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Two main methods are used to solve continuous-time quasi birth-and-death processes:
matrix geometric (MG) and probability generating functions (PGFs). MG requires a
numerical solution (via successive substitutions) of a matrix quadratic equation A0 +
RA1 + R2A2 = 0. PGFs involve a row vector �G(z) of unknown generating functions sat-

isfying H(z)�G(z)T = �b(z)T, where the row vector �b(z) contains unknown “boundary”
probabilities calculated as functions of roots of the matrix H(z). We show that: (a) H(z)

and �b(z) can be explicitly expressed in terms of the triple A0, A1, and A2; (b) when each
matrix of the triple is lower (or upper) triangular, then (i) R can be explicitly expressed
in terms of roots of det[H(z)]; and (ii) the stability condition is readily extracted.

Keywords: continuous-time QBD processes, probability generating functions, matrix geometric,
calculation of the rate matrix R
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1. INTRODUCTION

Continuous-time quasi birth-and-death (CTQBD) processes have been studied extensively
in the literature and applied to solve a large number of problems (see e.g., books by
Neuts [13] and Latouche and Ramaswami [11]). A CTQBD process is a two-dimensional
continuous-time Markov process where one (bounded) dimension represents the so-called
“phases” of the process, and the other (unbounded) dimension represents the so-called
“levels.” In this work we consider a CTQBD process with n + 1 phases, denoted by the index
j = 0, 1, 2, . . . , n, and with infinite number of levels, denoted by the index i = 0, 1, 2, . . .. For
such a process let (L1, L2) denote the two-dimensional system state, where L1 represents
the levels and L2 the phases.
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2 G. Hanukov and U. Yechiali

Let pi,j ≡ P (L1 = i, L2 = j) denote the steady-state joint probabilities of the system
states.

Two solution methods are often used to analyze and solve such problems: (i) via prob-
ability generating functions (PGFs) and (ii) via matrix geometric (MG) analysis. These
methods are summarized below.

1.1 The PGF method

For this method one first defines n + 1 partial PGFs, one for each phase, as follows:

Gj(z) =
∞∑

i=0

pi,jz
i, j = 0, 1, 2, . . . , n; |z| ≤ 1. (1)

Then, by formulating explicit balance equations for each state, multiplying every equation
with index (i, j) by zi, and then summing over all i for each j separately, one obtains (after
some algebra) a finite set of n + 1 linear equations for the n + 1 unknown PGFs, which can
be expressed as

H(z)�G(z)T = �b(z)T, (2)

where H(z) is an (n + 1)-dimensional square matrix based on the system’s parame-
ters; �G(z) = (G0(z), G1(z), . . . , Gn(z)) is a row vector of the unknown PGFs; and �b(z) =
(b0(z), b1(z), . . . , bn(z)) is the right-hand side row vector of Eq. (2).

To obtain each Gj(z) one uses Cramer’s rule. That is,

Gj(z) =
det[Hj(z)]
det[H(z)]

, j = 0, 1, 2, . . . , n, (3)

where Hj(z) is a matrix obtained from H(z) by replacing its j -th column with the right-hand
side vector �b(z)T. However, the vector �b(z) contains a finite number of unknown probabili-
ties, usually called “boundary” probabilities. To obtain the latter probabilities one calculates
numerically the roots of det[H(z)], and then argues that since Gj(z) is an analytic function
for |z| ≤ 1, every root of det[H(z)] within |z| ≤ 1 is also a root of det[Hj(z)]. Let {zv} be the
set of roots of det[H(z)]. By using the appropriate root for each det[Hj(z)], j = 0, 1, 2, . . . , n,
one obtains a linear set of equations det[Hj(zv)] = 0, j = 0, 1, 2, . . . , n, where the unknowns
are the boundary probabilities. Using the required number of roots within the open interval
(0, 1), together with (if needed) direct equations from the set of balance equations, one
obtains a unique linear set of independent equations in the above probabilities, which is
solved numerically, so that the generating functions can be obtained (see e.g., [12, 15]).
Consequently, by using the PGFs, the steady state probabilities and the system’s various
performance measures are derived (see e.g., [1, 2, 9, 14, 16, 17, 18, 19]).

1.2 The MG method

For this method of solution, let �pi = (pi,0, pi,1, . . . , pi,n) denote the probability row vector
of the states of level i = 0, 1, 2, . . ., and let �p = (�p0, �p1, �p2, . . .) denote the row vector of all
system’s probabilities. Then, by formulating accordingly an infinitesimal generator matrix
Q, the system’s set of balance equations and its solution for the probability vector �p is
given by

�pQ = �0, �p · �e = 1, (4)

where �0 is a row vector with all its elements equal to 0, and �e is a column vector of ones.
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EXPLICIT SOLUTIONS FOR CONTINUOUS-TIME QBD PROCESSES 3

A general form of the matrix Q looks like

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0,0 B0,1 · · · B0,m 0 0 0 0 · · ·
B1,0 B1,1 · · · B1,m 0 0 0 0 · · ·

...
...

...
...

...
...

...
Bm,0 Bm,1 · · · Bm,m A0 0 0 0 · · ·

Bm+1,0 Bm+1,1 · · · Bm+1,m A1 A0 0 0 · · ·
0 0 · · · 0 A2 A1 A0 0 · · ·
0 0 · · · 0 0 A2 A1 A0

0 0 · · · 0 0 0 A2 A1
. . .

0 0 · · · 0 0 0 0 A2
. . .

0 0 · · · 0 0 0 0 0
. . .

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where the initial m + 1 block-columns of matrices Bi,j deal with the first m + 1 levels. Each
matrix Bi,j , i = 0, 1, 2, . . . ,m + 1, j = 0, 1, 2, . . . ,m, may be a matrix of zeros, one of the
triple matrices (A0, A1, A2), or some other matrix. From block-column m + 1 and on, the
triple of (n + 1)-dimensional square matrices A0, A1, and A2 repeats itself indefinitely in
each block-column. At column j = m + 1 the triple begins from block-row i = m with a
diagonal down shift of one block from row to row.

Following Neuts [13] the steady state probability vectors can be calculated by

�pi = �pmRi−m, i = m,m + 1,m + 2, . . . , (6)

where using �pm+1 = �pmR, the vector �pm (as well as �p0, �p1, . . . , �pm−1) is calculated by the
set of equations

m+1∑
i=0

�piBi,j = �0, j = 0, 1, 2, . . . ,m,

(
m−1∑
i=0

�pi + �pm[I − R]−1

)
�e = 1,

and the so-called “rate matrix” R is a square matrix which is a minimal non-negative
solution (see [13, Chap. 3, p. 82]) of the matrix quadratic equation

A0 + RA1 + R2A2 = 0. (7)

In most cases the matrix R is numerically calculated via successive substitutions. Several
iterative algorithmic methods have been developed for this purpose (see e.g., [11, Chap. 8,
4, 3]), although there are structured special cases (see Section 1.3) that allow for an efficient
solution of the non-linear matrix equation. Finally, by using the matrix R and the probability
vectors {�pi} one can calculate appropriate performance measures of the system.

1.3 Contribution

As indicated, both the PGF and the MG methods require numerical calculations: the first
requires calculations of the roots of det[H(z)], while the latter requires calculation of the
rate matrix R, where both calculations are based on the same system’s parameters. Several
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4 G. Hanukov and U. Yechiali

relationships between the methods have been established and are reported in the above-
mentioned books. Additional results have been derived recently (see e.g., [16, 14, 18, 9, 2]).
We also refer the reader to a recent paper by Kapodistria and Palmowski [10] and references
therein, in which MG approach for solving certain random walk processes is discussed where
both the phase and the level dimensions are unbounded.

In this paper, we add a few relationships between the above two solution methods. Our
contribution is four-fold:

• Derivation of closed-form expressions for H(z) and �b(z) of the PGF method in terms
of the triple matrices A0, A1, and A2 used to calculate the rate matrix R.

• Showing that when each of the matrices A0, A1, and A2 is lower triangular, or when
all three are upper triangular, the diagonal elements of R are expressed as functions
of the roots of det[H(z)].

• Obtaining directly calculated (finite sums) expressions of the entries of R in cases
where the matrices A0, A1, and A2 are each lower triangular, or when all three are
upper triangular.

• Deriving readily extracted stability condition when the above triple is lower (upper)
triangular.

We note that Latouche and Ramaswami [11, Chap. 8, p. 197], expressed the matrix R
in terms of the matrices A0 and A1 in the case where A2 = �v · �α, where �v is a column vector
and �α is a row vector. Similarly, R can be expressed in terms of A2 and A1 when A0 is
a product of a column vector and a row vector. Further to that result, Van Leeuwaarden
and Winands [20] showed that for a specific class of QBD processes the rate matrix R can
be determined while based on probabilistic arguments “by monitoring the QBD process
from the time it leaves a certain level until it returns to that same level for the first time.”
Van Houdt and Van Leeuwaarden [21] considered discrete time M/G/1-type and tree-like
QBD Markov chains where A0, A1, and A2 are triangular and derived directly calculated
expressions (in the form of infinite series) for a matrix G, which is the solution of the
matrix equation G =

∑2
k=0 AkGk, stating that a similar approach can be taken on the form

R =
∑2

k=0 RkAk. In an earlier work [22] it is shown that the infinite series can be written in
terms of hypergeometric functions. Very recently Hanukov et al. [5–7] considered queueing-
inventory problems with “preliminary services” and derived explicit expressions for the
entries of R = [rv,t], where some coefficients of rv,t are Catalan numbers. Phung-Duc [19]
derived explicit expressions of R for an M/M/c/Setup queue and presented a computational
complexity comparison between the generating function approach and the matrix analytic
method.

For sake of clarity of exposition, we summarize in Section 1.4 the notations used in this
paper.

1.4 Notation

(L1, L2)—The two-dimensional system state, where L1 represents the levels and L2 the
phases.

pi,j ≡ P (L1 = i, L2 = j)—The steady-state joint probabilities of the system states.
i = 0, 1, 2, . . . , j = 0, 1, 2, . . . , n.

Gj(z)—Partial PGF for phase j = 0, 1, 2, . . . , n.
H(z) ≡ [hv,t(z)]—An (n + 1)-dimensional square matrix based on the system’s param-

eters.
�b(z)—The right-hand side row vector of Eq. (2).
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EXPLICIT SOLUTIONS FOR CONTINUOUS-TIME QBD PROCESSES 5

Q—An infinitesimal generator matrix.
�pi = (pi,0, pi,1, . . . , pi,n)—The probability row vector of the states of level i = 0, 1, 2, . . ..
�p = (�p0, �p1, �p2, . . .)—The row vector of all system’s probabilities.
�e—A column vector of ones.
�0—A row vector with all its elements equal to 0.
Bi,j—Initial sub-matrices of Q, i = 0, 1, 2, . . . ,m + 1, j = 0, 1, 2, . . . ,m.
A0 ≡ [av,t

0 ], A1 ≡ [av,t
1 ], and A2 ≡ [av,t

2 ]—A triple of sub-matrices of Q repeating itself
indefinitely in each block-column, starting from block-column m + 1.

R ≡ [rv,t]—The square “rate” matrix satisfying the matrix quadratic equation A0 +
RA1 + R2A2 = 0.

r2,v,t—Entries of R2.
zv—A root of det[H(z)].
A ≡ [av,t] = A0 + A1 + A2.
�π = (π0, π1, π2 . . . πn)—The unique solution of �πA = �0, �π�e = 1.

2. CLOSED FORM EXPRESSIONS FOR H(z) AND �b(z) IN TERMS OF A0, A1,
AND A2

In this section, we derive closed form expressions for H(z) and �b(z), so that the set of linear
equations given by Eq. (2) can be obtained with no need in specifically formulating the
balance equations and constructing the equations for the PGFs, as described in Section 1.1.

We now rewrite the PGF row vector as

�G(z) =
∞∑

i=0

�piz
i (8)

and use it to derive closed form expressions for H(z) and �b(z) in terms of the triple
(A0, A1, A2), as stated in Theorem 1:

Theorem 1:

H(z) = (z2A0 + zA1 + A2)T

and

�b(z) =
m−1∑
j=0

zj+2�pjA0 +
m∑

j=0

zj+1�pjA1 +
m+1∑
j=0

zj�pjA2 −
m∑

j=0

m+1∑
i=0

zj+1�piBi,j .

Proof: Consider the matrix Q in its form (5). By Eq. (4) we have

m+1∑
i=0

�piBi,j = �0, j = 0, 1, . . . ,m, (9)

�pj−1A0 + �pjA1 + �pj+1A2 = �0, j = m + 1,m + 2, . . . ,∞. (10)

By multiplying each equation by zj and summing over j we get

m∑
j=0

m+1∑
i=0

zj�piBi,j +
∞∑

j=m+1

zj�pj−1A0 +
∞∑

j=m+1

zj�pjA1 +
∞∑

j=m+1

zj�pj+1A2 = �0
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6 G. Hanukov and U. Yechiali

or

m∑
j=0

m+1∑
i=0

zj�piBi,j +

⎛
⎝z

∞∑
j=0

zj�pjA0 − z

m−1∑
j=0

zj�pjA0

⎞
⎠+

⎛
⎝ ∞∑

j=0

zj�pjA1 −
m∑

j=0

zj�pjA1

⎞
⎠

+

⎛
⎝z−1

∞∑
j=0

zj�pjA2 − z−1
m+1∑
j=0

zj�pjA2

⎞
⎠ = �0.

Multiplying by z and substituting Eq. (8) leads to

z2 �G(z)A0 + z �G(z)A1 + �G(z)A2 = z2
m−1∑
j=0

zj�pjA0 + z

m∑
j=0

zj�pjA1

+
m+1∑
j=0

zj�pjA2 −
m∑

j=0

m+1∑
i=0

zj+1�piBi,j ,

or

�G(z)(z2A0 + zA1 + A2) =
m−1∑
j=0

zj+2�pjA0 +
m∑

j=0

zj+1�pjA1

+
m+1∑
j=0

zj�pjA2 −
m∑

j=0

m+1∑
i=0

zj+1�piBi,j , (11)

which completes the proof (see Eq. (2)). �

Note that a similar result for the matrix H(z) as given in the first part of Theorem 1,
has been established in Altman et al. [1] for a specific model.

3. CONNECTIONS BETWEEN H(z) AND R AND ITS DIRECT CALCULATION

In this section, we derive explicit relations between the matrix H(z) and the entries of the
matrix R for cases where each matrix A0, A1, and A2 is lower triangular or when all three
are upper triangular.

Denote the elements of the various matrices as follows:

R ≡ [rv,t], R2 ≡ [r2,v,t], A0 ≡ [av,t
0 ], A1 ≡ [av,t

1 ], A2 ≡ [av,t
2 ], H(z) ≡ [hv,t(z)].

Lemma 1: If the matrices A0, A1, and A2 are each lower triangular, namely av,t
0 = 0,

av,t
1 = 0, and av,t

2 = 0 for v < t, then

(i) hv,t(z) = 0 for v > t, i.e., H(z) is upper triangular.
(ii) rv,t = 0 for v < t, i.e., R is lower triangular.
(iii) r2,v,t = 0 for v < t, i.e., R2 is also lower triangular.
(iv) r2,v,v = (rv,v)2, ∀v

Proof: (i) Follows immediately from Theorem 1.
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(ii) According to Neuts [13, Chap. 1, p. 8] and Haviv [8, Chap. 12, p. 202], starting
from state (i, v) for any i > m, rv,t is equal to the expected number of visits in state
(i + 1, t) before the process first re-enters level i. Since, for v < t, av,t

0 = 0, av,t
1 = 0,

and av,t
2 = 0, there is no feasible way to visit the state (i + 1, t) before re-entering

level i, implying that rv,t = 0 for v < t.
(iii) The entries of R2 are given by r2,v,t =

∑n
τ=0 rv,τrτ,t. By (ii), rτ,t = 0 for τ < t and

rv,τ = 0 for v < τ . Since v < t, we get r2,v,t =
∑n

τ=0 rv,τrτ,t = 0.
(iv) The entries of the main diagonal of R2 are given by r2,v,v =

∑n
τ=0 rv,τrτ,v. By (ii),

rτ,v = 0 for τ < v and rv,τ = 0 for v < τ . Thus, r2,v,v =
∑n

τ=0 rv,τrτ,t = (rv,v)2.
�

Consider now H(z). By (i) of the above Lemma, hv,t(z) = 0 for v < t. Thus, the
determinant of H(z) is equal to the product of its main diagonal entries. That is,
det[H(z)] =

∏
∀v hv,v(z). Hence, calculating the roots of this determinant, namely finding

the roots of the polynomial equation
∏

∀v hv,v(z) = 0, translates to a set of n + 1 equations
hv,v(z) = 0, v = 0, 1, 2, . . . , n, which, by Theorem 1, results in z2av,v

0 + zav,v
1 + av,v

2 = 0, ∀v.
Let zv be a root of det[H(z)]. Then, since av,v

1 < 0 and |av,v
1 | ≥ av,v

0 + av,v
2 , the

non-negative roots of det[H(z)] (that will be used in the sequel) are given by

zv =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−av,v
1 −

√
(av,v

1 )2 − 4av,v
0 av,v

2

2av,v
0

, av,v
0 > 0, av,v

2 > 0

−av,v
1

av,v
0

, av,v
0 > 0, av,v

2 = 0

−av,v
2

av,v
1

, av,v
0 = 0

, ∀v. (12)

We are ready now to establish the connections between H(z) and R.

Theorem 2: If av,t
0 = 0, av,t

1 = 0, and av,t
2 = 0 for v < t, then

rv,v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zv
av,v
0

av,v
2

, av,v
0 > 0, av,v

2 > 0

zv = 0, av,v
0 = av,v

2 = 0
1
zv

, av,v
0 > 0, av,v

2 = 0

, ∀v (13)

Proof: By Eq. (7) and the Lemma, rv,v is calculated by the following set of equations:
av,v
0 + rv,vav,v

1 + (rv,v)2av,v
2 = 0, ∀v. Since the minimal nonnegative solution of R must be

taken [13], rv,v is given by

rv,v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−av,v
1 −

√
(av,v

1 )2 − 4av,v
0 av,v

2

2av,v
2

, av,v
2 > 0, av,v

0 > 0

0, av,v
2 > 0, av,v

0 = 0
−av,v

0

av,v
1

, av,v
2 = 0

, ∀v. (14)

Combining (12) and (14) leads to (13), which completes the proof. �

We further note that the first-type relation of Theorem 2 (Eq. (13)) was revealed in
Perel and Yechiali [16] when analyzing the so-called “Israeli queue.” The first- and third-
type relations were indicated in Paz and Yechiali [14] when analyzing an M/M/1 queue in
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8 G. Hanukov and U. Yechiali

random environment with disasters. The third-type was also pointed at in Armony et al.
[2] when studying a multi-server queueing system with cross-selling. (see further discussion
of those papers in Section 4).

The Lemma above establishes that rv,t = 0 for v < t, while Theorem 2 gives the values
of rv,v for all v. In order to complete the calculation of all entries of R, it remains to
obtain the values of rv,t for v > t. The following theorem shows how the latter values can
be calculated directly, thus concluding an explicit derivation of all entries of the rate matrix
R, which eliminates the need to use numerical successive substitutions when calculating R.

Theorem 3: If av,t
0 = 0, av,t

1 = 0, and av,t
2 = 0 for v < t, then

rv,t = −av,t
0 +

∑v
k=t+1 rv,kak,t

1 +
∑v−1

τ=t+1 rv,τrτ,tat,t
2 +

∑v
k=t+1

∑v
τ=k rv,τrτ,kak,t

2

at,t
1 + at,t

2 (rt,t + rv,v)
for v > t

Proof: By Eq. (7), rv,t is calculated by the following equation: av,t
0 +

∑n
k=0 rv,kak,t

1 +∑n
k=0 r2,v,kak,t

2 = 0, where r2,v,k =
∑n

τ=0 rv,τrτ,k. By the Theorem’s condition ak,t
1 = 0 and

ak,t
2 = 0 for k < t. By the Lemma, rv,k = 0 for k > v, rv,τ = 0 for τ > v and rτ,k = 0 for k >

τ . Thus, the above equation reduces to av,t
0 +

∑v
k=t rv,kak,t

1 +
∑v

k=t

∑v
τ=k rv,τrτ,kak,t

2 = 0,

which can be written as follows: av,t
0 +

(
rv,tat,t

1 +
∑v

k=t+1 rv,kak,t
1

)
+
(
rv,trt,tat,t

2 +
∑v−1

τ=t+1

rv,τrτ,tat,t
2 +

∑v
k=t+1

∑v
τ=k rv,τrτ,kak,t

2 + rv,vrv,tat,t
2

)
= 0. Eliminating rv,t completes the

proof. �

Note the order of calculation in Theorem 3: the main diagonal is calculated first; then
the one bellow it, and so on, until reaching the last element in the bottom left corner of the
matrix R.

We also note that a non-successive substitution procedure to calculate the entries of
the matrix G is given in [21] where its entries are expressed as infinite series.

When each of the matrices A0, A1, and A2 is lower triangular, the stability condition
for the QBD process is readily obtained, with no need for any calculation.

Theorem 4 (Stability Condition): If av,t
0 = 0, av,t

1 = 0, and av,t
2 = 0 for v < t, then the

stability condition is readily given by a0,0
0 < a0,0

2 .

Proof: Let A ≡ [av,t] = A0 + A1 + A2 and let the row vector �π = (π0, π1, π2 . . . πn) be the
unique solution of �πA = �0, �π�e = 1. That is,

n∑
v=0

πvav,t = 0, t = 1, 2, 3, . . . , n, (15)

n∑
v=0

πv = 1. (16)

The general stability condition [13, Chap. 3, p. 83] is given by

�π A0 �e < �π A2 �e. (17)

We first prove, by induction, that πv = 0 for all v = 1, 2, 3, . . . , n.
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EXPLICIT SOLUTIONS FOR CONTINUOUS-TIME QBD PROCESSES 9

(i) Starting from the last equation of (15) (i.e., t = n) we have
∑n

v=0 πvav,n = 0. Since
A is lower triangular (i.e., av,n = 0 for all v = 0, 1, 2, . . . , n − 1), the latter equation reduces
to πnan,n = 0, implying that πn = 0.

(ii) We now assume that πv = 0 for v = n, n − 1, . . . , t + 2, t + 1 and show that πt = 0
for every t ≥ 1. Since A is lower triangular, av,t = 0 for all v = 0, 1, 2, . . . , t − 1. By the induc-
tion assumption, πv = 0 for all v = t + 1, t + 2, . . . , n. Thus, Eq. (15) reduces to πta

t,t = 0,
implying that πt = 0, as claimed. By substituting πt = 0, for all t = 1, 2, 3, . . . , n in Eq. (16),
we get π0 = 1. Finally, by substituting �π = (1, 0, 0, . . . , 0) in Eq. (17) the stability condition
reduces to a0,0

0 < a0,0
2 . �

This result can be explained intuitively as follows: the matrix A0 represents the process
level’s forward direction, whereas A2 represents the backward direction. Since the matrices
A0, A1, and A2 are lower triangular, the process reaches phase 0 with probability 1, and
within this phase, stability requires that the forward rate (a0,0

0 ) is smaller than the backward
rate (a0,0

2 ).
Note: All entries in the zero-th row in A are zeros. Since there is a unique solution, then

at,t < 0 for t = 1, 2, 3, . . . , n. This follows since the sum of entries of each row in A is zero,
and av,t ≥ 0 for v �= t, with at least one av,t > 0.

The case where each of the three matrices A0, A1, and A2 is upper-triangular is treated
in the following theorem.

Theorem 5: Suppose that av,t
0 = 0, av,t

1 = 0, and av,t
2 = 0 for v > t. Then, the Lemma holds

for v > t, as well as Eqs. (13) and (14) of Theorem 2. The stability condition is given by
an,n
0 < an,n

2 . The entries rv,t for v < t are given by

rv,t = −av,t
0 +

∑t−1
k=v rv,kak,t

1 +
∑t−1

τ=v+1 rv,τrτ,tat,t
2 +

∑t−1
k=v

∑k
τ=v rv,τrτ,kak,t

2

at,t
1 + at,t

2 (rt,t + rv,v)
.

Proof: The proof follows by similar arguments leading to the Lemma and to Theorem 2,
where the expression of rv,t for v < t is derived similarly to Theorem 3, with the required
change of the summation indices.

There are cases where the matrices A0, A1, and A2 are only partial lower or upper
triangular. Such cases are treated in the following two corollaries. �

Corollary 1: Consider the triple A0, A1, and A2, each of which not necessarily lower
triangular. Suppose that, from some column k and up, all entries above the main diagonal
of each matrix are zeros, that is, av,t

0 = 0, av,t
1 = 0, and av,t

2 = 0 for v < t, where t ≥ k.
Then,

(I) similarly to the Lemma,
(a) hv,t(z) = 0 for t = k, k + 1, . . . , n; v = 0, 1, . . . , t − 1,
(b) rv,t = 0 for t = k, k + 1, . . . , n; v = 0, 1, . . . , t − 1,
(c) r2,v,t = 0 for t = k, k + 1, . . . , n; v = 0, 1, . . . , t − 1.
(II) Similarly to Theorem 2,

rv,v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zv
av,v
0

av,v
2

, av,v
0 > 0, av,v

2 > 0

zv = 0, av,v
0 = av,v

2 = 0
1
zv

, av,v
0 > 0, av,v

2 = 0

, v = k, k + 1, . . . , n.
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10 G. Hanukov and U. Yechiali

(III) Similarly to Theorem 3,

rv,t = −av,t
0 +

∑v
k=t+1 rv,kak,t

1 +
∑v−1

τ=t+1 rv,τrτ,tat,t
2 +

∑v
k=t+1

∑v
τ=k rv,τrτ,kak,t

2

at,t
1 + at,t

2 (rt,t + rv,v)

for t = k, k + 1, . . . , n; v = t + 1, t + 2, . . . , n.

Corollary 2: Consider the triple A0, A1, and A2. Suppose that, for each matrix, from
some column k and below, all entries below the main diagonal are zeros, that is av,t

0 = 0,
av,t
1 = 0, and av,t

2 = 0 for v > t, where t ≤ k. Then,
(i) part (I) from Corollary 1 holds for t = 0, 1, . . . , k; v = t + 1, t + 2, . . . , n,
(ii) Part (II) from Corollary 1 holds for v = 0, 1, . . . , k, and

(iii) rv,t = −av,t
0 +

∑ t−1
k=v rv,kak,t

1 +
∑ t−1

τ=v+1 rv,τ rτ,tat,t
2 +

∑ t−1
k=v

∑k
τ=v rv,τ rτ,kak,t

2

at,t
1 +at,t

2 (rt,t+rv,v)
for t = 0, 1, . . . , k;

v = 0, 1, . . . , t − 1.
We refer the reader to [5] where a system with such structure is analyzed along with

numerical calculations.

4. EXAMPLES

In this section, we present a few examples of interesting problems analyzed in the literature
that are formulated as QBD processes with lower (upper) triangular matrices A0, A1, and
A2, and show how the solutions can be obtained, and how the stability condition is derived,
by applying our closed-form expressions.

4.1 Example 1: A queueing-inventory system with preliminary services

In Hanukov et al. [6], the following QBD process is introduced. Consider a single-server
system with a Poisson arrival rate λ and exponentially-distributed service time with mean
1/μ. The service can be split into two consecutive stages. The first, denoted “preliminary
service” (PS), can be performed in the absence of customers, and its outcome can be stored
until a full service is requested. The second stage, denoted “complementary service” (CS),
requires the actual presence of a customer to be completed. When the system is empty, the
server produces an inventory of PSs at a Poisson rate α. The aim of this policy is to utilize
the server’s idle time in order to reduce customers sojourn times. The inventory-size of PSs is
limited to n units, and when the number of stored PSs reaches n, the server stops producing
PSs and stays idle. If a customer arrives at the front of the queue and a PS is available,
the server immediately starts rendering the CS for that customer. Otherwise, the customer
receives a “full service” (FS). The CS time is assumed to be exponentially distributed with
mean 1/β, where β >μ. Such systems are common in the fast food industry.

Let L and S be the number of customers and the number of PSs in the system in
steady state, respectively. A transition rate diagram of the two-dimensional process (L, S)
is depicted in Hanukov et al. [6]. The infinitesimal generator matrix Q is given by

Q =

⎛
⎜⎜⎜⎝

B A0 0 0
A2 A1 A0 0
0 A2 A1 A0

...
. . . . . .

· · ·
· · ·

. . .

⎞
⎟⎟⎟⎠ ,

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964819000470
Downloaded from https://www.cambridge.org/core. IP address: 141.226.221.172, on 05 Jan 2020 at 00:09:48, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964819000470
https://www.cambridge.org/core


EXPLICIT SOLUTIONS FOR CONTINUOUS-TIME QBD PROCESSES 11

where the matrices B, A0, A1, and A2, each of order (n + 1) × (n + 1), are given by

B =

⎛
⎜⎜⎜⎜⎜⎝

−(α + λ) α 0 · · · 0 0
0 −(α + λ) α 0 0
...

. . . . . . . . . . . . . . .
0 0 0 −(α + λ) α
0 0 0 · · · 0 −λ

⎞
⎟⎟⎟⎟⎟⎠ , A0 =

⎛
⎜⎜⎜⎜⎜⎝

λ 0 · · · 0 0
0 λ 0 0
...

. . . . . . . . .
...

0 0 λ 0
0 0 · · · 0 λ

⎞
⎟⎟⎟⎟⎟⎠

A1 =

⎛
⎜⎜⎜⎜⎜⎝

−(μ + λ) 0 · · · 0 0
0 −(β + λ) 0 0
...

. . . . . . . . .
...

0 0 −(β + λ) 0
0 0 · · · 0 −(β + λ)

⎞
⎟⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ 0 · · · 0 0
β 0 · · · 0 0

0 β
. . . 0 0

...
. . . . . . . . .

...
0 0 · · · β 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Clearly, each matrix A0, A1, and A2 is lower triangular.
By Theorem 1, H(z) is readily given by

H(z) =

⎛
⎜⎜⎜⎜⎜⎝

λz2 − (μ + λ)z + μ β 0 · · · 0 0
0 λz2 − (β + λ)z β 0 0
...

. . . . . . . . . . . . . . .
0 0 0 λz2 − (β + λ)z β
0 0 0 · · · 0 λz2 − (β + λ)z

⎞
⎟⎟⎟⎟⎟⎠ .

Since, in this example, m = 0, B0,0 = B, and B1,0 = A2, the expression of �b(z) is
reduced to

�b(z) = z�p0A1 +
1∑

j=0

zj�pjA2 −
1∑

i=0

z�piBi,0 = z�p0A1 + �p0A2 + z�p1A2 − z�p0B − z�p1A2

= �p0(zA1 + A2 − zB)

Thus, �b(z) is calculated directly by substituting �p0, A1, A2, and B in the latter
expression:

�b(z)T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(αz − μ(z − 1))p0,0 + βp0,1

−αzp0,0 − (βz − αz)p0,1 + βp0,2

−αzp0,1 − (βz − αz)p0,2 + βp0,3

...
−αzp0,n−2 − (βz − αz)p0,n−1 + βp0,n

−αzp0,n−1 − βzp0,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The roots of det[H(z)] are derived by using Eq. (12). Since a0,0
0 > 0 and a0,0

2 > 0, the
first term in Eq. (12) leads to z0 = 1. As, av,v

0 > 0 and av,v
2 = 0 for v = 1, 2, . . . , n, then
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12 G. Hanukov and U. Yechiali

zv = (β + λ)/λ for v = 1, 2, . . . , n by using the second term in Eq. (12). The matrix R is
calculated as follows: clearly, rv,t = 0 for v < t. The entries (rv,v) of the main diagonal of
R can be calculated by Eq. (13) or by Eq. (14) and are given by

rv,v =

{
λ/μ v = 0
λ/(β + λ) v ≥ 1

.

Other entries of R can be calculated by the expression in Theorem 3. In the current
example av,t

0 = 0 for v > t, ak,t
1 = 0 for k > t, at,t

2 �= 0 only for t = 0 and ak,t
2 �= 0 only for

k = t + 1. Thus, the expression in Theorem 3 reduces to

rv,0 = −
∑v−1

τ=t+1 rv,τrτ,0a0,0
2 +

∑v
τ=1 rv,τrτ,1a1,0

2

a0,0
1 + a0,0

2 (r0,0 + rv,v)

=
μ
∑v−1

τ=1 rv,τrτ,0 + β
∑v

τ=1 rv,τrτ,1

μβ/(β + λ)
for v = 1, 2, . . . , n,

rv,t = −
∑v

τ=t+1 rv,τrτ,t+1at+1,t
2

at,t
1

=
β
∑v

τ=t+1 rv,τrτ,t+1

β + λ
for v > t ≥ 1.

Finally, by Theorem 4, the stability condition a0,0
0 < a0,0

2 is translated into the simple
expression λ < μ.

4.2 Example 2: The Israeli Queue with priorities

Consider the so-called “Israeli Queue” (see [17]) where the waiting line is composed of
N different groups, with corresponding N “leaders,” each standing in front of its group.
A newly arriving customer joins group i with probability qi ≥ 0 where

∑N
i=1 qi = 1. Each

group is served in one batch and the service time is independent of the group’s size. The
next group to be served is the one that its leader is the one that has been waiting for the
longest time. As an example, one may think of a traffic light where the next green light is
given to the direction where the first car has been waiting for the longest time. Consider
now the following QBD process introduced in Perel and Yechiali [16]. A single server attends
two classes of customers: VIP (class 1, high priority) and regular (class 2, low priority). The
VIP customers form a classical infinite-buffer M/M/1 queue, while the customers of class
2 form the so-called Israeli Queue with batch service and at most N groups. The arrival
stream of VIP (of regular) customers follows a homogeneous Poisson process with rate λ1

(λ2), while service time is exponentially distributed with rate μ1 (μ2).
Let L1 and L2 be the total number of VIP and of regular customers in the system,

respectively. A transition rate diagram of the two-dimensional process (L1, L2) is depicted
in Perel and Yechiali [16]. The infinitesimal generator matrix Q is given by

Q =

⎛
⎜⎜⎜⎝

B A0 0 0
A2 A1 A0 0
0 A2 A1 A0

...
. . . . . .

· · ·
· · ·

. . .

⎞
⎟⎟⎟⎠ ,
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where the matrices B, A0, A1, and A2, each of order (n + 1) × (n + 1), are given by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(λ1 + λ2) λ2 0 · · ·
μ2 −(λ1 + λ2(1 − p) + μ2) λ2(1 − p) 0
0 μ2 −(λ1 + λ2(1 − p)2 + μ2) λ2(1 − p)2

...
. . . . . .

0 0 0
0 0 0

· · · 0 0
0 0

. . . . . . . . .
−(λ1 + λ2(1 − p)N−1 + μ2) λ2(1 − p)N−1

· · · μ2 −(λ1 + μ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(λ1 + λ2 + μ1) λ2 0 · · ·
0 −(λ1 + λ2(1 − p) + μ1) λ2(1 − p) 0
0 0 −(λ1 + λ2(1 − p)2 + μ1) λ2(1 − p)2

...
. . . . . .

0 0 0
0 0 0

· · · 0 0
0 0

. . . . . . . . .
−(λ1 + λ2(1 − p)N−1 + μ1) λ2(1 − p)N−1

· · · 0 −(λ1 + μ1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 =

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0 0
0 λ1 0 0
...

. . . . . . . . .
...

0 0 λ1 0
0 0 · · · 0 λ1

⎞
⎟⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎜⎝

μ1 0 · · · 0 0
0 μ1 0 0
...

. . . . . . . . .
...

0 0 μ1 0
0 0 · · · 0 μ1

⎞
⎟⎟⎟⎟⎟⎠ .

As can be seen, the matrices A0, A1, and A2 are upper triangular, and so the solution
of this QBD process can be easily calculated by our expressions. For example, the stability
condition an,n

0 < an,n
2 given in Theorem 5 readily results in λ1 < μ1.

4.3 Example 3: Multi-server queueing systems with cross-selling

The following cross-selling QBD process was introduced in Armony et al. [2]. Consider
a multi-server queueing system with N parallel servers and unlimited waiting room, to
which customers arrive according to a Poisson process with rate λ. A customer service has
two potential phases. Phase 1 is experienced by every customer with exponential duration
having mean 1/μ. After a completion of phase 1 service a customer is identified as a so-called
“cross-selling” candidate with probability p, or the customer completes service and leaves
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14 G. Hanukov and U. Yechiali

the system with the complementary probability q = 1 − p. If the customer is a cross-selling
candidate and the system manager decides to go ahead and discuss a cross-selling deal with
the customer, phase 2 of the service begins, having exponential duration with mean 1/ξ.

Let L be the total number of customers in the system and L2 be the number of customers
in cross-selling. A transition rate diagram of the two-dimensional process (L,L2) is depicted
in Armony et al. [2]. The infinitesimal generator matrix Q is given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B
(0)
1 B

(0)
0 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

B
(1)
2 B

(1)
1 B

(1)
0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 B
(2)
2 B

(2)
1 B

(2)
0 0

. . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . B
(N)
2 B

(N)
1 B

(N)
0 0

. . . . . . . . . . . . . . . . . .
...

. . . . . . . . . B
(N+1)
2 B

(N+1)
1 B

(N+1)
0 0

. . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . B
(T )
2 B

(T )
1 B

(T )
0 0

. . . . . . . . .
...

. . . . . . . . . . . . . . . . . . A2 A1 A0 0
. . . . . .

...
. . . . . . . . . . . . . . . . . . . . . A2 A1 A0 0

. . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the matrices A0, A1, and A2, each of order (n + 1) × (n + 1), are given by

A0 =

⎛
⎜⎜⎜⎜⎜⎝

λ 0 · · · 0 0
0 λ 0 0
...

. . . . . . . . .
...

0 0 λ 0
0 0 · · · 0 λ

⎞
⎟⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Nμ 0 0 · · · 0 0
ξ (N − 1)μ 0 · · · 0 0
0 2ξ (N − 2)μ · · · 0 0
...

...
. . . . . .

...
...

0 0 0 · · · μ 0
0 0 0 · · · Nξ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 =

⎛
⎜⎜⎜⎜⎜⎝

−(λ + Nμ) 0 · · · 0 0
0 −(λ + (N − 1)μ + ξ) 0 0
...

. . . . . . . . .
...

0 0 −(λ + μ + (N − 1)ξ) 0
0 0 · · · 0 −(λ + Nξ)

⎞
⎟⎟⎟⎟⎟⎠ .

Evidently, each of the triple is lower triangular, leading to stability condition λ < Nμ.

4.4 Example 4: An M/M/1 queue in random environment with disasters

Paz and Yechiali [14] analyzed the following model. Consider a M/M/ 1 type queue oper-
ating in a special “random environment” as follows: when in operative phase i ≥ 1 the
system acts as an M(λi)/M(μi)/1 queue, with Poisson arrival rate λi and service rate μi.
The duration of time the system resides in phase i is an exponentially distributed random
variable with mean 1/ηi, i = 1, 2, . . . , n. Furthermore, when in operative phase i ≥ 1, the
system suffers occasionally a disastrous failure (catastrophe), causing it to move to a “fail-
ure” phase, denoted by i = 0. A disaster causes all present customers to be cleared out of
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the system. When in the failure phase i = 0, the system undergoes a repair process, having
exponentially distributed duration with mean 1/η0.

Let U be the phase in which the system operates and X denote the number of customers
in the system. A transition rate diagram of the two-dimensional process (U,X) is depicted
in Paz and Yechiali [14]. The infinitesimal generator matrix Q is given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

B + A2 + A1 A0 0 0 · · ·
B + A2 A1 A0 0 · · ·

B A2 A1 A0

B 0 A2 A1
. . .

...
. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the matrices A0, A1, and A2, each of order (n + 1) × (n + 1), are given by

A0 =

⎛
⎜⎜⎜⎜⎜⎝

λ0 0 · · · 0 0
0 λ1 0 0
...

. . . . . . . . .
...

0 0 λn−1 0
0 0 · · · 0 λn

⎞
⎟⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
0 μ1 0 0
...

. . . . . . . . .
...

0 0 μn−1 0
0 0 · · · 0 μn

⎞
⎟⎟⎟⎟⎟⎠ ,

A1 =

⎛
⎜⎜⎜⎜⎜⎝

−(λ0 + η0) q1η0 · · · qn−1η0 qnη0

0 −(λ1 + η1 + μ1) 0 0
...

. . . . . . . . .
...

0 0 −(λn−1 + ηn−1 + μn−1) 0
0 0 · · · 0 −(λn + ηn + μn)

⎞
⎟⎟⎟⎟⎟⎠ .

A0, A1, and A2 are each upper triangular so, by Theorem 5, the stability condition is
λn < μn.

5. CONCLUSIONS

In this work, further and explicit relationships are derived between the two mostly used
methods to solve CTQBD problems. One method is by constructing a set of linear equa-
tions, expressed as H(z)�G(z)T = �b(z)T, where H(z) is a matrix containing the system’s
parameters, �G(z) is a row vector of PGFs, while �b(z) is a row vector containing unknown
“boundary probabilities.” The derivation of the latter probabilities relies on numerical cal-
culations of the roots of det[H(z)]. The other method is based on a MG analysis requiring
numerical calculations of the so-called “rate matrix” R, which is obtained by solving a
quadratic matrix equation for R. Some specific relations between the roots of det[H(z)] and
the entries of R have been established recently for specific problems (see e.g., [14, 16, 17, 18,
5]). The current work continues in this direction. Specifically, it is shown that the matrix
H(z) and the vector �b(z) can be expressed directly in terms of the matrix-triple (A0, A1, A2)
of the MG’s CTQBD formulation, thus eliminating the lengthy derivation of the balance
equations when using the PGFs method. Furthermore, in cases where each of the matrices
A0, A1, and A2 is lower triangular or when all three matrices are upper triangular, it is
shown that (i) the entries of the rate matrix R can be calculated directly with no need
to apply successive substitution algorithms, thus reducing the calculation effort consider-
ably; (ii) explicit formulas for the diagonal entries of the matrix R in terms of the roots of
det[H(z)] are obtained; and (iii) the system’s stability condition is readily derived.
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