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ON OPTIMAL BALKING RULES AND TOLL CHARGES 

IN THE GI/M/1 QUEUING PROCESS 

Uri Yeehiali 

New York University, New York, N.Y. 

(Received November 1, 1969) 

This paper considers a GI/M/1 queuing process with an associated linear 
cost-reward structure and stationary balking process, and, based on a 
probabilistic analysis of the system, it derives optimal joining rules for an 
individual arrival, as well as for the entire community of customers. For 
the infinite-horizon, average-reward criterion, it shows that, among all sta- 
tionary policies, the optimal strategies are control-limit rules of the form: 
join if and only if the queue size is not greater than some specific number. 
However, it finds that, in general, exercising self-optimization does not op- 
timize public good. Accordingly, the paper explores the idea of controlling 
the queue size by levying tolls-thus achieving the system's over-all-opti- 
mal economic performance. Finally, it analyzes a 'competition' model 
in which customers face a service agency that is a profit-making organiza- 
tion, and shows it to be similar to the monopoly model of price theory. 

W it E CONSIDER a GI/M/1 queuing system with a stationary balking 
process. Our main objectives are three: (1) to find optimal 

balking rules for arriving customers-a point of view that has been generally 
overlooked; (2) to find optimal toll charges as a measure for controlling 
the queue size-an idea discussed qualitatively by LEEMAN,[13 14' and 
SAATY,[171 and applied to the M/M/1 queue by Naor; [6' and (3) to find 
optimal service charges for a profit-making service agency in a 'compe- 
tition' model between the station and the customers. 

Consider a GI/M/1 queuing process where customers arrive at instants 
TO, 1 T2, . * Xn, I ... and the interarrival times rn +-Tn(n =0, 1 2, * * ) 
have common distribution H(-) with finite mean 1/X. The arrivals that 
join the queue are served by a single server according to the first-come, 
first-served discipline, and the service times are exponentially distributed 
with parameter si. Denote by 77(t) the queue size (customers waiting 
and/or being served) at instant t, and let =7n=77(Tn-0). We say that 
the system is in state i at the nth step if -qf= i. Now, suppose that an 
arrival who finds the system in state i is not obliged to join the queue and 
may decide to balk. Thus, generally speaking, we regard the system 
as being 'observed' at instants TO, r1, T2, - * * to be in some state EI = 

10, 1, 2, * * * }, and whenever the system is observed in state ifI an action 
k from a set Ki of actions is taken, where, for the balking model, we restrict 
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ourselves to only two actions at each state, i.e., an arrival can either join 
or balk. 

Denote by k = 1 the action of joining and by k = 0 the action of balking. 
Then Ki- IO, 1 } for all ieI. 

As noted, our objective will be to find optimal joining and balking 
rules for arriving customers (under the long-run average-reward criterion). 
However, we assume that the only information available to a newly ar- 
riving customer is the current state of the system. This assumption, 
together with the Markovian property of the service times, amounts to 
considering only the so-called stationary Markovian policies.6' Let 

An } (n= 0,1, 2, *.. ) denote the sequence of successive decisions made 
by the arriving customers, where An =0 or 1 according to whether the nth 
customer balks or joins the system, respectively. Let Dik denote the 
stationary conditional probability of taking action keKi when state i 
is observed. That is, Dik=P(An =kJ 1=i) (n=O ,1, 2, *.* ). Since k-0 
or 1 for all Ki let Di-=Di and let Dio=1 -Di. The queuing and decision 
process {Ie, An} (n==0, 1, 2, * * * ) belongs to the set of processes generally 
known as Markovian decision processes.[5 6] Denote the transition 
probabilities of this process by: 

qij(k)=P{?1n+?=jfln=ij An=k}. (inj=O, 1,2, * ;k=O, 1) (1) 

The { qij(l) }'s are given byt1119 

qij(l1) = ai+,-j, i+ 1 _-j_ 1,1 

qij(l) =0, j>i+1, (2) 

qio(l) = Eka-0+ -1- Zk=- akri, (i=0, 1, 2 ...) 
where 

ak=f elv[[(v)k/k!]dH(v). (k= 0 1, 2, ) (3) 

It is also easy to see that 

qij(O) = qi- j(1) for i= 1, 2, j=O,1, 2, **4, 

qoo(O) = I. 

For any given set of joining probabilities, {Di}, the sequence of random 
variables {I n }, forms a homogeneous Markov chain (imbedded at instants 
of arrival) with transition probabilities 

Pij= EkKi qij(k)Di=qij( 1 )Di+qij(O) (1-Di). 

(ij=O, 1,2,** *) ) 

Let i1=,liMnooP{In= I(i=0 2 12 ). These limits always exist and 
they are all nonnegative.[7] 
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It is well knownt191 that, for an ergodic chain, the { rj form a distri- 
bution function and are uniquely determined by the system of linear 
equations: 

irj= ieI 7rXiPj for jEI, and E jerj= 1. (6) 

A detailed analysis of problems of recurrence and transiency for the 
general balking process may be found in reference 9, where the process is 
imbedded at instants of joining rather than at instants of arrival. Addi- 
tional results about the relations between the limiting probabilities and 
mean queue sizes of the above two imbedded Markov chains may be 
found in reference 21. 

THE GI/M/l/n QUEUE 

SUPPOSE NOW that the service facility has a limited waiting room of size n. 
That is, there could be at most n+ 1 customers in the system including the 
one in service. An arrival who finds more than n customers ahead of 
him balks with probability one. Suppose also that customers who find 
the system in state i<n join the queue with positive probability. In 
summary, this situation is equivalent to having {Di} such that 0< Di < 1 
for i= 0 1, 2, , n and Di=:0 for all i> n+ 1. We denote this queuing 
process by GI/M/1/n. 

The transition matrix of the GI/M/1/n queue (imbedded at instants 
of arrival) is of order n+2 and is mainly derived from (5). The only 
modification is made on the (n+2)nd row. We have: 

pij= qij( 1 )Di+qij(0) (1-Di), 

(i=O,1 ,n;j=O,1, , n+1) (7) 

pn+l,j=qn+l,j (0). (j=0 1, * *, n+1) 

The finite Markov chain thus defined is irreducible and aperiodic, and 
therefore has a single ergodic class (independent of the relative values of 
X and A) with n+2 positive recurrent states. We may say that the 
process 'regulates' itself by forcing ultimate balking whenever the queue 
size is beyond a given limit. 

Let In={01 2,... ,n,n?1}. Denoteby 

7ri(n)=limmo, P { m = i} (iEIn ) (8) 

the limiting probabilities of the imbedded GI/M/1/n queuing process. 
Clearly, the terms of {7rw(n) } are all positive and satisfy (6) with In 
replacing I. 

Moreover, FINCH 81 has shown that the terms of { 7r(n) I are given by 
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where the terms of {qk} (k=0, 1, 2, *) can be obtained successively from: 

qO = 1 qk-obq+ =r-O [ar?1I3k-r+ar( 1 -3k-r)]qk-r+akqO, 

(k=O, 12,** ) 
with U3^k=D & l-k for k=0, 1, 2, ,n+1. 

We now state a theorem that will be useful later on, the proof of which 
may be found in reference 21. 
THEOREM 1. For the stationary process, the conditional distribution function 
of the waiting time W (time from arrival until the start of service) of an arbi- 
trary customer, given that he joins the queue, is given by 

Fw(x)=1-[1/ ,-0n Dirr(n)][Ei= D1w rj(n) 

( JEk-o 0e-x( A)kIk!)] (I? 

and the conditional expected waiting time is 

EW=E jDrj;(n) J/[, Ei=-n Di7ri(nA)](1 

Remark 1. Equations (10) and (11) may be extended for the GI/M/1 
queue as well. It is easy to see that the only modification needed is to 
replace n by oo in the summation signs for i and j. 

The Effect of the Capacity n on the System 

We now consider n as a controllable parameter and examine its effect 
on the limiting probabilities and the mean queue size of the process. 
Define a special balking rule called deterministic control limit rule n and 
denoted by RnD as: Rf= Di:Di=1, i<n; D=O, i>n}. This rule 
corresponds to setting the waiting-room capacity at level n and balking 
if and only if the system is full. We have the following: 
LEMMA 1. For any n>O, rules R.D and Rn+1, and every isIT, 

7r(n) -7ri+,(n+ 1) =7ri(n) 7ro(n+ 1 ). ( 12) 
This is an immediate result of relation (9). 
Let L(n) denote the mean queue size of the imbedded Markov chain 

when rule RnD is employed. Using (12), we obtain the following result 
readily: 
LEMMA 2. L(n+1) = [1-iro(n+1)][L(n) +11]. 

The proof of Lemma 3 and an inductive proof of Theorem 2 [using 
relations (6) and (7)] may also be found in reference 21: 
LEMMA 3. For any n 0 and rules RnD and R +1 we have 

wo(n) > wo(n+ 1). (13) 

THEOREM 2. For any n O and rules RnD and ,+ L(n+1)>L(n). 
COROLLARY 1. 1-7ro(n+ 1) >7ro(n+1)L(n). 

This is an immediate consequence of Lemma 2 and Theorem 2. 
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OPTIMAL CUSTOMERS' BALKING RULES 

WE DIFFER NOW from many studies of queuing systems for which either 
it is assumed that every arrival joins the queue with probability one, or it is 
supposed that a specific balking rule is given in advance: We will be inter- 
ested in finding optimal balking and joining rules for the customers in the 
GI/M/1 queuing process. When saying 'optimal' we mean optimal 
according to some economic criterion, and for this reason we will subse- 
quently impose a cost structure on the system and define several objective 
functions. The problems we will be concerned with are: (i) When should 
an individual customer join the queue? What is the structure of his 
optimal joining or balking rules, and how are these rules affected by the 
cost parameters? (ii) What is the structure of the optimal policy when 
the customers are organized in order to achieve public optimization-that 
is, long-run average net benefit per individual-and how can such an 
optimal policy be found? (iii) What is the relation between these two 
procedures? Or, does self optimization bring public or social optimization? 

The Cost Structure 

We make the following assumptions for the cost structure: 
(A) We suppose that, upon successful completion of service, the cus- 

tomer obtains a nonnegative finite reward of G monetary units. In fact, 
the existence of such a reward is what attracts customers to the counter. 

(B) There is a finite service charge 0 that has to be paid (to the service 
station) by every customer who passes through service. We denote by 
g = G- 0 the net reward of a customer who has been served. 

(C) There are two types of costs associated with the two different 
decisions that can be made by a newly-arriving customer: (i) If he joins 
the queue, then there are waiting-time losses incurred at the rate of c 
monetary units per customer ( oo > c 0) for every unit time spent at the 
system. (ii) If the customer decides to balk, that is, not join the line, 
then a penalty of 1 monetary units is incurred ( oc > 1 ?0). 

We note here that, because of the Markovian properties of the model, 
and since join-or-balk decisions are made only at times of arrival, reneging 
would never be optimal, i.e., once joining, a customer leaves the system 
only after his service is completed. 

(D) As is usually supposed in queuing models, we assume that the 
set of costs {G, 0, c, 1} is the same for all customers. 

(E) In order to eliminate trivialities, we assume that q- (c/u) ? -1. 
This last assumption will be clarified later. 

The Decision Process 

As was pointed out above, our process is a special Markovian decision 
process. In general, a policy R for controlling the system is a set of 
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functions {DkR(H.l-, am)} m=O, 1, *** where Hm= {77o, A0, ... Iom, Am), 
DkR( ) ?0, and EkeKtm DkR(Hm-i, 'm)=1; and where DkR(Hmi, tm) is 
to be interpreted as the probability of implementing decision k at time m 
given the history Hm.- and the present state 77m. However, in all the 
preceding sections we have assumed that D R (Hmin, 7imi7m = i) = Dik for 
every m=0, 1, , and thus we have obtained the Markov chains rep- 
resented by (5) or (7). 

Let Wm, m=O, 1, *, denote the reward obtained at time Tm, defined 
as follows: 

Wm=Wik if nm=i and Am=k. (kcEKi; iE) (14) 

Given a policy R and an initial state to = i, then the sequence { Wm} 
m=O, 1, 2 **, is a stochastic process, for which the expected reward at 
instant Tm is 

ERWm = Ij Ak WjkPR{'Ilm=j, Am-kj70=i}, (15) 

where ER and PR denote the expectation and probability under the policy 
R. Let 

OR,T(i) = [1/(T+1)] Em-o ERWm, 

i.e., ORT(i) is the average expected reward incurred by the system up to 
time rT, given that no=i and R is the policy controlling the system. Let 

OR ( i) = liMT, SUpOR, T ( i) . 

For public optimization our problem is that of finding R to maximize ckR(i) 

for all i. 
For what follows, it is convenient to consider several subclasses of the 

general class C which contains all policies of the form {DkR(Hm_l, am) 1. 
We first consider the class of stationary Markovian policies that uses, at 
each point in time (e.g., instant of arrival), only the state of the system 
at that instant as a basis for making a decision. We denote this class by 
Cs. In our case, these rules are represented by the Dik's introduced before, 
and we recall that, since Ki = {O, 1 } for every iEl, it suffices to specify Di1 = 

Di for all iEI. 

Next, we define, for any fixed k, a class Sk of all stationary policies such 
that 1?Di>O for all i<k and Di=O for all i>k. We refer to Sk as the 
class of stationary control-limit rules of order k. The class of control-limit 
rules of infinite order will be denoted by S; that is, ReS if and only if 

R={Do: Di>O for all i=O, 1, .. * . 

Thus, the (extended) class of all control-limit rules of all orders is defined 
by 

CCL=(UkeISk)US, where I= {O, 1, I 
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Note that, if k is specified, then the system in its steady-state equilibrium 
can occupy only the lk+2 states 0,1, , k+1. That is, iri=O for all 
i>k+l, and thus the effective state space is h== {0, 1, , k+1}. 

Another subclass of Cs is the class CD of nonrandomized policies, where 
Dik=O or 1 for all i and k. 

As a last class, we consider a subclass of CD which is also a subclass of 
CCL. This is the class of all deterministic control-limit rules. We denote 
this class by CDCL. By a (finite) rule RkDECDCL we mean 

Rk = {Di:Di=1, i<k; Di=O, i>k} 

for some k, and by R CDCL we mean 

ROD={Di:Di=1 forall i=0,1, *..} 

Note that for each k there is one and only one deterministic control-limit 
rule Rk , and hence CDCL= {Rk , k0, 1, } URO -. 

We now proceed to find optimal balking procedures for our queuing 
model. 

Customer Self-Optimization 

We consider now the decision problem of an individual customer who 
arrives at the counter and ponders whether to join or not. The problem of 
interest is thus to find a set of joining probabilities {DkR(* ) } such that the 
customer's expected net benefit will be maximized. Suppose a customer 
arrives and finds i(i=O, 1, * * * ) customers ahead of him. If he balks, he 
incurs a penalty 1 and consequently his net benefit is -1. If he decides to 
join the queue, he will have to wait for a time period equal to his own 
service time and the service times of the i customers ahead of him, and only 
then will he obtain the reward g. Recall that a customer who joins the 
line never leaves before service completion. Since the service time is 
exponential with parameter u, the customer's expected total waiting time 
in the system is (i+ 1) /IA, and therefore his expected net benefit is 
g-(cbu)(i+1). Thus, for each iEI and every history Hm,1 and time 
m=O, 1, ..* , we wish to find {DkR(Hm12 i) }, k=O, 1, so as to maximize 

fDI (Hm-ly i) [g -(clA) (i+ l ) ][l 
- DI(Hm-ly i) ] 1 }. 

If we define an integer n, such that 

g -(cl/4) (ns + 1 ) > - l g -(clA) (n + 2) < ly ( 16) 
then it is clear that the set 

{DIR(Hm-1, i) = 1, i<n8; DiR(Hm-1, i) =0, i>ns} (17) 

is the desired one. That is, among all policies, the stationary nonran- 
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domized policy is the optimal one. Note that, if n, is such that 
g - (c/u) (n+? 1)> -1, then the policy (17) is the unique optimal one and 
its interpretation is that an arrival joins the queue if and only if there are 
not more than n. customers ahead of him. That is, (17) defines a policy 
that is a deterministic control-limit rule. 

If g - (c/Eu) (n.+ 1) = -1, then any stationary policy such that 

IDJR (HM_JJ i) = 1, i<ns; 1 _DJR (Hm-l n s) >_0; DJR(HM_JJ i) =0, i>ns} 

is also optimal. 
From (16) we have immediately 

(alc) (g-2c/,u+l) <nS?< (pu/c) (g-c/lu+l) <ins+1 (18) 

and since, by assumption (D) above, every customer applies the n, policy, 
the process reduces to a G/M/1/n, process, whose imbedded Markov chain 
is given by: 

Pij = qij(l) (i=O, 1, ; ,n; j=0, 1, *, n?1) 

Pns+i,j= Pnj. (Uj4In) (19) 

A brief observation reveals the interesting fact that the control-limit 
rule, as given by (16) or (18), is a function only of g, c, 1, and At and is 
independent of the arrival rate X. This fact might lead one to suspect that, 
in the long run, a greater average reward per customer may be obtained by 
taking the arrival phenomena into consideration when looking for an opti- 
mal strategy than by ignoring them. These ideas are studied in the follow- 
ing section. 

Social Optimization 

As noted above, one might ask himself whether the policy n8, applied by 
every customer to optimize his individual expected net benefit, is also an 
optimal policy when the public or collective good is sought. In other words, 
suppose that the customers form a cooperative and their joint objective is 
to find a policy that will maximize the long-run average net benefit per 
customer (or, equivalently, per unit time) for all customers in the coopera- 
tive. Then, questions that obviously arise are as follows: 

(i) Does an optimal policy exist? 
(ii) If it does, is it a control-limit rule? 
(iii) If the optimal rule is a control limit rule, is nS the control limit? 
(iv) How does the average reward under a cooperative arrangement 

compare to the average reward under individualism? 
We will show that, among all rules RECs, there exists a deterministic 

control-limit rule with finite control limit, denoted by no, that is optimal 
for social optimization. Moreover, it will be shown that, for fixed g, c, ,u, 1 
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and X, the optimal control limit no is not necessarily the same as n8, the 
optimal control limit for self-optimization, and, in fact, no?n8. 

We now show that, for our particular model and with respect to the 
average reward objective function OR, the class C, is covered by the class 
CCL. More precisely, let us define an equivalent relation as follows: 
DEFINITION. Two policies R and R' are said to be 4-equivalent if OR = OR' 

We then have the following: 
LEMMA 4. For every rule RECs, there exists a (-equivalent rule R eCCL. 

Proof. Let { di:1 >d 0> } be an arbitrary sequence of nonnegative 
numbers. Let RECS. As noted above, R could be described completely 
by the set {D,} of joining probabilities. Hence, let R= {Di:Di=d,, i= 
0, 1, - }. Let J= {j:dj=O}, that is, J is the collection of all indices for 
which balking occurs with probability one. Let k=min{j:jeJ}, and let 
r=sup{j:jeJ}. If J is empty, then ReS, and therefore R&CCL. Suppose J 
is not empty. If at time ro the system starts at state flo ? r, or whenever 
the system under R is ergodic, then, any rule RkECCL such that Rk= {D,: 
Di=di, i~k; Di=O, i>k} is O-equivalent to R, since for both rules the 
effective state space is Ik= {0, 1, -, k+1 }. If the system under R is not 
ergodic and qo>r, then there is a positive probability of the queue size 
increasing beyond all bounds, and thus any rule R'CECCL such that R' = 

{Di:Di>O, i r; Di=di, i>r} is +-equivalent to R, since for both rules the 
average reward diverges to -co 

From Lemma 4 it follows that, as far as average reward is considered 
(and for stationary rules), it suffices to deal only with control-limit rules. 
Thus, in the rest of the section we will consider only this type of rule. 

We recall that a customer who joins the queue when the system is in 
state j spends an expected total time of (j+1)/,u in it. Thus, for every 
m=0, 1, , we define the reward function Wm.=W(, m Am) as follows: 

g-(1A('-+)'if Ami,1 
W m = { H)(Xm fi 

if Am= 0. 

From (14) it follows that, for jJI, 

wj1=g-(c/,u)(j+1), Wjo=-1, (20) 

and from (15), confining our attention to rules RECs, 

ERWm = Ej [WjlPR (fm =j, Am = 1) +WjOPR (q? =7 Jm = A ) ] 

= 
Ej [WjIPR (lm =j) PR(Am l=7m j) (21) 

+WjOPR(7m =i)PR( Am = Ojlm =i)] 

= 5j [WjlDjl+wjoDjO)PR(nm-j)]- 

Using CHUNG'S theorem (reference 2, pp. 85-87) and relations (20) and 
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(21), it follows that, for any R=RkESk or for any rule RES for which the 
system is ergodic, we can write 

OR =Ej rj[[g-(c1M) (j+1)]Dj-l(1-Dj)] (22) 
= j wrjDj[q-(cu))(j+1)+l]-l, (22) 

where 'PR='PR(i) for all icI (or iCIk) independent of the initial state, and 
the r j}'s satisfy (6). 

It is of interest to indicate that (22) could have been obtained directly 
by using results (11) for Ik or the modified result for I (see remark 1). 
Consider a rule with Di>O for all iI= {O, 1, - }, such that the system is 
ergodic. Then the corresponding I ri} 's are all positive and satisfy (6). 
The expected total time spent in the system by an arbitrary customer who 
joins the queue is EW+1i/,, and hence the expected net benefit of an 
arbitrary arrival is 

OR = (Ei, Dirk) [g-c(EW+ 1/,)] - (1- Etel Dik) 1. 

By using (11), (22) is readily obtained. 
Thus, 'PR as given by (22) represents the collective objective function, 

i.e., the infinite-horizon average 'public good.' 
Our objective now is to find a rule for social optimization, that is, our 

problem is to find a rule R* so as to maximize 'PR over all rules RECs (practi- 
cally, over all rules RECCL). 

THEOREM 3. For any finite state space, In {O, 1, .n , n+ 1}, there exists a 
deterministic control-limit rule RECDCL that maximizes As. 

Proof. It is well known[1'3] that, for a finite state space with a finite 
number of actions, there exists a nonrandomized rule R* ECD that maximizes 
OIR. Let R* = {D*}, where Di* =0 or 1, iEI. Let j==min{i:Di*=0}. 
Clearly, j ? n+ 1. Thus, the process will consist of only j+1 recurrent 
states, as, once occupying any state below j, it will never get beyond j. 
The rule R = {Di:Di= 1, i<j; Di = 0O i>j} will achieve the same long-run 
average reward as R*, and hence is optimal. The fact that RECDCL com- 
pletes the proof. 

The consequence of Theorem 3 is that, whenever n < oo is the capacity 
of the waiting room, then the optimal rule that maximizes 'R can be found 
among the n+1 possible deterministic control-limit rules. More specifi- 
cally, if I=I.= {0, 1, n ,n+1}, then only rules RkD= {Di:D=1, i<k; 
Di=O, i=k+1, ,n+1} for k=O, 1, ,n need be considered. It 
follows that for In finite our problem could be formulated as of finding RkD 

so as to maximize 'PRkD over all kcE{0, 1, , n}. Note that for fixed k and 
rule RkD, the objective function as given by (22) is transformed into 
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where the { rj(k) }'s denote the steady-state probabilities of the process 
with rule Rk 

For the following two theorems, we restrict ourselves only to rules 
RECDCL. Our objective is to show that, although this class contains a 
denumerable number of policies, our search for the best rule of this class 
could be restricted to only a finite number of possible rules. We have the 
following: 
THEOREM 4. If X <st, then there exists a rule Rm ECDCL such that, for all 
RnDECDCL, ORmD > 4RjD whenever n> m. 

Proof. We will show that there exists an m such that, whenever n> m, 
cPRD>PRnD+1- This would imply that 4)RmD> ORnD for all n> m. Using 
(23) and (12), we obtain, after some algebraic manipulations, 

O)RD 
- 

ORD 1 =- lro(n+ 1) (c/bt) [L(n) + 1] 

-7ro(n+ 1 )rn+l (n) [g-(c/u) (n+2 ) +1]+ (C/Pt)[1-Trn+2(n+ 1)]. 

Using Corollary 1, we write 

cRDD-cPRnD1> -lro(n+?1)ir+(n)[g-(c/,u) (n+2)+1]-(c/,u)irn+2(n+?1). 

Let n> n8. By (16) we have 

g-(c/I) (n+2) +1 

=g- (c/,I) (n?+2) +1- (c/,I) (n-n,) <- (c/I) (n-n,). 

This relation, together with (12), implies 

4R rD-4 RD+I > >ro(n?1 )+ rn+1 (n) (c/Is) (n-n8) - (c/,A) 7rn+2(n+ 1) 
= (c/pU)ir.+1(n) [ro(n+1) (n-n+?1) -1]. 

Thus, a sufficient condition for cR.D > PR~+1 is that 

iro(n+1) > 1/(n-n+? 1). (24) 

Since X<1A the (infinite) GI/M/1 queue is ergodic, and from KENDALL[121 

it is well known that Wro( oo ) = 1- Zo, where Zo is the unique solution A (Z0)= 

Zo(O<Zo<1) for A(Z) _ k ak. By Lemma 3 it follows that ro(n) > 
1- Zo for every n, and therefore, for (24) to hold, it is sufficient to choose 
n so large that 1-Zo>1/(n-n,+1). By letting 

m> n+Zo/(l-Zo), (25) 
the proof is complete. 
THEOREM 5. For any X and ,u, there exists a rule R D1 with finite nO such that, 
for all RECD CL, 'ORD = SUpn kR.D. 

Proof. Suppose X>,u. Then the (infinite) GI/M/11 queue is not 



360 Uri Yechiali 

ergodic and L(n) -oo as n-* oo. Thus, ORnD-*-+oo as n-* o. Since, for 
every finite n, cR.D is finite, and since ORnD < g - c4p for every n, it follows 
that there exists a finite number no such that ORD= SUPn kR.D. If X < 

then, by Theorem 4 and letting m be the largest integer not greater than 
n?+Zo/(1-Zo)+1, we can restrict ourselves to the finite set I'= {0, 1, , 

m}, which obviously contains an no such that OR D= maxnfl' kRn D. 

We can now show that, among all stationary policies ReCs, the optimal 
one is indeed a finite deterministic control-limit rule; that is: 
THEOREM 6. There exists a fnite number no such that OPRD = SUPReCS 'PR. 

Proof. From Lemma 4 it follows that only control-limit rules need to 
be considered. If the control-limit rule generates a finite effective state 
space, then our assertion follows immediately from Theorem 3. So, it 
remains to consider only infinite control-limit rules. Let R be arbitrary 
such that R= {Di:Di>0, i =O, 1, - }. If the process generated by R is 
not ergodic, then, by the discussion of the preceding theorem, any finite 
control-limit rule Rk would be better. Since a rule Rk generates an actual 
finite state space, the existence of no follows from Theorem 3. Thus, we 
may suppose that R generates an ergodic process. We define the sequence 
of control-limit rules {Rk, k=0, 1, * * } such that Rk= {Di:Di>O, i<k, 
D>O, i>k}. Clearly, Rk-ER as k00oo. We define also the sequence of 
average rewards {Rk, k = o, 1, * * * }. Since the process is ergodic, 4R 

exists and 'PRk-)4R as k-aoo . From Theorem 3 it follows that, for each Rk, 

there exists a deterministic control-limit rule RD(k) such that ORD (k>) Rk 

and n(k) ? k. From Theorem 5, it follows that 'ORD >ORD (k)> Rk for all 

k=O. 1, ... , and hence, ORD > limk-Ooo 4Rk = )R 

We can now find a stronger upper bound than (25) on no, the optimal 
(deterministic) control limit for social optimization. Eventually we will 
show that nob n,. For this purpose we use HOWARD'S algorithm.[10] Con- 
sider a finite state space IM= {0, 1, 2, * , M}, where M is a finite bound 
on no such that 

M_ min{n:iro(n+1) ?1/(n-n8+1), n n,}. 

Thus, no{ 0, 1, ... , M}. We recall that we need to consider only deter- 
ministic control-limit rules, and therefore we start Howard's procedure by 
letting k=1 whenever q,=in8 and k=0 whenever wT=i, n, <i-M. 

That is, we start with a deterministic control-limit rule R D = {Di:Di= 1, 
i-n8; Di=0, i>n, }. Using (20), the 'value determination operation' 
is now to find 4, vo, vj, , VM (where one of the {ovi's is arbitrarily deter- 
mined) that satisfy 
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P++vo=g-c/p,?+ D qoj(l)vj, 

?+vi=g- (c/n) (i+1) ? =+ qij( 1)v , i<ns8 

cp+vnsq-(c/pu) (ns)+ ) ' 
qn1+ j( 1,vj (26) 

O++Vnsl- 3S=0 qn,+l,j(?)vj2 

+?VM -1+ D=o qM,j(0)vj. 

We need the following: 
LEMMA 5. For any solution of (26) we have 

Vo_ _ -VnV_ Vn,+l?- *. >VM. 

Proof. First, we establish that vn,>v8n+1. Since qjj(1)=qj+ij,(0) 
for all i, j, then, by subtracting in (26) the (ns+2)nd row from 
the (ns+ 1 )st, and using ( 16), we obtain 

Vn,-Vn,+l-g-(clU) (ns+l) +1+ Lo 2nj") nsl'(?] 

=g-(c/,) (ns+1) +1_0, 

where equality holds if and only if g- (c/,u) (ns+ 1 ) = -1. 
We will now use backward induction to show that Vo ?V1 ? >.. ns> 

vn,+l. Thus, we assume v1_v2?_ ?vn and show that vo>v1. By sub- 
tracting the second row of (26) from its first, we have: 

vo-vl =c/,+a,(vo-vi) +ao(vi-V2) 
= [1/(1 -al)][c/h+ao(vl-V2)] _0. 

Next, we use forward induction to obtain that Vn > Vn +1?_ * > VM. We 
assume that Vn+>? ... ?VM-1 and show that VM-1>VM. Using (26) we 
have 

V M-1 - VM-[1 - ao) I[j=o am-,-j(vj vj+,)]>0O. 

We can now prove the following: 
THEOREM 7. no<n8. 

Proof. Since only deterministic control-limit rules need to be con- 
sidered, it suffices to show that k =1 for i> ns is never an improvement on 
(26). (See the 'policy-improvement-routine' in reference 10). To 
show this, we define, for every i, 

gi(k) =wik+?Ej qij(k)vj, k=O, 1. 

Thus, it suffices to show that, for every i>n8, gj(0)>gi(I). But, for 
every I, 
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gi(l) -gi(O) =g- (cli) (i+1) +1-ai(vo-vi) 

- ai-(vi-V2)- ao(vi-vi+,). 

By using Lemma 5 and the fact that for every i>ns, g- (c/a) (i+1 ) + 1<0, 
it follows that i(O) >gi(1) for all i>ns. This shows that 0RD >4R.D for 

n>ns, which completes the proof. 
From calculations made in reference 16 for the M/M11/ queue, it is 

evident that, in general, no<ne, and only because of the integer properties 
of n, and no we sometimes have no=ns. The interpretation of this fact 
and Theorem 7 is that, for the system studied, exercising narrow self- 
interest by all customers seldom optimizes public good. 

Formulation as a Linear Program 

We have just shown that no-n,. Thus, following MANNE, 151 WOLFE 
AND DANTZIG, ]20 DERMAN,[3] and others, the problem of finding no can be 
formulated as a linear program. 

By Theorem 7, our objective is to find a rule R*eCs so as to 

maximizeRCS { , 
n iri(R) .Di[g-(C/1) (i+1) +1]-1=ckR } (27) 

subject to (6) with Ins replacing I. 
Clearly, (27) is equivalent to 

maximize CS { Ei=O 7ri (R)Di~g-(c/,) (i+ 1)+] } . (28) 

To formulate this as a linear program, we consider the variables {Xik} as 
follows: Let 

Xik = ri(R)Dik. (i-0,1, , n+1; k=O, 1) 

Obviously, we have xi1 = iri(R) (1-Dio) = ri(R )-xio. Substituting in 
(28), we get the following linear program: 

maximize O8 xiig- (c4A) (i+ 1) +?] subject to 

Xjk>-O 

(j=O, 1, , ns+1; k=O, 1) 
Yk- _Xjk -iO 

s+ 
ak-O xikqij(k) =0, 

(j=O, 1, .. * * ns+1) 

ha-?= _k-O Xj 
1. 

Once the {Xike 's are determined, the {7ri(R) }'s and the {DiIk}'s can be 
obtained from: 

i(R) = k-Xik 
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Die = Xik/7ri(R) =Xik/(xi1+xio), if 7ri(JR) >O; 

Dik=arbitrary, if 7ri(R)=0. 

References 3 and 20 show that the optimal rule is such that Dik=0 or 1. 
Furthermore, reference 20 shows that there are at most n,+2 variables 
xjk that are positive. Clearly, if xjl =0 (that is, Dj= 0), then irj+1(R) -0. 
Hence, no is found by 

no=max{i:xi1>0}. (29) 

We may summarize this result by saying that, among all stationary policies, 
the optimal rule for social optimization is: join if and only if the observed 
queue size is not greater than no as given by (29). 

OPTIMAL STATION-TOLL CHARGES 

IN THIS SECTION, we relax the assumption that 0, the service charge, is fixed. 
We will treat 0 as a controllable parameter and determine its optimal 
values in various circumstances. First, we analyze the situation where the 
agency that operates the service station is governed by the customers 
themselves, and thus, both the policy of balking or joining and the level of 
the service toll 0 are solely decided by the customers. Next, we treat the 
case where the toll-collecting agency is a profit-making organization, com- 
pletely divorced from the individual or collective economic interests of the 
customers. In this case, the agency will seek to impose a toll Or designed 
to maximize its own revenue rather than to optimize the whole system. 
We show how Or is determined for the two distinguished possibilities: (i) 
The customers employ an individual policy n,. (ii) The customers employ 
the 'collective' policy no. We observe that, for both cases, the fact that 
the optimal (deterministic control limit) rule n(0) is completely known to 
the service station for any toll charge 0 is analogous to the monopoly model 
of price theory. 

Over-all Optimization 

In the preceding sections, it was assumed that G, c, X, 4, and 0 were 
fixed. We have seen that the arrival rate X could be changed into an effec- 
tive arrival rate by applying a control-limit rule-n8 or no-in order to 
optimize the individual or the collective objective function. In many 
queuing models, the attempt to improve the over-all performance of the 
system is made by proposing a modification in the service process itself, 
or by assigning some priorities in order to minimize costs. Another ap- 
proach might be to examine how the join-or-balk decisions of the customers 
-and thus the queue size-are affected by changes in 0, the service toll. 

It was shown that for any 0?0, no(O) ?<n,(), where no(0) and n8(O) 
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are obtained from (29) and (18) respectively. As noted, the fact that, 
except for particular values of the parameters, we would have no <n8 points 
out that consideration of narrow self-interest does not ordinarily lead to 
over-all optimality. That is, a situation may occur in which-if the cus- 
tomers behave according to a criterion of narrow self-interest-the facilities 
of the system will be over-congested. However, if the service station is 
operated by some nonprofit organization dedicated to a more global con- 
cept of optimization, or whenever the customers themselves collectively 
govern the operations of the station (through an appointed agency, say), 
then an ameliorated state of affairs can be achieved. More specifically, 
we view the problem as of how to cause an individual customer to employ 
the no strategy rather than the n8. This last statement follows from the 
observation that, for any strategy RJD, the average reward per customer is 
given by 4R,,D and thus, by definition of no, q5RD >AD:RD. 

n0 s 
n 

If the individual customers are not likely to be persuaded by argument 
alone, then two distinct ways might be used in order to reduce the queue 
size. One way is an administrative measure that will limit the capacity 
of the system to the no level. Since no< no, the only obstacle for individual 
customers to join the queue will be the limited capacity, and thus an over-all 
optimization will be achieved. 

Perhaps of more interest is the situation where the toll charge is used 
as a device for controlling the queue size. Without loss of generality, we 
may assume that the initial charge is 0 = 0 (i.e., g = G) and our objective is 
to find Oo so as to achieve 

nS(Oo) =no(0) (30) 

where, clearly, n8(O) ?no(O). 
When requiring (30), we implicitly assume that the additional toll 

revenue-at the level of [1-7rn.+(n)]0o per arriving customer (when apply- 
ing some rule R D)-is redistributed among the participants, either directly 
or by some other means like service improvement, dividends from a co- 
operative company, etc. Thus, for an over-all optimization, the public 
objective is to find an n* so as to 

maximize 2 - xir(n) [G-o-( c/t) (+1)+l] ( 31 ) 

which is equivalent to 

maximizer Di=o 7r,(n) [G- (cl,4) (i+ 1 ) + l]. (32) 

Clearly, n* obtained from (32) is such that n* =no(0) which motivates 
(30). Note that another implicit assumption is that the station's operating 
costs are independent of the particular level of the control-limit rule. 

If, however, there are some additional costs involved in the collecting 
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of the extra service charge, and/or the redistributed amount is discounted, 
then, still, an over-all optimization can be achieved, although the computa- 
tions will not be so easy as in (30). Suppose that the (present) value of 
the money returned to the customers is at the rate of (1- a) [1- 7w+1(n)]Oo 
per arrival, where 0<a<? 1. Then (31) is equivalent to finding n* so as to 

maximize E 7ri(n) [G-a0o- (c/4A)(i+1)+1]. 

Clearly, n no(aOo), from which it follows that 0o is such that n,(Go)= 
no(aco). 

It just remains to find the actual value, or, rather, the range, of Oo. 
Using (18), we have 

(h/c) (G- Oo-2c4+l) <n8(Oo) =no(aOo) < (I/c) (G- Oo-c,4+t), 

from which we get 

G- (c/l,) [no(aco) +2]+1< o<CG- (c/h)[no(a0o) +1]+1. 

When a = 0, Oo could easily be obtained by calculating no(O) and having 

G- (c4) [no(0) +2]+l< 0o<G- (c/li) [no(0) + 1]+l. 

That is, any value of 0o in the above interval will compel the selfish cus- 
tomers to employ the n8(Go) policy and thus cause-willingly or not-an 
over-all optimization. 

Station Optimization 

SUPPOSE NOW THAT the toll-collecting agency is a profit-making organiza- 
tion that is completely divorced from the individual or collective economic 
interests of the customers. In this case, the agency will seek to impose a 
toll Or designed to maximize its own revenue rather than to optimize the 
whole system. We assume that the agency's objective is to maximize the 
expected average collected toll per unit time, or, equivalently, per arriving 
customer. (Once again, we assume that either the station's operating 
costs are negligible, or independent of the policy used by the customers.) 
However, the agency realizes that for any service charge 0 the customers, 
trying to achieve the best for themselves, employ some control-limit rule 
n = n( 0) [either n8( 0) or no( 0)], and thus the state space I consists of finite 
number of states with I= {O, 1, *, n, n+1 }. The probability transition 
matrix for this situation is given now by (19), with n = n(0) replacing n8. 

If Xm denotes the revenue of the service station from the mth arrival, 
then 

=0, if Am=1, 

0, otherwise. 

Since, for the deterministic control-limit rule n( 6), Am = 1 if the system is in 
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state i_ n(O) and Am=O whenever i> n(O)+1, then the station's objective 
is to find Or so as to 

maximize0 [1-7rf+l (n)>]O=V1*/nf(6)X (33) 

subject to the usual stationary equations (6), where n=n(6). 
The expression for 4/K( 6) exhibits the conflict the agency is confronted 

with. Since both n,( 6) and no( 6) are nonincreasing functions of 0, then, 
roughly speaking, the use of a larger toll 0 implies a smaller control limit 
n(O), which, in turn, implies a smaller value of [1-wrna+(n)]. 

We consider two cases: 
Case 1: n,. In this case, we assume that the customers are not or- 

ganized as a cooperative, but, rather, each individual is doing his best for 
himself; that is, for any service charge 0, there is an n,(6), given by (16), 
that is the control-limit balking rule used by all the customers. It is seen 
that n,( 6) is a step function of 0, continuous from the left, with jump points 
at values On =G -(c4q)(n+1)+l for n=0, 1, * . We assert that the 
agency is interested just in the set of jump points lying in the interval 
(0, G-c4+l]. This is the result of the fact that, if Or<0, then itn(6) ?0 
for every rule n, chosen by the customers according to self optimization, 
whereas, for 6>G-c/1,+1, n8(6) ? (q/c) (G-6-c/,q+l) <0, which implies 
that none of the customers joins the queue, and hence, once again, p,{/ (0) = 0. 
We let N be an integer defined by the bracket function as follows: N = 

[(ju/c)(G-c4A+l)], Then we have to consider only the N+1 values of 
An for n=0, 1 ** N. Thus, we see that n,(6) is constant over intervals 
of length ce4. 

The graph of n,(6) is given in Fig. 1. 
Since, for any f6E(6n+i, 6n], the control limit is n,(6) =n, then, from the 

station's point of view, it is profitable to choose the largest possible value of 
0 without changing the policy of the customers. Thus, for n+,< <6? On, 0 
should be fixed such that 0 = On. Hence (33) is equivalent to finding lr so 
as to 

maximizeO ? <N I [1-w+,(n)]t = [1 +,(n)][G-(clq) (n+l) +1] } 

which, in turn, is equivalent to 

minl lOlN {J(c/,q)n+fl++1(n)Oa}* (34) 

Since (c/,q)n is an increasing function of n and rxn+?(n)oGn is a decreasing 
function of n, it is clear that the optimal value nr is obtained from 

fr = min {nEI:7rl?1(n))n-7rn+2(n+1) 0n+1<6c/At} (35) 

from which we have, finally, 

0r = G-(c/lq) (nlr+ 1) + 1. (36) 
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It is of interest to note that an analogy can be drawn to an inventory 
model with lost sales and no set-up costs. Expression (34) is equivalent 
to min. {cn+,q7r.+i(n)OG,}. Thus c, the waiting cost per customer per unit 
time, is analogous to the holding cost of inventory per item per unit time; 
n, which is the maximal joining number of the customers, and hence serves 
as the capacity of the waiting room, is analogous to the lot size; ,q represents 
the demand rate; An is the cost incurred when there is a shortage, and 
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Fig. 1. The graph of n8(0). 

7rn+l(n), the probability of balling, is equivalent to the probability of a 
lost sale. 

Case 2: no. In this case, we assume that the customers are organized 
and try to achieve the 'best' for their entire community. Thus, for every 
service charge 0, they employ a control limit rule no(0) that maximizes the 
average net benefit per customer. 

The agency's objective now is to find 0r* so as to 

maxo 0[1-r,0+1(no)]0}, 

where, for any 0, no is determined by the solution of the problem 
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max {,1E=_0 1ri(n) [G-0-(c/,q) (i+ 1 ) +1]}, (37 ) 

with {I ri(n) I's obtained from the probability transition matrix of the pure 
GI/M/1/n queuing process (or, equivalently from the solution of the linear 
programming problem of Section 3). Since no(6) _ n,(0) then, as in case 1, 
the search for the optimal value 64r* can be restricted to the interval (0, 
G-c4A+1]. Moreover, there can be at most N+1 distinct values of no(0). 

Before showing how 6r * can be found, we emphasize the conflict of 
interests between the customers and the agency as expressed by their 
corresponding objective functions. A simple modification shows that (37) 
is equivalent to 

min, { [1-wr+i(n)]0+[G-(c/A) (n+2) +l]r.+i(n) + (c/4)L(n) }. 

Notice that [1 -ir.(n)]0, which is to be maximized by the agency, is one 
of the terms to be minimized by the customers. 

We now give a straightforward, one-pass algorithm to find 6r*. 

Step 1. For every 6k= G-(c/lA)(k+1)+l, k=O, 1, ,AN, find the 
corresponding no(6k) by solving a linear program, say. By Theorem 7, 
no( ok) has the property that no(ok) ?nS(Ok) =k. Hence, no( 0) ? no( 01) < 
*< .no( (N). Denote by ni, n2, ,fm with nl<n2< <nm the m 
distinct values of the {no(ok) }'S. Clearly m < N+ 1. 

Step 2. Let Si= {Ok: no(0k)=n}, i=1, 2, ,m. For every Si let 
Oi= max { ok: kESi} I Since {6kESi, 6JESi+l} implies 0.k>Oa, then &i>?i+l for 
i=1, *,rn-i. 

Step 3. Find maxi<si<m {[1 - .+i(ni)]0&} and denote by j the index 
for which this maximum is achieved. Let t be such that 6t = max { 6k: 6kESj j} 

that is, 6Ot= Oj. If t=O, then ,r* 0o. If t7;O, go to step 4. 
Step 4. The optimal value Gr* is now in the interval [6t, Ot-1). Thus 

we are looking for 6E[Gt, 6Ot-) such that 

[1- ir+1(nj)]0+[G- (c/l) (nj+2) +l7r,,+1(ni) + (c/,j)L(n1) 

= [1 -ir.(nj- 1)]6+[G- (c/,u) (nj+l) +1]r.,(nj- 1) + (c/lq)L(nj- 1), 

from which we have, finally, 

0= (c/u) [L(nj- 1) -L(nj) +7rni+1(nj)]/ 

[7r7,,,(nj- 1)- -x,+,(nj) I+On, 

where, from step 1, 6?i = G-(c/,) (nj+ 1) +1. 

CONCLUSION 

THE SITUATION here may, perhaps, be better understood by drawing an 
equivalence between our queuing model and the general economic model of 
monopoly. If the service agency (the monopolist) realizes that the cus- 
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tomers are selfish, that is, their type of policy is the n8 one, then their 
demand curve, represented by Fig. 1 is completely known, and 0r, as given 
by (36) and (35), is the toll that maximizes tn(O). If, however, the cus- 
tomers are organized, then a graph similar to Fig. 1 could be obtained- 
again with the interpretation of a demand curve-and 6r*,n as given by (38), 
is the desired service charge. In fact, this Or* dictates the actual value of 
the customers' control limit no(Or*), since any deviation by them from this 
value would have the effect of reducing their net benefit. 
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