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Printed in U.S.A. 

CUSTOMERS' OPTIMAL JOINING RULES FOR THE 
GIjMjs QUEUE* 

URI YECHIALI 

Tel-Aviv University 

A GI/M/s queue with a stationary balking sequence is considered. For the infinite 
horizon average reward criterion, it is shown that among all stationary joining policies 
the optimal ones are nonrandomized control limiit rules of the form: join if and only 
if the queue size is smaller than some specific number. It is shown that, in general, 
exercising self-optimization by individual customers does not optimize public good. 
The M/M/s queue is then treated as an example, and a "direct" proof for the opti- 
mality of the control limit rule is given. 

1. Introduction 

We are concerned with a GI/M11/s queueing process where customers arrive at 
instants ro, Ir, T2 , I * Tm, I , and the interarrival times Tm+l -Tm , m = 0, 1, 2, I 
are independent, identically distributed positive random variables with common 
distribution function H (. ) and finite mean 1/N. There are s > 1 identical servers in the 
system and the distribution of service times is exponential with parameter ,u. The 
queue discipline (for customers who join the system) is 'first come first served.' Let 

v (t) be the queue size (customers waiting or being served) at instant t. Let 
7/m = 7f (Tm - 0); that is, 'qm denotes the queue size just before the mth arrival. The 
system is said to be in state i at the mnth step if 7qm = i. Suppose that upon arrival each 
customer can take one of two actions: either join the queue or balk. Let { Am, 
m = 0, 1, 2, * , denote the sequence of decisions (i.e., actions) made by the arriving 
customers. Let Am = 1 stand for the decision to join and Am = 0 for the decision to 
balk. Thus, regarding the system as making its transitions at instants of arrival, we 
obtain a M\tarkovian Decision Process [5], [6], {/m, Am}, m. = 0, 1, 2, *.. , whose sta- 
tionary transition probabilities, qij (k) = PIn.+1 = j I qm = i, A m = k}, i, j = 0, 1, 2, 
* ; k = 0, 1 are calculated as follows (see [12] or [15]): 

(i) If j > i + 1, qj (1) = 0 for all i = 0, 1, 2, 
QO 

(ii) If j < i + 1 < s, q,j(l) = (i+1) f e-)iz(1 - e-X)i+l-jdH(x). 

(iii) If i + 1 _ j _ sand i _ s,q ()= f e-((s1x) i+l-j/(i + 1 - j) !) dH (x). 

(iv) If i + 1 > s > j, 

1= [f (AM) ti-s1-sHl (s) eSlA t) (1 - 8( 0 j dt1 dH(x) 

(i (s) te J) 
=(8) fl; e-H [*l; '-^t) (e8 e-8X )-s,s dt] dH(x ). 

It is also easy to see that: 

* Received May 1970; revised February 1971. 
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(2) qij(O) = qi-.ij,(l) for i = 1, 2, j = 0, 1, 2, 

and qoo (0) = 1. 
Our objective is to find optimal joining and balking rules for arriving customers 

under the long-run average reward criterion. However, we assume that the only in- 
formation available to a newly arriving customer is the current state of the system. 
This assumption together with the ATMarkovian property of the service times amounts 
to considering only the so-called stationary Markovian policies [6]. Let Dik denote the 
stationary conditional probability of taking action k when state i is observed. That is, 
Dik = P{Am = kfl7m = i}, m = 0, 1,2, -- .Sincek = 0orIletD1, Diandlet 
Djo = 1- D, . The sequence {D,} will be called a balking sequence. 

For any given balking sequence, {D,}, the sequence of random variables {7)m} forms 
a homogeneous A'Jarkov chain (imbedded at instants of arrival) with transition 
probabilities 

(3) pTj = qij (1 )Di + qij (0) (1 - Di), i, j = 0, 1, 2, 

Let p t) denote the t-step transition probability from state i to state j. Then it is well 
known [71 that the limiting probabilities irj = limt, pt) i, j = 0 1 2, , always 
exist, they are nonnegative, and for an ergodic chain they form a distribution which 
uniquely satisfies the set of linear equations 

(4) =rj Zi7ripij, all j, Ej 7rj= 1. 

2. The GI/M/s/n Queue 

Suppose now that the service facility has a limited waiting room of size n > 0. 
That is, there could be at most n + s customers in the system. An arrival balks with 
probability one if he finds that all the s servers and all the n waiting positions are 
occupied. Suppose also that customers who find the system in state i < s + n join the 
the queue with positive probability. From probabilistic point of view the physical 
limitation on the number of customers in the system is equivalent to a balking se- 
quence for which 0 < Di < 1 for i < s + n and Di = 0for all i > s + n. A GI/M/s 
queueing process with such a balking sequence w,ill be denoted as a GlI/M/s/n queue. 

As before, the GI/M1/s/n process may be imbedded at instants of arrival to yield a 
homogeneous Markov chain wlhose transition probabilities, {pij(n)}, are identical 
with those of the GI/MI/s queue except for the s + nth (= last) rowx of the transition 
matrix. We have: 

pij(n) = qij(1)Di + qij(0)(1 - Di), i < s + n;j ? s + n, 

ps+n,j(n) = qs+n,j(O), j S + n. 

Since the finite M\1arkov chain thus obtained is aperiodic and irreducible, the limiting 
probabilities of the GI/M/l/s/n process, 7rj (n) = limt1 p() (n), j = 1, 2, , s + n, 
are all positive and clearly satisfy (4) with i, j = 0, 1, 2, s, + n. 

Related Models 

The special balking sequence, {D| Di = 1, i < s + n; Di = 0, i > s + n}, i.e., 
where balking occurs if and only if the system is full, was treated in [15] by Takacs 
who obtained an explicit form for the limiting probabilities { irj (n ) }. In [8] Finch derived 
an explicit solution for the GIMll/N/n process with a general balking sequence 
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{Di I0 < Di < 1, i < n + 1; Di = 0 i > n + 1}. Haight [9] studied theM31/M/I 
and M1/M/1/n queues with a general stationary balking sequence, and Homma 
[10] analyzed the GI/M/s process with a nondecreasing balking sequence 
{Do _ D1 > D2 ? ... } and gave conditions for recurrence and transiency. Yechiali 
[18] found optimal balking rules for the GI/M/1 queue with a general balking sequence. 

Waiting Times 

Consider the stationary process of the GI/M/s/n queue with its limiting probabilities 
{7rj (n)} . We then have: 

THEOREM 1. The conditional distribution function Fw() of the waiting time W 
(time from arrival until the start of service) of an arbitrary customer, given that he joins 
the queue, is: 

(6) Fw(x) = 1 - [1/EZi0 Di7ri(n)] [ZAj Dj7r(n) Ek SO e ( k!)] 

and the conditional expected waiting time is given by: 

(7) EW = (s,+0 Di7ri(n)'Z21 (j- s + l )Dj7rj(n). 

PROOF'. The proof is similar to the ones given in [15] and [18] for related models and 
therefore will be omitted. 

REMARK. It is readily seen that results (6) and (7) may be extended to the GI/M/s 
process as well. 

3. Two Imbedded Markov Chains 

A slightly different avenue of approach for the analysis of the GI/M/s process with 
balking is to imbed it at instants of joining rather than at instants of arrival. This is 
the approach that was taken by Homma in [10]. Consider the limiting probabilities 
{7rj} (or { 7ri (n )} ) of the process imbedded at instants of arrival and let {Pj4 ({Pj (n ) }) 
denote the corresponding stationary limiting probabilities of the process imbedded at 
instants of joining; i.e., Pj is the probability that the system is in state j when joining 
occurs. We then have: 

THEOREM 2. Pi = Dj7rj/,iDi7r i for all j. 

PROOF. Let Aj be the event, "An arrival finds the system in state j," and let C be 
the event, "An arrival joins the queue." Clearly, P (A j) = 7rj and P (C I Ai) = Dj. 
Since the { Aj} 's form a partition of the sample space, and Pj = P (A, | C), the result 
follows immediately by using Bayes' theorem. 

Note. Since ZiDi7ri < 1, Pj _ Djirj for every j, where equality holds if and only 
if Di = 1 for all i. In particular, if Dk < 1 for some k then Pj > Dj7rj for all relevant j. 
This is clearly the case for the GI/M/s/n process. 

4. Customers' Optimal Joining Rules 

We associate with our queueing process a linear cost-reward structure as follows: 
(i) A reward G ? 0 is obtained by each customer upon successful completion of his 

service. 
(ii) A service charge (= toll) 0 is paid by the customer to the service agency for 

the service rendered. 
(iii) The waiting costs for each arrival who joins the queue are incurred at the rate 

of c > 0 per unit time. 
(iv) The decision to balk is accompanied with a fixed penalty 1. We let g = G-0 
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be the net reward of a customer who has been served and we let b = g + 1 be the benefit 
of a customer who joins the queue. In order to eliminate trivialities we assume that G, 
0, C and 1 are finite and that b > c/,u. (This very last assumption will be clarified later.) 

Our objective now is to find rules that maximize the net benefit of the customers. 
We distinguish between two cases. (a) Self-optimization, i.e. every customer finds his 
own optimal "balking or joining" rule. (However, since G, 0, c and 1 are equal for all 
customers, the same optimal rule applies for all.) (b) Social (or public) optimization, 
i.e., we consider the long-run average expected net benefit of all customers and obtain 
the balking rule that maximizes this objective function. 

MViore specific, a rule or policy, R, for controlling the system is a set of functions 
{DkR(Hm-l, 7m)}I, m = 0, 1, -, where Hm = {77o, Ao, * 77m Am} DkR(.) > 0 and 
Ek=0 DkR (*) = 1; and where DkR (Hm1, X m) is to be interpreted as the probability of 
implementing decision k (k = 0, 1) at time m given the "history" Hmi, and the present 
state flm. (However, in all the preceding sections we have assumed that 

DkR(Hm-1l Xlm | f7m = i) = Dk R(Hm_l , i) = Dik 

for every m = 0, 1, 2 ... and thus we have obtained the M\arkov chains represented 
by (3) and (5).) 

Let BM, m = 0, 1, * * , denote the net benefit obtained at time Tm, and define its 
stationary conditional expectation: 

E{Bm I7m = i,Am = k} = bik. 

Since (for any m) a customer who joins the queue when the system is in state i spends 
there an expected total time of l/,u if i < s, and an expected total time of 

(i - s + I)/s4 + 1/4 = (i + l)/sj 

if i > s we immediately have: 

bio = -1, for all i, 

(8) bil = -, if i<s, 

=g (i+1), if i_>s. 

Before proceeding to find optimal joining rules we note that because of the Mlarkovian 
property of the service times reneging is never optimal; i.e., once having decided to 
join the queue it never pays to leave the system before service is completed. 

Self-Optimization 

We wish to find a rule R = DkR (. )} consisting of joining probabilities {DJR (Hm1 X i)} 
(recall that DR (. ) = 1-D1R (. )) such that for every history Hm_1 and every i 

(Bmim- i) = DJR(Hmi, i)bD1 + [1 - 
JDR(Hm_l i)]bio 

is maximized. 
By (8) we have 

E(Bm = i) = D R(Hm-, X i) (g - - [I - DIR(H.-i I i)]l, if i < s, 

= DiR(Hm_l, i) [g --(i + 1)] -[1 - 1R (Hm, i)] if i ? s. 
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Since b i = g - c (i + 1 )/,u is a decreasing function of i then, for i > s, there exists a 
smallest integer n (s) > 0, defined by i = s + n (s), for which balking is better than 
joining. That is, b+?f(,) , < -1 whereas b8?fl(>)ll > -1. It follows then that n(s) 
satisfies 

(9) g -- (s + n(s) + 1) < .-I < g --(s + n(s)). 
s,u su 

It is therefore clear that the rule 

R = {DJR( )DJR (Hm i) = 1 i < s + n(s) - 1; DJR (Hm-, X i) = 0, 

i > s + n(s)} 

is the one which maximized E (B,, |n = i) for every history Hmi, and every i. Note 
that if strict inequality holds in (9) then (10) is the unique optimal policy. 

From (9) we immediately obtain 

(11) 8 (b-) - 1 < n(s) < ?(b --) 
c ,u c ,u 

and since rule (10) is applied by all customers the process reduces to the GI/l/s/n (s) 
process with balking sequence {Di I Di = 1, i < s + n(s); Di = 0, i ? s + n(s)}. 
Such a sequence will be called a deterministic control limit rule [18] with control limit 
being equal to s + n (s). The interpretation is obvious; the rule says: Join if and only if 
the number of customers in the system is less than the control limit, s + n (s). 

As noted in [18] it is readily seen that the control limit rule (10) is independent of 
the arrival distribution. This is clearly understandable since each individual customer 
observes upon arrival only a "local" situation, i.e., the current state of the system, 
and is not interested in the forthcoming customers. However, if the arrival pattern is 
taken into consideration one might suspect that a better optimum a "global" one- 
may be achieved. This is indeed the case, as will be shown in the following section. 

Public Optimization 

Our objective now is to find a rule R which maximizes the long-ruin average expected 
net benefit of the entire customers' population. For anv given policy R and an initial 
state flo = j the expected net benefit at instant Tm is: 

(12) ER(Bm |fl70 j) = ZiZ LObikPR (GIn = ix An = k| o =), 

where ER and PR denote the expectation and probability under the policy R. Let 

(13) 4)R(j) = limT-- sup T + 1 ZM=o ER(Bm I oo = j)] 

be the long-run average expected net benefit. 
For public optimization we seek the rule R E C, that maximizes 4JR (j) for allj, 

where Cs is the class of all MAIarkovian stationary policies R = {Di I 0 < Di < 1, all i}. 
(Recall that we have restricted ourselves to this class by assuming that the only in- 
formation obtainable by a newly arriving customer is the current state of the system.) 

Consider now the class CDCL of all deterministic control limit rules RkD, where we 
say that RkD E CDCL if RkD = {Di Di = 1, i < k; Di = 0, i ? k} for some 
k = 1, 2, 3, and we let RD= {Di Di = 1, for all i = 0, 1, 2, }. Clearly, 
CDCL C C,. In [18] it has been shown for the GI/M/1 process that for the infinite 
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horizon average expected net benefit criterion there exists an optimal policy R E CDCL 

which maximizes 'R (j) for all j. i\Iforeover, it has been shown that R D may be con- 
sidered only if the system under this rule is ergodic, i.e. only if X < u. However, the 
same arguments may be carried out for the GI/M/s case and therefore, in searching 
for an optimal policy for social optimization in C, , it is sufficient to consider only rules 
RkD C CDCL where RoD may be considered only if X < s,u. iforeover, since b > c/,u 
(i.e., g - c/u - 1) implies that the expected net benefit for an individual customer 
is always nonnegative if he joins the system when it is in state i < s, we may con- 
sider only rules RkD with k ? s. 

Now, for any k > s and rule Rk = {Di I O < Di, i < k; Di = O, i > k} applying 
Chung's well-known theorem [2, pp. 92-94] to expressions (12) and (13) yields, 
independently of the initial state flo = .J, 

(14) (bRk = cJRk(j) = Z =o7ri (Rk)[Dibil + (1 - Di)bio] 

where the {1ri(Rk)} 's are the corresponding limiting probabilities of the process under 
Rk and they satisfy (4). 

Alternatively, since the expected total time spent in the system by a customer who 
joins is EW + 14,, the expected net benefit of an arbitrary arrival is: 

(15) Rk = io Diri (Rk) g-c (EW + -) [1 ZE =oDiri (Rk)]l 

where E o Diri(Rk) is the (unconditional) probability of joining. Using (8) for 
(14) or result (7) of Theorem 1 for (15) yields: 

(16) bRk = E-o Di7ri(Rk) [b- + Z-=s Diwri(Rk) [b (i + 1)]-1. 

In particular, if we consider RkD instead of Rk we have (Dk = 0): 

(17) ~~RkD ~i=EO lri(Rk) [b - -]+ Z ri(RkD) [b - (i + 1)] 1. 

We now show that the optimal rule for public optimization is a control limit rule with 
finite control limit, s + n (p), and that self-optimization need not bring upon social 
optimization. That is, we show that IRD+R(P) = SUPRE CS 4R which implies that 

BD+nkp) - S+n(s) .For this purpose we use Howard's algorithm [11] and start the 
"Value Determination Operation" with a policy 

Rs+n(s) = {Di|Di = 1, i < s + n (s); Di = 0, s + n (s) ? i < s + n}, 

where, by the remarks above, we may assume that the system is physically limited to 
a waiting room of size n > n (s). We thus have to find c1, vo, v1, ... , vS+n that satisfy: 

) + Vi = g - c+ E+ qij(l)vj, 0 < i < s-i, 

(18) b + vi = g - (i + 1) + Ej?+=O? qij(l)vj S < i S + n(s) -1, 
s,u 

(? + vi = -1 + ,j=o qij(O)vj, s + n(s) < i ? s + n. 

We need the following 

LEMMA 1. For any solution of (18) we have: 
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(19) Vo > V > > Vs+(s)- -> V.Q+n(s) > ... *> Vs+n - 

PROOF. The details of the proof will be omitted since it is similar to the one given in 
[18] for the GI/M/1 queue. In principle, it is an inductive proof in three steps. We 
first subtract the (s + n(s) + 1)st row of (18) from the (s + n(s))th row to obtain: 
Vs+n(s)-l _ Vs+n(s) . Then we use backward induction to show that vo > v1, and finally, 
a forward induction is employed to show that Vs+n-81> Vs+n D 

The interpretation of the result of this lemma is probably better expressed by quoting 
Howard who remarks that "the difference in the relative values vi - vi+i is equal to 
the amount that a rational man would be just willing to pay in order to start his transi- 
tions from state i rather than state i + 1 if he is going to operate the system for many, 
many transitions." This interpretation makes it clear why, for the RS+n(s) policy, (19) 
always holds. 

We can now prove the following: 

THEOREm 3. 3n(p) < n(s) D = SUPREC, ?R- 

PROOF. Since only deterministic control limit rules need to be considered, it suf- 
D ~~~~~~~~~~~~~~~D fices to show that a rule Rs+n for some n > n (s) is never an improvement on Rs+n(s). 

To show this we define for every i, 

gi(k) = bik +Ej qijq(k)vj, k = 0, 1, 

and therefore, it suffices to show (using Howard's "Policy Improvement Routine" 
after starting with Rs+n(s) and obtaining the corresponding ci, vo, vi, *, vs+n) that 
gs+i(O) > gs+i(l) for all n(s) < i < n. Using (18) and the fact that qs+i,j(l) = 
qs+i+1,j(O), we obtain: 

gs+(1 ) - gS+ (?) = g --(s + i + 1) + EZ+Z+' qs+i+,j(O)v 

- [-I- +Ej=0 qs+i,j(0)Vj 

= g - (s + i + 1) + (ci + vs+i+l + 1) - [-1 + (O + vs+i)] 

= g - -(s + i + 1) + + vs++l - Vs+ 
SA 

From (9) it follows that fori ? n (s),g - c(s + i+ 1 )7s1 + 1 < O. From Lemma I it 
follows that vs+i+ - vs+ 0. Hence, gs+i (1) < gs+i (0) for n (s) < i < n and therefore 
Rs+n is worse than Rs+n(s) . That is, SRs+n(S) > +n for all n > n(s). This implies 
immediately that bRD+f(SR > (!R.D. Hence, 3n(p) ? n(s) such that 

4+RD+(P) =SUPRECDCL 4)R = SUPREC, 4R* Q.E.D. 

As was pointed out in [18], in most cases we will have n (p) < n (s) which implies 
that acting individually seldom optimizes public good. 

Formulation as a Linear Program 

n (p) could now be calculated by solving a linear program. The relations between 
Miarkovian decision processes and linear programming are well known and following 
[13], [3], [17] and [18] the problem of maximizing ci as given by (16) can be written in 
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the following way: 

Maximize{Z l x(b - C + En-s) b - c (i + 1))} 

Subject to lOXjk - =S) El (k) = 0, j = 0, 1, n(s), 

Z(O) k=OXik 1 Xik > 0 i = 0, 1, * * n(s); k = 0, 1, 

where 

Xik = 7i (Rs+n(s) )Dk; i = 0,1, , n(s); k = 0, 1, 

i.e. 

Xil = 7ri (Rs+n(s) )Di, xio = 7ri (Rs+n(s)) (1 - Di). 

Since, as was shown in [17], at most n (s) + 1 variables Xjk will assume positive values 
in the optimal solution, and since xi, = 0 =X ri = 0, n (p) is readily obtained from: 

(20) n(p) = max{iixi, > 0}. 

5. Example with a "Direct" Proof: The M/I/s Queue 

For the M/I/s queue with stationary balking sequence {Di 0 O < Di < 1, i < s + n; 
Di = 0, i > s + n; n > n (s)} a "direct" proof of Theorem 3 may be given. It is well 
known [12] that from the set of Kolmogorov's backward differential equations written 
for this process, the set of limiting probabilities 1r7r(n) I may be expressed as a func- 
tion of 7ro (n) in the following way: 

(21) wk(n) = i() ( o Di)wo(n), k =1, 2, * * , s, 

-7rS+k(n) = (-) (U Di)7ro(n), k = 1, 2, * * , n. 

Letting ZP+-n 7ri (n) = 1 we obtain 

(22) 7ro(n) = + [ Es-,(X) (U, ' Di) + -(-)S (U Di)] 

If we consider now a sequence of probabilities {di 0 < di ? 1}, i = 0, 1, 2, , and 
generate a sequence of control limit rules Rk = {Di I Di = di, i < k; Di = 0, i > k}, 
k = 1, 2, * * , then for any rules Rs+n and Rs+n?l belonging to this sequence we have: 

LEMMA2. ri (n) > 7ri (n + 1) for i = 0, 1, 2, , n and all n =1, 2,* . 

PROOF. From (21) it is clear that 7ri (n) > 7rir(n + 1) if and only if 
ro (n ) > 7ro (n + 1). From (22) it follows that 7ro (n) > Fro (n + 1) if and only if 

5k=l (- i=-O di ) < k=l(- Hi--? di) . 

Since (X/s..),+' (J1jsn di) > 0 the proof is complete. 
With the aid of Lemma 2, Theorem 3 can now be proved directly. We show that for 

any n > n(s), cIs+n(s) > c]8Rs+n for all control limit rules {Rs+n} (which obviously 
contain all deterministic control limit rules). 



442 URI YECHIALI 

Using (16) we have: 

(Rs+n(S) c-i = Z di (b -) [ri(n(s)) - r(n)] 

(23) + Z8s( 1 cl [b -- (i + 1)] [7ri(n(s)) - iri(n)] 

~s+n-1 F C1 
_.Si=s+n(s) cl [b - - + 1)] ri(n). 

Since b - c(i + I)/s,u ? 0 for i ? s + n(s)- 1, and is < 0 for i ? s + n(s), the 
right-hand side of (23) is comprised of three nonnegative sums of which at least one is 
positive. This shows that (R,+n(s) > (R,+n for all n > n(s) and only rules Rs+k with 
k ? n (s) need be considered. Clearly, as it is well known for finite state MIarkovian 
decision processes, an optimal rule may be found among the nonrandomized rules and 
hence it suffices to search through the n (s) + 1 deterministic control limit rules 

RD+k , k = 0, 1, ... n (s)}, as was pointed out earlier for the general case. 

6. Remarks on Optimal Toll Charges 

In [14] and [18] it was shown for the JVi/M13/1 and GI/MI/1 queues, respectively, 
that-permitting every customer to act individually-an overall optimality still may 
be achieved by levying an extra toll, 60, such that the new n (s) calculated from (11) 
with (0 + 0) replacing 0 will be equal to n (p) as given by (20). Following the same 
arguments it is readily obtained that 6o is given by 

C 
b - -[n(p) + 2] < Go ? b - c[n(p) + 1] 

The new toll at the level of 0 + 0 will cause the selfish customers to act according to 
the overall optimal criteria, that is, their new control limit will be smaller and the 
(average) queue size will be reduced to the desired magnitude. 

Station optimization may also be studied in the framework of a "competition" 
model between the service agency-which is then considered as a profit-making 
organization and the customers, whether acting individually or collectively. It is 
then assumed that the service agency's objective is to maximize its long-run average 
revenue, i.e., to find s+ SO as to maximize [1n- r (RD+ )]0 over all possible 0, where n 
is a function of 0 and is either n (s) or n (p). As in [18] it can be shown that the situation 
is analogous to the monopoly model of Price Theory where the "demand" function 
that is, n (s) or n (p )-is completely known to the service station-the monopolist-for 
any given 0. 
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