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a b s t r a c t

We consider systems of tandem blocking queues having a common retrial queue. The model represents

dynamics of short TCP transfers in the Internet. Analytical results are available only for a specific

example with two queues in tandem. We propose approximation procedures involving simple analytic

expressions, based on mean value analysis (MVA) and on fixed point approach (FPA). The mean sojourn

time of a job in the system and the mean number of visits to the orbit queue are estimated by the MVA

which needs as an input the fractions of blocked jobs in the primary queues. The fractions of blocked

jobs are estimated by FPA. Using a benchmark example of the system with two primary queues, we

conclude that the approximation works well in the light traffic regime. We note that our approach

becomes exact if the blocking probabilities are fixed. Finally, we consider two optimization problems

regarding minimizing mean total sojourn time of a job in the system: (i) finding the best order of queues

and (ii) allocating a given capacity among the primary queues.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Majority of TCP transfers in the Internet are small in volume,
consisting of only few packets [6]. The TCP congestion control
mechanism does not have a chance to influence the dynamics of
the traffic originated from short TCP transfers. Many short TCP
transfers fit in the minimal size congestion window and hence the
rate of the TCP transfer cannot be controlled by means of
congestion window. We argue that for such type of TCP traffic, a
network of blocking queues with retrials is an appropriate model.
Then, an additional motivation for the study of retrial networks
with blocking finite buffer capacity queues is the drop tail queue
management policy employed in the Internet routers. A router
using drop tail policy drops packets from the end of the queue
when the queue size increases beyond some value. The dropped
packets are then retransmitted by the sender.

Explicit analytic results were derived in [4] for a system
comprised of a single M=M=1=1 primary (blocking) queue and an
associated M=M=1=1 retrial (orbit) queue from which blocked
jobs from the primary queue retry to be processed. Further
explicit results were obtained for a system with two M=M=1=1
queues in tandem and a common associated M=M=1=1 orbit
queue. The case with two queues in tandem turned out to be
involved enough to predict that exact analytic solutions for r42
tandem queues with blocking and common associated retrial
queue will be very difficult to achieve, and even if achieved,
ll rights reserved.
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the expressions for the various performance measures will be
extremely complicated and hence with no significant insight.
Therefore, in this work, we propose approximation procedure
consisting of two parts. In one we use mean value analysis (MVA)
to derive simple analytic expressions for the mean number of
visits to the orbit queue and the mean sojourn time of a job in the
system. The obtained expressions use as parameters the fractions
of blocked jobs. Thus, in the other part of our approximation
procedure we estimate the fraction of blocked jobs with the help
of a fixed point approach (FPA). By comparing the approximation
results with the exact results for the case of r¼ 2 queues, we show
that the proposed approximation is good when the system load
is light.

Specifically, in the mean value analysis, assuming a fixed

probability pj of blocking in queue j, we calculate the probability
generating function (PGF) and mean of Nj, the number of times an
arbitrary job visits the orbit queue before passing queue j

(1r jrr) for the first time, where Nr specifies the total number
of times an arbitrary job visits the retrial queue before leaving the
system. We then derive the Laplace–Stieltjes transform (LST) and
calculate the mean of Yj, the total sojourn time of an arbitrary job
in the system until it passes queue j for the first time. Similarly to
Nr , Yr specifies the total sojourn time of a job in the system. In the
fixed point approach we assume that the input flows are
Poissonian and we use Erlang’s loss formula for the M=M=c=c

queue.
Having these results we consider two optimization problems:
(i)
 Finding the best order of arranging the queues so as to
minimize the mean total sojourn time of a customer in the
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system, when the orbit queue is either an M=M=1=1 system
or an M=M=1=1 system. We show that the optimal order is
to arrange the queues in an increasing order of the index
ð1� pjÞE½Bj�=pj, where Bj is the processing time of a job in
primary queue j.
(ii)
 Given a fixed total capacity C to all r queues, how this amount
of resource should be allocated to the various queues so as to
minimize the total sojourn time of a job through the system.
In comparison with the single node retrial queues [1,3,7,8], the
networks of queues with retrials receive significantly less
attention. In [2] the authors prove the non-existence of product-
form solutions for certain queueing networks with retrials.
Jackson-type systems with r tandem non-blocking M=M=1=1
queues and with feedback to (i) the first queue, and (ii) to a
common M=M=1=1 retrial queue, where feedback from each
queue j to the retrial queue is applied only after a job passes queue
j, have been analysed in [5]. The following related model was also
studied in [9]: a single job is made up of r independent tasks, all of
which must be successfully performed for the job to be
completed. Upon failure at any stage, the job has to be started
all over again.
2. The model

Consider a system with r blocking primary queues in tandem,
and a common associated retrial (orbit) queue to which all
blocked jobs from the various primary queues are dispatched.
Each blocked job, after spending a sojourn time in the orbit queue,
tries to be admitted to the first queue and then continue
traversing successfully through all r queues, until finally leaving
the system. Thus, a job may traverse mor queues only to be
blocked in the (mþ1)-th queue, and then, after spending time in
the orbit queue, start all over again from the first queue. A
schematic presentation of the system is depicted in Fig. 1.

Assume that the outside arrival rate of new jobs to the system
is l jobs per unit time. Assume for a while that the blocking
probabilities Pj (j¼ 1;2; . . . ; r) in the various primary queues are
fixed. That is, Pj ¼ pj. (Further assumptions will be introduced for
the various scenarios treated in the ensuing sections.)

We first calculate the probability generating function (PGF)
and mean of the number of times a job visits the orbit queue until
leaving the system. We then derive the Laplace–Stieltjes trans-
form (LST) and mean of the time it takes to achieve that.
3. Number of visits at the orbit queue

Let Nj be the number of times a job visits the orbit queue until
it passes successfully queue j for the first time. For jZ1 we have
(N0 ¼ 0)

Nj ¼
Nj�1 w:p: 1� pj;

Nj�1þ1þNj
0 w:p: pj;

(

Queue 1

Orbit Queue

Que

Fig. 1. Scheme of
where Nj
0 is an independent replica of Nj. We thus have that N�j ðzÞ,

the PGF of Nj, is given by

N�j ðzÞ ¼ E½zNj � ¼
ð1� pjÞN

�
j�1ðzÞ

1� zpjN
�
j�1ðzÞ

;

and

E½Nj� ¼
E½Nj�1�þpj

1� pj
:

Iterating with N�1ðzÞ ¼ ð1� p1Þ=ð1� zp1Þ and with E½N1� ¼ p1=ð1�
p1Þ we get that

N�j ðzÞ ¼

Qj
i ¼ 1ð1� piÞ

1� zð1�
Qj

i ¼ 1ð1� piÞÞ
;

and

E½Nj� ¼
1�

Qj
i ¼ 1ð1� piÞQj

i ¼ 1ð1� piÞ
¼
Xj

m ¼ 1

pmQj
i ¼ mð1� piÞ

:

It follows that Nj has a geometric distribution (shifted to 0) with
‘‘success’’ probability 1�

Qj
i ¼ 1ð1� piÞ.

Clearly, as mentioned, Nr is the total number of times a job
visits the orbit queue until it successfully leaves the system.
It follows that with fixed blocking probabilities, the total number
of times a job visits the orbit queue, until successfully passing
queue j, is independent of the order of any set of j primary queues,
for every 1r jrr. Indeed, a job passes queue j if and only if it is
not blocked in any of the first j queues, which occurs with
probability

Qj
i ¼ 1ð1� piÞ. This explains why Nj is independent of

the order of those queues.

Remark 1. For the calculation of N�j ðzÞ and E½Nj� when the
blocking probabilities are fixed, the primary queues can be of
any blocking type and they need not be all the same.

4. Sojourn time of a job in the system

Let the service time of a job in queue j be a random variable,
Bj ðj¼ 1;2; . . . ; rÞ, having a general probability distribution
function. The sojourn time of a job in queue j is denoted by Wj.

Assume further that each time a job visits the orbit queue it
resides there for a random time, W0. Naturally, this random time
depends on the assumptions on the type of queue the orbit queue
is (e.g. G=G=1=1, M=G=1=1, or M=G=1=1, etc.). Thus, if for
example the orbit queue is an �=G=1=1, where the service time is
B0, then W0 ¼ B0.

Let Yj be the length of time until a job first passes successfully
primary queue j.

Then, similarly to the derivation of Nj, we can write (Y0 ¼ 0)

Yj ¼
Yj�1þWj w:p: 1� pj;

Yj�1þW0þYj
0 w:p: pj;

(

where Yj
0 is an independent replica of Yj.
ue 2 Queue r

the system.
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Thus, the LST of Yj, Y�j ðsÞ ¼ E½expð�sY jÞ�, is given by

Y�j ðsÞ ¼
ð1� pjÞY

�
j�1ðsÞW

�
j ðsÞ

1� pjY
�
j�1ðsÞW

�
0 ðsÞ

;

and its mean by

E½Yj� ¼
E½Yj�1�

1� pj
þ

pj

1� pj
E½W0�þE½Wj�:

Iterating with E½Y1� ¼ ½p1=ð1� p1Þ�E½W0�þE½W1�, we obtain

E½Yj� ¼
Xj

m ¼ 1

E½Wm�Qj
i ¼ mþ1ð1� piÞ

þE½W0�
Xj

m ¼ 1

pmQj
i ¼ mð1� piÞ

¼
Xj

m ¼ 1

E½Wm�Qj
i ¼ mþ1ð1� piÞ

þE½Nj�E½W0�: ð1Þ

Now, the mean sojourn time of a job in the system is given
by E½Yr �.
5. Minimizing the mean sojourn time (when blocking
probabilities are fixed)

Our objective now is to arrange the queues so that E½Yr�,
the mean total sojourn time of a job in the whole retrial network,
is minimized. Since E½Nr � is independent of the order of the
queues, it suffices (see (1)) to find the order of queues that
minimizes

Xr

m ¼ 1

E½Wm�Qr
i ¼ mþ1ð1� piÞ

:

Let p0 ¼ ð1;2; . . . ; j� 1; j; jþ1; jþ2; . . . ; rÞ be the order (policy) that
arranges the queues according to some initial order ð1;2; . . . ; rÞ.
Let p1 ¼ ð1;2; . . . ; j� 1; jþ1; j; jþ2; . . . ; rÞ be the policy in which the
order of queues j and jþ1 is interchanged with respect to p0. Set

am ¼
E½Wm�Qr

i ¼ mþ1ð1� piÞ
:

Then, under p0, we have

E½Yr jp0� ¼
Xj�1

m ¼ 1

amþ
E½Wj�Qr

i ¼ jþ1ð1� piÞ
þ

E½Wjþ1�Qr
i ¼ jþ2ð1� piÞ

þ
Xr

m ¼ jþ2

am;

while, under p1, we have

E½Yr jp1� ¼
Xj�1

m ¼ 1

amþ
E½Wjþ1�

ð1� pjÞ
Qr

i ¼ jþ2ð1� piÞ

þ
E½Wj�Qr

i ¼ jþ2ð1� piÞ
þ

Xr

m ¼ jþ2

am:

Thus, after multiplying throughout by
Qr

i ¼ jþ2ð1� piÞ, it follows
that E½Yrjp0�rE½Yrjp1� if and only if

E½Wj�

1� pjþ1
þE½Wjþ1�r

E½Wjþ1�

1� pj
þE½Wj�:

That is, p0 is better than p1 if and only if

1� pj

pj
E½Wj�r

1� pjþ1

pjþ1
E½Wjþ1�: ð2Þ

By repeating queue interchanges we conclude that E½Yr � is
minimized if and only if the queues are arranged in an increasing

order of the index

1� pj

pj
E½Wj�:

That is, if pj is large, then the mean number of attempts until first
passing queue j, namely pj=ð1� pjÞ, is also large, and hence it is
better to place queue j at the beginning of the network of tandem
queues. Similarly, small E½Wj� has the same effect.

Remark 2. If each of the primary queues is a �=G=1=1 queue
with Bj being the service time of a job, and ð1� pjÞ being the
admission probability, independent of the state of the system,
then Wj ¼ Bj for every 1r jrr and the optimizing index is

1� pj

pj
E½Bj�:

6. Fixed point approach

Let l be the external arrival rate to primary queue 1. We first
calculate the overall input rate to each primary queue, as well as
to the orbit queue. Let Lj denote the overall input rate (¼mean
number of arrivals per unit of time) at the gate of primary queue j.
If the blocking probability at queue j is Pj (Pj can be interpreted as
the long time average fraction of jobs sent from queue j to the
orbit queue), the arrival rate to queue r must be Lr ¼ l=ð1� PrÞ,
since Lrð1� PrÞ ¼ l jobs enter and leave the stationary system per
unit of time. The blocked rate LrPr is directed to the orbit queue.
Similarly, Lr�1 ¼Lr=ð1� Pr�1Þ and Lj ¼Ljþ1=ð1� PjÞ for
1r jrr � 1. This implies that Lj ¼ l=

Qr
i ¼ jð1� PiÞ. Thus, the

overall rate of blocked jobs arriving at and leaving the orbit
queue is

L0 ¼
Xr

j ¼ 1

LjPj ¼ l
Xr

j ¼ 1

PjQr
i ¼ jð1� PiÞ

¼ lE½Nr�: ð3Þ

Indeed, since E½Nr� is the mean number of times a job visits the
orbit queue, the output rate of that queue is L0 ¼ lE½Nr �. Now,
clearly,

L1 ¼ lþL0 ¼ l 1þ
Xr

j ¼ 1

PjQr
i ¼ jð1� PiÞ

0
@

1
A¼ lQr

i ¼ 1ð1� PiÞ
: ð4Þ

Suppose now that each primary queue j is a �=G=Kj=Kj queue.
Assume further that the arrival rate to each queue is approxi-
mately Poisson, implying that each primary queue is an M=G=Kj=Kj

queue with arrival rate Lj. Then, the blocking probability Pj of
queue j can be approximated by the Erlang loss formula, namely,

~Pj ¼
rKj

j =Kj!PKj

i ¼ 0 r
i
j=i!

; j¼ 1;2; . . . ; r; ð5Þ

where the approximated offered load at queue j is calculated as

rj ¼LjE½Bj� ¼
lE½Bj�Qr

i ¼ jð1�
~PiÞ
¼

Ljþ1E½Bj�

1� ~Pj

:

Thus, for queue r,

rr ¼LrE½Br� ¼
lE½Br�

1� ~Pr

¼ lE½Br�

PKr

i ¼ 0 r
i
r=i!PKr�1

i ¼ 0 ri
r=i!
¼ lE½Br� 1þ

rKr
r =Kr !PKr�1

i ¼ 0 ri
r=i!

 !
:

The above equation determines the value of rr , from which ~Pr is
readily calculated. Now, we can write

Lr�1 ¼
Lr

1� ~Pr�1

;

and

rr�1 ¼Lr�1E½Br�1�

¼
lE½Br�1�

ð1� ~PrÞð1� ~Pr�1Þ
¼

lE½Br�1�

ð1� ~PrÞ
1þ

rKr�1

r�1 =Kr�1!PKr�1�1
i ¼ 0 ri

r�1=i!

 !
:

Then, going down from r � 1 to 1, all rj can be calculated along
with all ~Pj.
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To check the validity of this fixed point approach we will
compare, for each j, the above probability ~Pj with the fraction of
times Pj a job is blocked at queue j.
7. Calculating the load-dependent blocking probabilities for a
network with M=Gj=1=1 primary queues

Suppose (see Section 6) that each queue is an M=G=1=1 type
queue. That is, we make the approximation that the arrival flow to

queue j, at a rate of Lj ¼ l=ð
Qr

m ¼ jð1� PmÞÞ is Poissonian. This

assumption implies that the mean interarrival time to queue j is

1=Lj ¼ ð
Qr

m ¼ jð1� PmÞÞ=l. Hence, the long run average blocking

probability in queue j (being an M=G=1=1 queue, or using Erlang’s
loss formula with Kj ¼ 1) is

~Pj ¼
bj

ð
Qr

m ¼ jð1�
~PmÞÞ=lþbj

¼
lbjQr

m ¼ jð1�
~PmÞþlbj

¼
gjQr

m ¼ jð1�
~PmÞþgj

;

ð6Þ

where bj :¼ E½Bj� and gj :¼ lbj for j¼ 1;2; . . . ; r. Under p0 we have

~Pr ¼
gr

ð1� ~PrÞþgr

: ð7Þ

Eq. (7) is a quadratic equation in ~Pr and its solution is ~Pr ¼ gr (the

solution ~Pr ¼ 1 is not of interest). Indeed, since every job enters

queue r once and only once, the load on this queue is gr ¼ lbr and

this is the fraction of time queue r is busy and hence, it is also its

blocking probability. It follows that Lr ¼ l=ð1� ~PrÞ ¼ l=ð1� grÞ.

Now, for queue j¼ r � 1, the inter-arrival time is

1=Lr�1 ¼ ½
Qr

m ¼ r�1ð1�
~PmÞ�=l. This implies, using (7), that

~Pr�1 ¼
gr�1

ð1� ~Pr�1Þð1� ~PrÞþgr�1

¼
gr�1

ð1� ~Pr�1Þð1� grÞþgr�1

: ð8Þ

The solution of the quadratic equation (8) is ~Pr�1 ¼ gr�1=ð1� grÞ.

We therefore claim.

Lemma 1. The blocking probabilities are given by

~Pj ¼
gj

1� sjþ1
; j¼ r; r � 1; . . . ;2;1; ð9Þ

where sj ¼
Pr

m ¼ j gm (srþ1 ¼ 0).

Proof. The lemma has been shown to be true for j¼ r and r � 1.
We assume that it holds for all j¼ r; r � 1; . . . ; kþ1 and prove its
validity for j¼ k. We first claim that

Qr
m ¼ kþ1ð1�

~PmÞ ¼ 1� skþ1.
This follows by substituting from (9) the values of ~Pj,
j¼ r; r � 1; . . . ; kþ1. Thus,

~Pk ¼
gkQr

m ¼ kð1�
~PmÞþgk

¼
gk

ð1� ~PkÞð1� skþ1Þþgk

: ð10Þ

Again, the solution of (10) is ~Pk ¼ gk=ð1� skþ1Þ, which completes
the proof by induction. &

We note that from (9) it follows that ~Pko1 if and only if
sk ¼

Pk
j ¼ 1 lbjo1. Indeed, it has been shown in [4] that for a

retrial tandem network with two M=M=1=1 primary queues,
where m¼ m1 ¼ 1=b1 ¼ m2 ¼ 1=b2, a necessary condition for stabi-
lity is m42l. That is 142l=m¼ lb1þlb2 ¼ s2. Moreover, when
the retrial queue is a �=M=1=1 queue with mean service time
b0 ¼ 1=m0, it has been shown in [4] that when m0-1, a necessary
and sufficient condition for stability becomes again s2o1.
8. Capacity allocation

Assume that the total capacity budgeted to the primary nodes
of the tandem network is m, that is,

Pr
j ¼ 1 mj ¼ m. We would like to
distribute the total capacity in some optimal way among the
primary queues. We consider separately two case.

8.1. Blocking probabilities are fixed

If Pj ¼ pj, independent of the queue load, then the optimization
problem is (when E½Wm� ¼ bm ¼ 1=mm)

min E½Yr� ¼
Xr

m ¼ 1

1=mmQr
i ¼ mþ1ð1� piÞ

þE½Nr�E½W0�

( )

subject to
Xr

m ¼ 1

mm ¼ m; mm40; m¼ 1;2; . . . ; r: ð11Þ

With E½Nr� independent of the mj’s, by using Lagrange multipliers
and differentiation one gets that the optimal values of mj

0 s satisfy

m�2jþ1 ¼ ð1� pjþ1Þm�2j ¼
Yjþ1

i ¼ 2

ð1� piÞm�21 ; 1r jrr � 1:

Thus, we have

m�1 ¼ 1þ
Xr

m ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYm
i ¼ 2

ð1� piÞ

vuut
0
@

1
A
�1

m; ð12Þ

and

m�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYj

i ¼ 2

ð1� piÞ

vuut
0
@

1
Am�1; 2r jrr: ð13Þ

That is, in the optimal capacity allocation, the first queue gets the
largest capacity and then each following queue j gets a smaller
capacity, reduced by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pj

p
.

8.2. Blocking probabilities estimated by Pj ¼ gj=ð1� sjþ1Þ

In the case when the blocking probabilities are estimated by
Pj ¼ gj=ð1� sjþ1Þ, then E½Nr� (Section 3) does play a role. We use
1� Pj ¼ ð1� sjÞ=ð1� sjþ1Þ and

Qr
i ¼ mð1� PiÞ ¼ 1� sm. Thus, the

optimization problem becomes:

min E½Yr� ¼
Xr

m ¼ 1

1=mm

ð1� smþ1Þ
þE½W0�

Xr

m ¼ 1

gm=ð1� smþ1Þ

ð1� smÞ

( )

subject to
Xr

m ¼ 1

mm ¼ m; mm40; m¼ 1;2; . . . ; r: ð14Þ

Recall that sm ¼
Pr

i ¼ m lbi ¼
Pr

i ¼ m l=mi and gm ¼ l=mm. Using
Lagrange multipliers for problem (14) does not yield a ‘‘nice’’
solution, but it can readily be solved numerically by standard
procedures.

As we have noted above, the term with E½Nr� cannot be
neglected in this case. However, when E½Nr� is small (e.g., when
the retrial queue is �=M=1=1 queue and m0 is large), we can
apply the results of Section 5. In particular, in Section 5 it was
shown that E½Yr � is minimized if the index

1� ~Pj

~Pj

bj ¼
1� sj

gj

bj ¼
1

l
ð1� sjÞ

is increasing. However, ð1� sjÞ is increasing for any order of the
queues. That is, all orders give the same mean total sojourn time.
This result seems at first to be somewhat surprising. However,
numerical calculations performed in [4] for an analytic, non-
approximating, solution of a network of two (r¼ 2) M=M=1=1 type
queues (with common M=M=1=1 retrial queue) showed that
Lsystem, the mean overall number of jobs in the system is symmetric

with respect to the mean service rates m1 and m2 for a given value
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of m1þm2. That is, any order of the two queues will result in the
same value of Lsystem.
2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Exact Model
Mean Value Approach
Fixed Point Approach
Simulation

Fig. 2. Expected sojourn time as a function of m1, given m1þm2 ¼ 10, l¼ 1 and

m0 ¼ 20.
9. Numerical results

Here we perform numerical comparison of proposed approx-
imations versus Monte Carlo simulations and exact results
available for a particular case.

Specifically, in [4] we explicitly solved the model with two
(r¼ 2) M=M=1=1 tandem queues and an M=M=1=1 orbit queue.
We shall refer to the results of [4] as the exact model. Let us recall
some results from [4].

The mean total sojourn time of a job in the system Tsystem is,
using Little’s law,

Tsystem ¼
1

l
Lsystem;

where Lsystem denotes the average number of jobs in the system,
given by (see Eq. (31) in [4])

Lsystem ¼ LorbitþP10ð�ÞþP01ð�Þþ2P11ð�Þ;

where Pijð�Þ is the probability of i jobs in queue 1 and j jobs in
queue 2 (i; j¼ 0;1). The probabilities P10ð�Þ, P01ð�Þ and P11ð�Þ,
representing the fraction of time the system is in state (1,0), (0,1)
or (1,1), respectively, were found to be (see Proposition 3 in [4])

P10ð�Þ ¼
l
m1

;

P01ð�Þ ¼
lðm1m2ðm1þm2þm0Þ � lðm0ðm1þm2Þ � m1m2Þ � l2

ðm1þm2ÞÞ

m1m2
2ð2lþm1þm2þm0Þ

;

P11ð�Þ ¼
l
m2

� P01ð�Þ;

while Lorbit was shown to be

Lorbit ¼ L00þL10þL01þL11;

with L00, L10, L01 and L11 being calculated from the set of linear
equations (26)–(29) in [4]:

ðlþm0ÞL00 � m2L01 ¼ 0;

ðlþm0ÞL00 � m1L10þm2L11 ¼ � lP00ð�Þ � ðl� m1ÞP10ð�Þ � m2P11ð�Þ;

�m1L10þðlþm2þm0ÞL01 � m1L11 ¼ m1P11ð�Þ;

m0L00 � lL10þm0L01 � ðlþm1ÞL11 ¼ lP10ð�Þþðlþm1ÞP11ð�Þ:

Let us compare Tsystem and E½Y2�, where

E½Y2� ¼ E½W2�þ
E½W1�

1� ~P2

þE½N2�E½W0�; ð15Þ

with

E½Wj� ¼ E½Bj�; j¼ 1;2; and E½N2� ¼
1

1� ~P2

~P1

1� ~P1

þ ~P2

 !
:

To estimate E½W0� we assume the orbit queue to be of an
M=M=1=1 type with arrival rate L0 and mean service time
E½B0� ¼ 1=m0. Thus, E½W0� is given by

E½W0� ¼
1

m0 �L0
¼

1

m0 � lE½N2�
:

For the 2-queue in tandem and M=M=1=1 orbit queue from [4] we
can calculate the exact long time average fraction of jobs blocked
at each primary queue. Namely, the blocking rate at the gate of the
first primary queue is

L1P1 ¼ lðP10ð�ÞþP11ð�ÞÞþm0ððP10ð�Þ � P10ð0ÞÞþðP11ð�Þ � P11ð0ÞÞÞ;

where PijðnÞ is the probability of i jobs in queue 1, j jobs in queue 2
and n jobs in the orbit queue,

L1 ¼ lþL0;
and

L0 ¼ m0ð1� ðP00ð0ÞþP10ð0ÞþP01ð0ÞþP11ð0ÞÞÞ;

is the rate of jobs coming out of the orbit queue, while P00ð0Þ,
P10ð0Þ, P01ð0Þ and P11ð0Þ are given in Proposition 3 of [4]. Thus,
we have

P1 ¼
lðP10ð�ÞþP11ð�ÞÞþm0ððP10ð�Þ � P10ð0ÞÞþðP11ð�Þ � P11ð0ÞÞÞ

lþm0ð1� ðP00ð0ÞþP10ð0ÞþP01ð0ÞþP11ð0ÞÞÞ
: ð16Þ

The rate L2 is given by

L2 ¼ m1ðP10ð�ÞþP11ð�ÞÞ;

and the rate of blocking at the gate of the second primary queue is

L2P2 ¼ m1P11ð�Þ:

Thus, we can write

P2 ¼
P11ð�Þ

P10ð�ÞþP11ð�Þ
¼

l=m2 � P01ð�Þ

l=m1þl=m2 � P01ð�Þ
: ð17Þ

Specifically,

1

P2
¼ 1þ

P10ð�Þ

P11ð�Þ
¼

m2
2ð2lþm1þm2þm0Þ

l½ðlþm0Þðm1þm2Þþm1m2�
:

We refer to Eq. (15) together with Eqs. (16) and (17) as the
mean value approach with exact fractions of blocked jobs. On the
other hand, using Lemma 1, we can approximate the fractions of
blocked jobs by

~P1 ¼
l
m1

�
1�

l
m2

� �
; ~P2 ¼

l
m2

:

We shall refer to Eq. (15) with the above approximations in place
of P1 and P2 as the fixed point approach.

We note that the fractions P1 and P2 have not been calculated
in [4]. We have indicated there that the comparison of the exact
model with the fixed point approximation is the topic of the
ensuing research.

We have also performed Monte Carlo simulations.
First we plot the expected total sojourn time of a job in the

system obtained by four approaches: the exact model, the mean
value approach with exact fractions of blocked jobs, the fixed
point approach and Monte Carlo simulations. Similarly to the
scenario considered in [4], we vary m1 keeping the sum m1þm2

constant. One can see in Fig. 2 that the mean value approach with
the exact fractions of blocked jobs gives more precise results than
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Fig. 3. Fraction of blocked jobs at the first primary queue as function of m1, given

m1þm2 ¼ 10, l¼ 1 and m0 ¼ 20.
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Fig. 4. Fraction of blocked jobs at the second primary queue as function of m1,

given m1þm2 ¼ 10, l¼ 1 and m0 ¼ 20.
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Fig. 5. Expected sojourn time as a function of m1, given m1þm2 ¼ 100, l¼ 1 and

m0 ¼ 20.
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Fig. 6. Fraction of blocked jobs at the first primary queue as a function of m1, given

m1þm2 ¼ 100, l¼ 1 and m0 ¼ 20.
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Fig. 7. Fraction of blocked jobs at the second primary queue as a function of m1,

given m1þm2 ¼ 100, l¼ 1 and m0 ¼ 20.
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Fig. 8. Expected sojourn time as a function of m1 and m2, given m1þm2þm3 ¼ 15,

l¼ 1 and m0 ¼ 20.
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the fixed point approach. In Figs. 3 and 4 one can see that there is
a gap between the exact values of the fractions of blocked jobs and
their approximations obtained via the fixed point approach. In
fact, the probabilities obtained by FPA approximate well the time-
average probabilities of full queues but not the event-average
fractions of blocked jobs. Nevertheless, the behaviour of the
fractions of blocked jobs is captured qualitatively well by the fixed
point approach. In particular, we can see that the value of the
fraction of the jobs blocked in the first primary queue is not
monotone with respect to the capacity of the first primary queue.

As confirmed by Figs. 5–7, the fixed point approach
approximates better the system performance as both capacities



ARTICLE IN PRESS

µ 2

3 4 5 6 7 8 9 10 11 12
3

4

5

6

7

8

9

10

11

12

µ1

Fig. 9. Expected sojourn time as a function of m1 and m2 (the same value levels),

given m1þm2þm3 ¼ 15, l¼ 1 and m0 ¼ 20.

K. Avrachenkov, U. Yechiali / Computers & Operations Research 37 (2010) 1174–11801180
of the primary queues increase or equivalently the traffic load
decreases. We observe from Figs. 2 and 5 that if one uses exact
fractions of blocked jobs, the mean-value analysis produces quite
accurate results.

From Figs. 2 and 5 it appears that the expected total sojourn
time of a job in the system is minimized when m1 ¼ m2. We have
also performed Monte Carlo simulations for the model with three
M/M/1/1 tandem queues (r¼ 3). We have varied m1 and m2,
keeping m1þm2þm3 constant (see Figs. 8 and 9). In the case of
three tandem queues it appears that the minimum of the expected
total sojourn time of a job in the system is achieved at the point
m1 ¼ m2 ¼ m3. This is our conjecture that we plan to study in the
future.
10. Conclusion

We have analysed networks of tandem blocking queues having
a common retrial queue, for which explicit analytic results are not
available. We have proposed approximation procedures involving
simple analytic expressions, based on mean value analysis and on
fixed point approach. The mean sojourn time of a job in the
system and the mean number of visits to the orbit queue are
estimated by the MVA which needs as an input the fractions of
blocked jobs in the primary queues. The fractions of blocked jobs
are estimated by FPA. Using a benchmark example of the system
with two primary queues, we conclude that the approximation
works well in the light traffic regime. We have formulated a
number of optimization problems such as capacity allocation
problem. We note that our approach becomes exact if the blocking
probabilities are fixed.
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