therefore negligible compared to the first. We thus arrive at
Eq. (6).
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We now move on to the asymptotic evaluation of (H2)
and (H3) for large k. The main contribution to the sum,
as shown below, is from values of j which are close to l.

Therefore, two cases are treated separately: (i) l 	 √
k and

(ii) l = x
√

k with x = O(1).

1. Case (i): l � √
k

In this case, the sum is evaluated using Stirling’s approxi-
mation

2−(2k−j−1)

(
2k − j − 1

k − 1

)
�
√

2k − j − 1

2π (k − j )(k − 1)
e−f1(k)

(H4)

with

f1(k) = (k − 1) log
k − 1

2k − j − 1
+ (k − j ) log

k − j

2k − j − 1

= j 2

4k

[
1 + O

(
j

k

)]
. (H5)

The term f1 in the exponent yields a significant contribution to
the summand only for values of j which are comparable with√

k, while for j 	 √
k it is negligible. Accordingly, we split

the sum in (H2) into two: Pl(k,1) = S(2,N ) + S(N + 1,k),
the first running over j = 2, . . . ,N and the second over j =
N + 1, . . . k. Here N = N (k) is chosen in such a way that
l 	 N 	 k. The first of these sums may be approximated
using (H4) as

S(2,N ) �
(

λ

1 + λ

)l N∑
j=2

j − 1√
4πk3/2

(
l + j − 1

l

)
(1 + λ)−j .

Since N � 1 and the summand decays exponentially with j ,
replacing the upper boundary in the last sum by ∞ results in
a negligible error. The sum can now be computed exactly and
yields

S(2,N ) � l + 1√
4πλ2k3/2

.

The contribution of the second sum (from N + 1 to k)
is negligible as long as l 	 √

k. To see this, approximate
(l + j − 1

l ) � j l+1/l! (which is valid for j > N � l) and then
approximate the sum as an integral,

S(N + 1,k)

�
(

λ

1 + λ

)l
k(l−1)/2

√
4πl!

∫ √
k

N√
k

yl+2e−y2/4−y
√

k log(1+λ)dy,

where a change of integration variable y = j/
√

k was made.
Once again, we incur a negligible error by approximating the
lower and upper integration boundaries as N/

√
k � 0 and√

k � ∞. By evaluating the integral, it can be shown that
S(N + 1,k) 	 S(2,N ), leading to (31)–(32) (remember that
here m = 1).

2. Case (ii): l = x
√

k

In this case, since l � 1, one may employ Stirling’s
approximation also for the second binomial coefficient in (H3).

Replacing as before the sum by an integral with an integration
variable y = j/

√
k leads to

Pl(k,1) �
∫ ∞

0

(
λ

1 + λ

)l
y3/2

4πk3/4
√

x(x + y)
e− y2

4 −√
kf2(y)

with

f2(y) ≡ x log
x

x + y
+ y log

y

x + y
+ y log(1 + λ).

For
√

k � 1, the integral can be evaluated using a saddle-point
approximation: f2 has a minimum at y∗ = x/λ, where its value
is f2(y∗) = x log λ/(1 + λ). We therefore obtain the scaling
form

Pl(k,1) � x√
4πλ2k

e−x2/4λ2

[compare with (35)]. Note that this saddle-point calculation
carries through to any 1 	 l 	 k. The results differ, however,
at the scale of l = O(k), as the main contribution to the sum
(the saddle point) comes from values j = O(k), leading to non-
negligible corrections to the calculation due to terms neglected
above such as the higher-order terms in (H5).

APPENDIX I: DERIVATION OF EQ. (80)

In this Appendix we provide an alternative derivation of
Eq. (80). The derivation of this appendix is algebraic in nature
and serves to show that the desired result may also be obtained
without reference to the probabilistic argumentation presented
in the main text. The proof is divided into three parts. In Part
I we show that for k > 1, G(z; k,m) can be written as

G(z; k,m) =
k∑

j=2

(
1

2

)2k+m−2j

C1(k + m − j − 1,k − j )

+
(

1

2

)2k+m−2 ∞∑
l=0

A(k,m,l)zl, (I1)

where

A(k,m,l)=
(

λ

1 + λ

)l m∑
j1=1

j1+1∑
j2=1

j2+1∑
j3=1

· · ·
jk−3+1∑
jk−2=1

jk−2+1∑
jk−1=1

(
jk−1 + l

jk−1

)(
2

1 + λ

)jk−1+1

. (I2)

In Part II we show that

A(k,m,l)

=
m+k−2∑

j=1

2j+1Cm(k − 2,m + k − 2 − j )Pl(1,j + 1). (I3)

In Part III we combine Eqs. (I1) and (I3) to conclude the proof.

1. Part I

We prove Eq. (I1) by induction on k. We start by showing
that Eq. (I1) holds for k = 2 and an arbitrary value of m.
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Setting μi = μ (i = 1,2,3, . . . ) in Eq. (56) we have

G(z; k,m)

=
(

1

2

)m

+
m∑

j=1

(
1

2

)m+1−j

G(z; k − 1,j + 1) (I4)

(k > 1). Setting k = 2 in Eq. (I4) and utilizing Eq. (74) we
have

G(z; 2,m)

=
(

1

2

)m

+
m∑

j=1

(
1

2

)m+1−j( 1

1 + λ(1 − z)

)j+1

. (I5)

Recalling the Taylor expansion

1

1 − x
=

∞∑
i=0

xi (I6)

|x| < 1, we expand the parenthesis in the second term of
Eq. (I5) to obtain

G(z; 2,m)

=
(

1

2

)m

+
m∑

j=1

(
1

2

)m+1−j( 1

1 + λ

)j+1

×
⎛
⎝ ∞∑

i=0

(
λz

1 + λ

)i

⎞
⎠

j+1

. (I7)

Noting that⎛
⎝ ∞∑

i=0

(
λz

1 + λ

)i

⎞
⎠

j+1

=
∞∑
l=0

(
j + l

j

)(
λz

1 + λ

)l

(I8)

and

A(2,m,l) =
(

λ

1 + λ

)l m∑
j=1

(
2

1 + λ

)j+1(
j + l

j

)
, (I9)

we substitute Eq. (I8) into Eq. (I7) to obtain

G(z; 2,m) =
(

1

2

)m

+
(

1

2

)m+2 ∞∑
l=0

A(2,m,l)zl. (I10)

Noting that C1(m − 1,0) = 1 (m = 1,2,3, . . .), we see that
Eq. (I10) identifies with (I1) for k = 2.

We finish this first part of the proof by showing that if
Eq. (I1) holds for k � 2 it holds for k + 1 as well. Indeed,
replacing k by k + 1 in Eq. (I4) we substitute Eq. (I1) into
Eq. (I4) and obtain

G(z; k + 1,m)

= +
(

1

2

)m

⎡
⎣1 +

m∑
i=1

k∑
j=2

(
1

2

)2k+2−2j

C1(k − j + i,k − j )

⎤
⎦

+
(

1

2

)m+2k m∑
i=1

∞∑
l=0

A(k,i + 1,l)zl. (I11)

Performing an index shift j → k + 1 − j , Eq. (I11) can be
rewritten as

G(z; k + 1,m)

= +
(

1

2

)m

⎡
⎣1 +

m∑
i=1

k−1∑
j=1

(
1

2

)2j

C1(i + j − 1,j − 1)

⎤
⎦

+
(

1

2

)m+2k m∑
i=1

∞∑
l=0

A(k,i + 1,l)zl. (I12)

We now note that Eqs. (65) and (I2) imply, respectively,
that

C1(j + m − 1,j ) =
m∑

i=1

C1(i + j − 1,j − 1) (I13)

and

A(k + 1,m,l) =
m∑

i=1

A(k,i + 1,l) . (I14)

Substituting Eqs. (I13) and (I14) into Eq. (I12) we obtain

G(z; k + 1,m)

= +
(

1

2

)m

⎡
⎣1 +

k−1∑
j=1

(
1

2

)2j

C1(j + m − 1,j )

⎤
⎦

+
(

1

2

)m+2k ∞∑
l=0

A(k + 1,m,l)zl. (I15)

Applying the index shift j → k − j + 1 and noting again that
C1(m − 1,0) = 1 (m = 1,2,3, . . . ) we conclude that

G(z; k + 1,m)

= +
k+1∑
j=2

(
1

2

)2k+m+2−2j

C1(k + m − j,k + 1 − j )

+
(

1

2

)m+2k ∞∑
l=0

A(k + 1,m,l)zl, (I16)

a form which coincides with Eq. (I1) for G(z; k + 1,m).

2. Part II

We will now prove Eq. (I3). Examining Eq. (I2) it is easy
to see that it can be rewritten in the following form:

A(k,m,l) =
m+k−2∑

j=1

2j+1Nm
k,jPl(1,j + 1), (I17)

where we have used Eq. (25) and defined

Nm
k,j =

m∑
j1=1

j1+1∑
j2=1

j2+1∑
j3=1

· · ·
jk−3+1∑
jk−2=1

jk−2+1∑
jk−1=1

δ(jk−1,j ) (I18)

to be the exact number of times that the running index jk−1 in
Eq. (I2) is equal to j (j = 1, . . . ,m + k − 2).
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What can be said about the numbers Nm
k,j ? First, it is fairly

straightforward to see that when k = 2 we have

Nm
2,j = 1 (I19)

(m = 1,2, . . . ;j = 1, . . . ,m). In addition, when j = m + k −
2, we have

Nm
k,m+k−2 = 1 (I20)

(m = 1,2, . . . ; k = 2,3, . . . ). Now, for k > 2 and 1 � j <

m + k − 2, we note that the following recursion relation holds:

Nm
k,j = Nm

k−1,j−1 + Nm
k,j+1. (I21)

Indeed, substituting Eq. (I18) into Eq. (I21) we have

Nm
k,j

?=
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

· · ·
jk−3+1∑
jk−2=1

δ(jk−2,j − 1)

+
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

· · ·
jk−3+1∑
jk−2=1

jk−2+1∑
jk−1=1

δ(jk−1,j + 1), (I22)

which immediately gives

Nm
k,j

?=
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

· · ·
jk−3+1∑
jk−2=1

⎡
⎣δ(jk−2,j − 1) +

jk−2+1∑
jk−1=1

δ(jk−1,j + 1)

⎤
⎦.

(I23)

However, it easy to check that

jk−2+1∑
jk−1=1

δ(jk−1,j + 1) =
⎛
⎝ jk−2+1∑

jk−1=1

δ(jk−1,j )

⎞
⎠− δ(jk−2,j − 1).

(I24)

Substituting Eq. (I24) into Eq. (I23) we recover Eq. (I18) and
assert the validity of Eq. (I21).

We now note that

Nm
k,j = Cm(k − 2,m + k − 2 − j ) . (I25)

Indeed, for k = 2

Nm
2,j = Cm(0,m − j ) = 1 (I26)

(m = 1,2, . . . ;j = 1, . . . ,m). In addition, for j = m + k − 2
we have

Nm
k,m+k−2 = Cm(k − 2,0) = 1 (I27)

(m = 1,2, . . . ;k = 2,3, . . . ). Finally, we note that, for k > 2
and 1 � j < m + k − 2, Eqs. (I21) and (I25) imply that

Cm(k − 2,m + k − 2 − j ) = Cm(k − 3,m + k − 2 − j )

+Cm(k − 2,m + k − 3 − j ),

(I28)

which together with the boundary conditions specified in
Eqs. (I26) and (I27) give back the iterative construction of
the Catalan trapezoid of order m. Substituting Eq. (I25) into
Eq. (I17) we recover prove Eq. (I3) and conclude the second
part our proof.

3. Part III

In this part we complete the derivation of Eq. (80).
Substituting Eq. (I3) into Eq. (I1) we have

G(z; k,m) =
k∑

j=2

(
1

2

)2k+m−2j

C1(k + m − j − 1,k − j )

+
∞∑
l=0

⎡
⎣m+k−2∑

j=1

Pl(1,j + 1)

(
1

2

)2k+m−3−j

×Cm(k − 2,m + k − 2 − j )

⎤
⎦zl, (I29)

where we have utilized the fact that P0(j,0) = 1. Shifting the
index of summation in the inner sum of the second line of
Eq. (I29) we obtain (80).
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