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A general stream of n types of customers arrives at a Single Server station where service is
non-preemptive, the server may uhdergo Poisson breakdowns and insertion of idle times is
allowed. If £(k) and c(k) are, respectively, the expected service time and sojourn cost per unit
time of a type k customer (1 =<k < n), call k “V.I.P.” type if £(k)/c(k) = min,;=.[£(i)/c(i)].

We show that any right-of-way service policy can be improved by a policy that grants V.I.P.
customers priority over all others, and never inserts idle time when a V.1.P. customer is present.

We further show that if the arrival stream is Poisson, the so-called “cp.”” priority rule (applied
with no delays) is optimal in the class of all service policies, and not just among those of a priority

nature.
G/GI/1 queue insertion of idle-times
right-of-way policies “cu”’ priority rule

1. Introduction

The subject to be presented is best motivated by the following example.

Customers of three types arrive at a Single Server Station. Interarrival times are
either 1 or 9 minutes with equal probabilities, and the type of each arriving
customer is 1, 2 or 3 with equal probabilities. Service, which may not be interrupted
prior to conclusion, lasts 1 minute for type 1 customers, 3 minutes for type 2
customers and 2 minutes for type 3 customers.

Sojourn costs per unit time are very high for type 1 customers, high for type 2 -
customers and low for type 3 customers.

The only service routine that makes sense, if we are to minimize total sojourn
costs, serves type 1 customers as soon as they arrive, and never faces the possibility
of having an arrival during a service period. In other words, one idle minute is
always inserted following the arrival of a customer of type 2 or 3. If no customer
showed up then the next 8 minutes are used to serve at most two customers of type
2 (if any) and then as many customers of type 3 that will fit in that period.
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It has been customary in Queuing theory to deal with static priority rules. The
above example shows that optimization considerations might dictate the use of
no-priority rules, as well as the insertion of idle time. The only static preferential
feature in the example is the priority service with no delay to customers of type 1.
The main result of this paper (Theorem 1) is that this feature holds in general for
G/GI/1 queues. The preferred type is simply the one for whom the ratio of
expected length of service to expected rate of cost is minimal; its determination has
nothing to do with the stream, which we allow to be arbitrary.

The so called “cp” priority rule is known to be best for the service of a one-time
batch of customers (e.g., Baker [1]) and to be best among the static priority rules for
the service of a M/GI/1 queue (e.g. Jaiswal [3]). This last result has been recently
strengthened by Klimov [4], Harrison [2], and Meilijson and Weiss [5], who showed
the optimality of the “cu” rule.

Our second result (Theorem 2) is an extension and a new proof of the optimality
of the “cp” rule for the M/GI/1 case. We permit the insertion of idle time — and
show that it doesn’t pay to do it — and we let the server the possibility of
undergoing breakdowns.

2. The model and resuiis

We deal with the control of a non-preemptive G/GI/1 queue with n types of
customers. Denote service times by V and holding costs by C. Assume that, given
the types, pairs (V, C) corresponding to different customers are independent;
assume further that pairs (V, C) of customers of the same type are identically
distributed.

Independently of the stream of customers and their service times the server may
undergo breakdowns. It is assumed that breakdowns follow a Poisson law, the
server is repaired.as soon as it breaks down, and repair times are ii.d. If a
breakdown occurs during the service of a customer, the service of this customer
resumes as soon as the server is again operative.

The control of this system is carried out at decision moments, which may be of
three sorts:

(1) the service of a customer has just been completed and the queue is not
empty,

(2) a customer has just arrived and the server is idle and operative (we remark
that the server may be idle even if there are customers in the queue),

(3) the server has just turned operative, following a breakdown while it was idle,
and the queue is not empty.

At a decision moment the server marks as candidate for service one of the
customers present in the queue, and he also selects an idle lag 0 < x < x; he then
stays idle until the earliest of the following three events:
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(1) a customer arrives — this is a new decision moment,

(2) the server breaks down — the end of the repair time is a new decision
moment,

(3) x time units have elapsed. In the latter case, he serves the marked customer.

A rule specifying the action to be taken by the server at all decision moments is
called a right-of-way policy.

For an arbitrary positive constant (henceforth called Tentative Closing Time,
TCT) and a right-of-way policy a, define the (random) Actual Closing Time,
ACT (), as the least time ¢ such that ¢t =TCT, at which there are no customers
present in the system. The payoff @ (m, TCT) of a right-of-way policy 7 with respect
to TCT, is the expected total cost up to ACT (), using 7. The server’s aim s to find
for each TCT a 7 that minimizes @ (7, TCT). Excluding trivial cases, assume that
for the policies under consideration, ACT () is a.s. finite.

We remark that the usual average cost criterion can not be applied here since
steady states need not exist for general streams. We will return to this question in
Section 5.

Denote by £(i) the expected service time and by ¢ (i) the expected holding cost of
a customer of type i (1<i=n). A customer is V.LLP. if his type i satisfies
E(D/c(i) = mini;=.[€(G)/c()]. A right-of-way policy is a top-class-policy if it
serves V.I.P. customers as soon as service to them becomes possible.

Theorem 1. For every TCT and every right-of-way policy m, there exists a
top-class policy w* such that:

(a) @ (7*, TCT)=< @ (7, TCT).

(b) The three variables: (1) ACT(7*), (2) the amount of time up to ACT(7*) at
which customers are present in the station, and (3) the amount of inserted idle time up
to ACT(m*), are stochastically smaller than the corresponding variables under .

Assume, for convenience, that £(1)/c(1)< éQ2)/c(2)=<---=<{&(n)/c(n).

Define “cp’’ priority rule : At every decision moment, mark for service a customer
whose type is the least one among those present in the queue, and choose time
lagx =0 (i.e., serve him immediately).

The following well known result is an immediate consequence of Theorem 1.

Corollary 1. If, with probability one, there will be no arrivals beyond some time t,
o switching to the “cp”-rule-beyond-time-t-will-improve -any -policy-

Our next result applies to the M/GI/1 case. It generalizes earlier results obtained
under related criteria (Klimov [4] and Harrison [2]) in that it permits inserted idle
time and server breakdowns. Server breakdowns play here an important role:
Theorem 2 follows from Theorem 1 by successively considering the service to
preferred types as “‘repair’” of “server breakdowns”.
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Theorem 2. Inthe M/GI/1 model, the “cp.” priority rules are optimal for all TCT.

3. Proof of Theorem 1

For a service time V, let V = V be the length of time from the beginning of the
service until this service has been completed. This time includes the repair of
possible breakdowns. It is well known that E (V) is proportional to E (V). By giving
V the role of V, we will assume that the process of breakdowns and their repair is
read only at the times at which the server is idle.

For convenience of exposition and without loss of generality, it will be assumed
that the service time to a customer will be the same under any two policies being
compared. (Work conservation [6].)

We will now express conveniently the total sojourn cost up to ACT under an
arbitrary policy .

A busy period is a time interval from a moment a customer arrives to an empty
station until the next moment the station is empty. Assume throughout that the
station is empty prior to epoch 0. Observe that the server need not be “‘busy”
throughout the entire busy period.

Let [t t5], [, t3], ..., [t t= ACT] be the consecutive busy periods of .

The evolution of a busy period [¢, t¥] at which M, customers were served can be
expressed as 7, V7, V- - 7a, Viu, where 7, =0 is the length of time from ¢ until
service is started on the first customer, this service lasting V. If at the conclusion of
the j™ service the waiting line is not empty, 7,1 =0 is the length of time from that
moment (¢, + b3 (7 + Vi) until service is started on the next customer, this service
lasting V...

For t € [t, t7] denote by D(t) the collection of customers belonging to the busy
period [t, %] that completed service before time t.

Denoteby L; = >.-. M, the total number of customers served under = in the first
i busy periods, i =1,2,...,m. j (with 1<j<L,) will be the name of the "
customer served. G is its holding cost, V; is the length of its service, o; (B;) is the
length of time from its arrival (exit) until the end of the busy period to which j
belongs. a; — B; is the sojourn time of customer j at the station. Let i(j) be the type
of customer j.

The total cost can now be expressed as:

L 3 ¢*
:

> (@-BIG=3aG-%BG=2 aG-2 [ (3 ¢ 6

‘ JED()

Say that a policy 7' refines a policy 7 if each busy period of 7' is a sub-interval of
some busy period of .

Observe that if 7' refines 7, the value of the first sum in the right-hand side of
(3.1) for «' is at most the value for .
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Hence, if we replace 7 by =’ that increases the value of the second sum in the
right hand side of (3.1) while at the same time refining = then ' improves .
Compute [#(Z;epe C)dt:

. L, i1 -1
[((3 )= 3 5 ca+vy (whereS()=0). @2
 \jEDW) j=L_1+1 I=L,—3+1 t

Denote by F the o-field generated by the history of the system up to t%_; and by
F;, for j > L,_,, the o-field generated by the history of the system up to whichever
comes first: 7 or the moment at which 7 would start serving j.

The event {L, =j} is F;-measurable. On {L, =} the types i(l) of customers [
with [ < j are F;-measurable, and conditional probabilities given F; make C; and V;
independent random variables, distributed each according to its type (that was just
said to be Fj-measurable). In addition, on {L, =}, 7; is F;-measurable. Hence,
denoting by I(a) the indicator function of the set «,

5( 3 S cmewlF)-

1+l I=E,q+1

-5( 5 5 HL=jce+v)F)

L—i+1 I=F 41

=1

-E(E( 3 3 HL=}GG+WIE)|F) (33)

Lrq+1 I=L;_;+1

=5( 3 5 HL=jleGO)+ G| F)

j=la—y+1 I=L, 1+1

~£( 3 S ety +eaan]F).

We have thus obtained that

E(S 3G+ V)IF)=E(Z 3 i)+ GG F), 64

i.e., conditional expectations of total costs during busy periods given the past are
unchanged by replacing locally service times and costs by thelr expected values.
Denote

B, = Z Z c(i(D)(m + £GEG)) (3.5)

———The-proof-will-be-finished-if-we-produce-a-policy m* that-does-the-following
(i) Refines 7. (This will automatically yield claim (b) in the theorem.)
(ii) Serves V.I.P. customers as soon as possible.

(iii) When viewing all busy periods of 7 * that are subintervals of [#, t¥] as if they‘

composed one busy period, the value of B, for 7 * is at least that of B, for
If 7 itself serves V.LP. customers at no delay, let .7* = 7.
Suppose a V.I.P. customer could have been served as j,™ customer at time
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Y € [t, t*], but 7 served him instead as j™ customer (j = j,) at a time ¢ > t® (of
course, still within the same busy period). Customers j,,j;+1,...,j—1 are non
VIP.ifj>j,.

Perform the following change: Serve the V.L.P. customer at time ¢, while
preserving the inner order of all other service times, repair times, and portions or
wholes of inserted idle times. This change is feasible, as justified by (a), (8), (y)
and (8) below.

() The V.LP. customer was available for service at time t* by hypothesis.

(B) All other customers are served not before they would have been served by ,
so they have already arrived.

(7y) The particular way in which we realized the breakdown and repair times, and
the requirement that service times be the same under all policies, insures the
availability for service of all customers at the times allotted to them by the changed
policy. -

(8) The information on which the changed policy is to decide what to do
(imitating =) is available to it at all times, by (B).

We will now show that the changed = satisfies (iii). Verify that, when replacing 7

by the changed =, B, is added the term

s ’ > Lo [ G é(i(j))”
AB, = c(i{j)) { (AT + I:;H 1'1) ¢ 2}_1 c(i(l)) [c(i(l)) raoIE (3.6)
(A7 is what is missing at time ¢ to complete an inserted idle time or a repair).

Since £(i(j))/c(i(j)) = min, (£(i)/c(i)), AB, is positive, as claimed. So the changed
m satisfies (iii). It obviously satisfies (i).

Now build 77* as follows: Follow = until completion or until the first time a
change as described could be applied. If so, do, and proceed likewise. The
satisfaction of (i) for single changes implies the satisfaction of (i) for #*. (ii) is
satisfied by construction. As for (iii): B, for 7 * is the last term of an increasing finite
sequence whose first term is B, for .

Corollary 2. If £(1)/c(1)=£@)/c(R)="--= &(n)/c(n), all right-of-way policies
that insert no idle time are equivalent and optimal.

Corollary 3. Every policy that does not insert idle time can be improved, for every
TCT, by a top-class policy that does not insert idle time.

4. The M/GI/1 case. Proof of Theorem 2

By Theorem 1, the V.I.P. customers should be given priority right of way with no
delay. Suppose all policies under consideration show this property, i.e., they are
top-class policies. Let V be the service time of a non-V.I.P. customer, and denote
by V=V the time from the beginning of its service until its service has been
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concluded and for the first time there are no V.ILP. customers in the station. As
remarked in the proof of Theorem 1, E(V) is proportional to E(V). By using the
Poisson nature of the stream of V.L.P. customers and breakdowns, it follows
through usual queuing methods, that all V.I.P. customers not included in the
foregoing may be viewed as “breakdowns”, and their V-type service as repair
times. The composite breakdown-repair process is again of the kind allowed in
Section 2.

Let there be given a top-class policy . Construct a policy 7 * as in the proof of
Theorem 1 that (in the absence of V.L.P. customers, that are now part of the
breakdown-repair process) serves the lowest type non-V.I.P. customer as soon as
possible. By Theorem 1, the payoff of the non-V.I.P. customers under 7* is not
greater than that under 7. Moreover, every V.I.P. customer that is served by both
policies spends under both policies the same amount of time in the station, and
every V.L.P. customer served under 7* is also served under 7 since 7* cuts the
idle-breakdown-repair scheme shorter than 7. (This is the argument that led to (b)
-in Theorem 1.) So, the payoft of V.L.P. customers under = * is also not greater than
that under 7. Hence, #* improves m. Proceed by induction.

5. The average cost criterion

Assume throughout this section that the insertion of idle time is not allowed. See
Corollary 3. .

The average cost criterion is usually applied to systems that admit steady states.
When considering general streams, stationary limiting distributions need not exist.
However, whenever stationary ergodic situations do exist and busy periods are
regenerative, minimizing expected total costs during a busy period (as we did in the
preceding sections) is the same as minimizing the expected instantaneous rate of
cost of the total system under steady state.

Still; we would like to say something about minimizing rates of cost even when

“steady states do not exist. The following theorem permits to extend the results of
Theorem 1 to the criterion of long run minimal average cost.

Observe that when the insertion of idle times is not permitted, busy periods and
idle times do not depend on service policy. This will justify the legitimacy of the
assumption in the next theorem.

——uTheorem-3.—Forany T->0, let My denote the number of arrivals up-to-time T during —
the busy period to which T belongs — or My =0 if T belongs to an idle period.
Assume

sup E(M?) =K <.

T=>0
- Denote

1=sisn I=si=n

¢ = max c(i), & = max £(i).
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Let ¢ (1, T) be the expected total cost under m up to time T. Then for every policy
there exists a top-class policy 7m* such that given ¢ >0, whenever T >KC¢/e,

¢(r*,T)_¢(mT)
T < T + €.

Proof. Consider any policy 7. Observe that the top-class policy 7* defined in the
proof of Theorem 1 is the same for all TCT in the sense that if TCT, > TCT,, the = *
policy defined for TCT, agrees with the one defined for TCT, — at least until TCT..
So, let m* be as above. Use 7 up to time T, stop the stream at time T and complete
the service of all customers present in the system at time T using, say a FIFO
regime. The payoff of this policy, viewing T as TCT, exceeds ¢ (7 *, T) by Theorem
1. On the other hand it is less than ¢ (7, T)+ KC§, as can be easily checked. The
result follows.
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