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The Asymmetric Inclusion Process (ASIP) is a unidirectional lattice-gas flow model which was recently
introduced as an exactly solvable ‘Bosonic’ counterpart of the ‘Fermionic’ asymmetric exclusion process. An
iterative algorithm that allows the computation of the probability generating function (PGF) of the ASIP’s steady
state exists but practical considerations limit its applicability to small ASIP lattices. Large lattices, on the other
hand, have been studied primarily via Monte Carlo simulations and were shown to display a wide spectrum
of intriguing statistical phenomena. In this paper we bypass the need for direct computation of the PGF and
explore the ASIP’s asymptotic statistical behavior. We consider three different limiting regimes: heavy-traffic
regime, large-system regime, and balanced-system regime. In each of these regimes we obtain—analytically and
in closed form—stochastic limit laws for five key ASIP observables: traversal time, overall load, busy period,
first occupied site, and draining time. The results obtained yield a detailed limit-laws perspective of the ASIP,
numerical simulations demonstrate the applicability of these laws as useful approximations.
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I. INTRODUCTION

The Asymmetric Inclusion Process (ASIP), a lattice-gas
flow model in one dimension, was introduced and analyzed
in [1,2]. The ASIP is an exactly solvable ‘Bosonic’ counterpart
of the ‘Fermionic’ Asymmetric Exclusion Process (ASEP)—
a fundamental model in non-equilibrium statistical physics
[3–5]. In both processes, random events cause particles to
propagate unidirectionally along a one-dimensional lattice.
In the ASEP particles are subject to exclusion interactions
that keep them singled apart, whereas in the ASIP particles
are subject to inclusion interactions that coalesce them into
inseparable clusters.

The ASIP, schematically illustrated in Fig. 1, is described as
follows. Consider a one-dimensional lattice of n sites indexed
k = 1, . . . ,n. Each site is followed by a gate—labeled by
the site’s index—which controls the site’s outflow. Particles
arrive at the first site (k = 1) following a Poisson process �0

with rate λ, the openings of gate k are timed according to
a Poisson process �k with rate μk (k = 1, . . . ,n), and the
n + 1 Poisson processes are mutually independent. Note that
from this definition it follows that the times between particle
arrivals are independent and exponentially distributed with
mean 1/λ, and that the times between the openings of gate
k are independent and exponentially distributed with mean
1/μk (k = 1, . . . ,n). At an opening of gate k all particles
present at site k transit simultaneously, in one cluster (one
‘batch’), to site k + 1—thus joining particles that may already
be present at site k + 1 (k = 1, . . . ,n − 1). At an opening of
the last gate (k = n) all particles present at site n exit the lattice
simultaneously.

The statistical physics perspective on the ASIP is comple-
mented by a queueing theory perspective. Queueing theory is
the mathematical field concerned with the stochastic analysis
of queues [6]. The theory has found its traditional applications
in telecommunication [7–9], traffic engineering [10] and
performance modeling and evaluation [11–13]. More recently
there has been an ongoing wave of interest in the applications

of queueing theory to “non-traditional” problems and it has
been applied in the study of human dynamics [14–17],
gene expression [18–21], intracellular transport [22], and
non-equilibrium statistical physics [23–29]. The ASIP links
together the ASEP with the tandem Jackson network—a
fundamental service model in queuing theory [6,30,31]. From
a queueing perspective, the ASIP is a tandem Jackson network
with unlimited batch service [32,33]. Unlimited batch service
in queueing systems has also been considered in the context of
polling systems where a single server attends n queues accord-
ing to a predetermined, or dynamic, visit-order rule [34–36].

The analysis conducted in [1] concluded that the ASIP, de-
spite its simple description, displays highly complex stochastic
dynamics. An iterative scheme for the computation of the
multidimensional probability generating function (PGF) of
the ASIP’s site occupancies at steady state was established.
Yet, this PGF turns out to be analytically intractable even for
small n—a fact that is vivid from the very rapid growth in
complexity of the explicit PGF expressions for n = 1,2,3 [1].
Understanding the behavior of large ASIPs (i.e., ASIPs with
large lattice size n) is therefore a challenge.

Homogeneous ASIPs are characterized by identical gate
opening rates: μ1 = · · · = μn, and are of special importance—
as amongst the class of general ASIPs the subclass of homo-
geneous ASIPs is optimal with respect to various measures of
efficiency [1]. Interestingly, it was recently demonstrated that
large homogeneous ASIPs–despite their relative simplicity—
are a showcase of complexity [2]. Indeed, a series of Monte
Carlo simulations showed that the statistical behavior of
homogeneous ASIPs is rich and ranges from ‘mild’ to ‘wild’
displays of randomness. In particular it was shown that as the
lattice size n tends to infinity the ASIPs statistical behavior is
well captured by a set of limiting probability distributions.

Motivated by these findings, in this paper we analytically
study the stochastic limit laws of five key ASIP observables:
(i) Traversal Time—the time it takes a particle to traverse
the lattice; (ii) Overall Load—the total number of particles

061133-11539-3755/2012/86(6)/061133(17) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.061133


SHLOMI REUVENI, IDDO ELIAZAR, AND URI YECHIALI PHYSICAL REVIEW E 86, 061133 (2012)

FIG. 1. (Color online) An illustration of the ASIP model.

present in the lattice in steady state; (iii) Busy Period—the
time elapsing from the instant a particle arrives at an empty
lattice, till the first instant the lattice is empty once again;
(iv) First Occupied Site—the index of the first non-empty site;
(v) Draining Time—the time elapsing from the instant the
arrival flow is blocked, in steady state, till the first instant the
lattice is empty.

The stochastic limit laws of the key observables are
established in three different limiting regimes: (i) Heavy-
Traffic regime—in which the particles’ arrival rate λ tends
to infinity; (ii) Large-System regime—in which the lattice size
n tends to infinity; (iii) Balanced-System regime—in which
the lattice size n tends to infinity, the gates’ opening rates
μk (k = 1, . . . ,n) tend to infinity, and these limits are kept
in balance. Our results hold for homogeneous and general
(inhomogeneous) ASIPs alike.

We emphasize that despite the inherent complexity of
the ASIP, all the results established herein are obtained
analytically and in closed form. In particular, the stochastic
limit laws obtained for the Overall Load and Draining Time,
in the large-system limiting regime, analytically validate and
considerably generalize the numerical results reported in [2].

The reminder of the paper is organized as follows. We begin
with a preliminary analysis of the ASIP’s key observables
(Sec. II), analyze the asymptotic statistical behavior of ho-
mogeneous ASIPs (Sec. III), and then analyze the asymptotic
statistical behavior of general ASIPs (Sec. IV).

A note about notation: Throughout the paper E[ξ ] and
Var [ξ ] denote, respectively, the mathematical expectation and
variance of a real-valued random variable ξ . Also, IID is the
acronym for “Independent and Identically Distributed”.

II. KEY OBSERVABLES

In this section we analyze five key observables of the ASIP:
Traversal Time, Overall Load, Busy Period, First Occupied
Site, and Draining Time.

A. Traversal time

The ASIP’s traversal time T is the random time it takes a
particle to traverse the lattice. Namely, T is the time elapsing
from the instant a particle arrives at the first site (k = 1), till
the instant it leaves the last site (k = n).

Due to the memory-less property of the exponential
distribution [37], the time elapsing from the arrival of a
particle to site k (at an arbitrary time epoch), till the first
opening of gate k thereafter, is exponentially distributed with
mean 1/μk—independently of the particle’s arrival epoch to
site k. A particle arriving to the lattice would thus wait an
exponentially distributed random time (with mean 1/μ1) till

FIG. 2. (Color online) An illustration of the traversal time.

moving from the first site to the second site, then wait an
exponentially distributed random time (with mean 1/μ2) till
moving from the second site to the third site, and so forth.
Since the gate-openings are governed by independent Poisson
processes we conclude that the traversal time T admits the
stochastic representation

T =
n∑

k=1

�k , (1)

where {�1, . . . ,�n} is a sequence of independent and expo-
nentially distributed random times with corresponding means
{1/μ1, . . . ,1/μn}.

Consequently, Eq. (1) straightforwardly implies that the
mean and the Laplace transform of the traversal time T are
given, respectively, by

E[T ] =
n∑

k=1

1

μk

(2)

and

E[exp(−θT )] =
n∏

k=1

μk

μk + θ
(3)

(θ � 0). We note that the traversal time is, in effect, the first
passage time of a particle to leave the system [38], and that
other ASIP first passage times were discussed in [2]. The
traversal time is illustrated schematically in Fig. 2.

B. Overall load

Consider the ASIP in steady state, and let Xk denote the
number of particles present in site k (k = 1, . . . ,n). The ASIP’s
overall load L is the total number of particles present in the
lattice in steady state:

L =
n∑

k=1

Xk . (4)

An analysis presented in [1] shows that the mean overall load
is given by

E[L] =
n∑

k=1

λ

μk

. (5)

Equation (5), in conjunction with Eq. (2), implies that E[L] =
λE[T ]. Namely, the mean overall load E[L] equals the product
of the inflow rate λ and the mean traversal time E[T ]—the
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FIG. 3. (Color online) An illustration of the overall load.

mean sojourn time of an arbitrary particle in the lattice.
Equation (5) is the ASIP’s version of the well-known Little’s
law in Queueing Theory [39].

An analysis presented in [1] further establishes that the
probability generating function of the overall load L is
given by

E[zL] =
n∏

k=1

μk

μk + λ(1 − z)
(6)

(|z| � 1). Equation (6) has several important implications.
First, it implies that the overall load L of a single-site
ASIP (n = 1) follows a geometric distribution: For n = 1 the
probability generating function of Eq. (6) yields the probability
distribution Pr(L = j ) = (1 − p1)jp1 (j = 0,1,2, . . .), where
p1 = μ1/(μ1 + λ). Second, the product-form structure of
Eq. (6) implies that the overall load L admits the stochastic
representation

L =
n∑

k=1

Gk , (7)

where {G1, . . . ,Gn} is a sequence of independent geometri-
cally distributed random variables: Pr(Gk = j ) = (1 − pk)jpk

(j = 0,1,2, . . .), where pk = μk/(μk + λ). The overall load
L is hence equal, in law, to the sum of the overall loads of
n independent single-site ASIPs with respective parameters
(λ,μ1), . . . ,(λ,μn). Third, Eq. (6) implies the following
distributional form of the aforementioned ASIP Little’s law:
L = �0(T ), the equality being in law. Namely, the number of
particles arriving to the lattice, �0(T ), during a traversal time
T is equal, in law, to the ASIP’s overall load L. The proof of
the distributional Little’s law is given in the Appendix. Fourth,
setting z = 0 in Eq. (6) implies that the probability that the
lattice is empty is given by

Pr(L = 0) =
n∏

k=1

μk

μk + λ
. (8)

The overall load is illustrated schematically in Fig. 3.

C. Busy period

The ASIP’s busy period B is the random duration of time
in which the lattice is continuously non-empty. Namely, B is
the time elapsing from the instant a particle arrives at an empty

lattice, till the first instant thereafter the lattice is empty once
again. The busy period is a key variable in queueing theory,
as every queueing system continuously alternates between
random busy and idle periods [40–42].

Consider the two following scenarios: (i) a particle arrives
at an empty lattice and traverses it before a second particle
arrives; (ii) a particle arrives at an empty lattice and a second
particle arrives before the first particle traversed the lattice.
Let T denote the traversal time of the first particle, and let
�0 denote the time elapsing between the arrival epochs of
the two particles. Clearly, the random variables T and �0 are
independent.

The first scenario is the event {T < �0}, and in this scenario
the busy period equals the traversal time: B = T . The second
scenario is the event {�0 � T }, and in this scenario the busy
period equals the interarrival time �0 plus an additional and
independent random time whose distribution is equal in law to
that of a busy period: B = �0 + B ′, where B ′ is an IID copy of
B which is independent of T and �0. Thus, we obtain that the
busy period B satisfies the following stochastic regeneration
formula:

B =
⎧⎨
⎩

T if T < �0,

�0 + B ′ if �0 � T .
(9)

Consequently, Eq. (9) implies that the mean and the Laplace
transform of the busy period B are given, respectively, by

E[B] = 1

λ

(
n∏

k=1

[
1 + λ

μk

]
− 1

)
(10)

and

E[exp(−θB)] = λ + θ

λ + θ
∏n

k=1

[
1 + λ+θ

μk

] (11)

(θ � 0).
The derivations of Eqs. (10) and (11) are given in the

Appendix. Equation (10) can also be obtained via a renewal
argument which we now describe.

Note that the lattice alternates between empty and non-
empty periods. The empty periods are IID copies of the
generic interarrival period �0, the non-empty periods are IID
copies of the generic busy period B, and these alternating
periods are mutually independent. Renewal theory implies
that—over infinitely large time windows—the fraction of time
the lattice is empty is given by the ratio [43]: E[�0]/(E[�0] +
E[B]). On the other hand, the fraction of time the lattice
is empty equals the probability, in steady state, of a zero
overall load: Pr(L = 0). Thus, we obtain that Pr(L = 0) =
E[�0]/(E[�0] + E[B]). Now, since E[�0] = 1/λ, and since
Pr(L = 0) is given by Eq. (8), we can extract the mean busy
period E[B]. Doing so indeed yields Eq. (10). The renewal
argument is illustrated schematically in Fig. 4.

FIG. 4. (Color online) An illustration of the renewal argument (in
the context of the mean busy period).
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D. The first occupied site

Consider the ASIP in steady state, and let I denote the
index of the first occupied site: I = min{k|Xk > 0}. If all the
sites are empty then we set I = ∞ by convention. Clearly,
Pr(I = 1) = Pr(X1 > 0). In addition,

Pr(I = k) = Pr(X1 = 0, . . . ,Xk−1 = 0,Xk > 0)

= Pr(X1 = 0, . . . ,Xk−1 = 0)

− Pr(X1 = 0, . . . ,Xk = 0) (12)

(1 < k � n), and

Pr(I = ∞) = Pr(X1 = 0, . . . ,Xn = 0). (13)

Since the event {X1 = 0, . . . ,Xn = 0} is equivalent to
the event {L = 0}, the probability appearing on the right-hand
side of Eq. (13) is given by Eq. (8). In order to compute the
probabilities appearing on the right-hand side of Eq. (12) we
apply the embedding property of the ASIP, which we now
describe.

Consider two ASIPs: ASIP A with n′ gates and parameters
{λ,μ1, . . . ,μn′ }, and ASIP B with n gates and parameters
{λ,μ1, . . . ,μn}, where n′ � n. In [1] we have shown that the
steady state distribution of ASIP A coincides with the steady
state distribution of the first n′ sites of ASIP B. An intuitive
understanding of the embedding phenomenon follows from
the fact that in an ASIP model with n gates the operation
of the first n′ gates is independent of whatever happens in the
following gates {n′ + 1, . . . ,n}. In other words, an observation
of the first n′ gates in an ASIP with n gates is indistinguishable
from an observation of an ASIP with n′ gates (and the same
parameters).

Due to the embedding phenomenon Eq. (8) implies that
Pr(X1 = 0, . . . ,Xn′ = 0) = ∏n′

k=1
μk

μk+λ
(1 � n′ � n). Substi-

tuting these probabilities into Eqs. (12) and (13) we obtain
that the distribution of the first occupied site I is given by

Pr(I = k) = λ

μk + λ

k−1∏
j=1

μj

μj + λ
(1 � k � n),

(14)

Pr(I = ∞) =
n∏

j=1

μj

μj + λ
.

E. Draining time

Consider the ASIP in steady state, and assume that—
starting at an arbitrary time epoch—we block the inflow of
newcoming particles to the lattice. The ASIP’s draining time
D is the duration of time it takes the lattice to clear. Namely,
D is the random time elapsing from the blocking epoch till the
first instant the lattice is empty.

Consider the index I of the first occupied site at the
blocking epoch. If I = k (k = 1, . . . ,n) then the draining
time equals the traversal time of the gates {k,k + 1, . . . ,n}.
Consequently—analogous to the derivation of Eq. (1)—we
obtain that if I = k then D = ∑n

j=k �j , where {�k, . . . ,�n}
is a sequence of independent and exponentially distributed
random times with corresponding means {1/μk, . . . ,1/μn}.
On the other hand, if I = ∞ then the lattice is empty and
hence D = 0. Thus, we obtain that the draining time admits

FIG. 5. (Color online) An illustration of the draining time.

the stochastic representation

D =
⎧⎨
⎩
∑n

j=k �j if I = k (1 � k � n) ,

0 if I = ∞ ,

(15)

where the exponentially distributed random variables
{�1, . . . ,�n} are independent of the first occupied site I .

Since we blocked the inflow to an ASIP in steady state the
distribution of the first occupied site I is given by Eq. (14).
Consequently, combining together Eqs. (14) and (15) we
obtain that the mean and the Laplace transform of the draining
time D are given, respectively, by

E[D] =
n∑

k=1

λ

μk + λ

⎛
⎝k−1∏

j=1

μj

μj + λ

⎞
⎠
⎛
⎝ n∑

j=k

1

μj

⎞
⎠ (16)

and

E[exp(−θD)] =
n∏

j=1

μj

μj + λ
+

n∑
k=1

λ

μk + λ

⎛
⎝k−1∏

j=1

μj

μj + λ

⎞
⎠

×
⎛
⎝ n∏

j=k

μj

μj + θ

⎞
⎠ , (17)

(θ � 0). The derivations of Eqs. (16) and (17) are given in
the Appendix. The draining time is illustrated schematically
in Fig. 5.

III. ASYMPTOTIC ANALYSIS:
THE HOMOGENEOUS CASE

Homogeneous ASIPs are characterized by identical gate-
opening rates: μ1 = · · · = μn. Amongst the class of general
ASIPs the subclass of homogeneous ASIPs turns out to be
optimal with respect to various measures of efficiency. Indeed,
referring to μ1 + · · · + μn as the ASIP’s “aggregate rate”,
it was shown that homogeneous ASIPs [1]: (i) minimize
the mean overall load subject to a given aggregate rate;
(ii) minimize the variance of the overall load subject to a
given aggregate rate; (iii) maximize the probability of a zero
overall load, i.e., the probability of an empty lattice in steady
state, subject to a given aggregate rate; and (iv) minimize the
variance of the overall load subject to a given mean overall
load (this is the ASIP analog of the “Markowitz optimization”
of financial portfolios [44]).
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Due to the optimality of the aforementioned properties,
in this section we consider homogeneous ASIPs, and set
μ1 = · · · = μn = 1/m. Namely, m is the mean sojourn time
of an arbitrary particle in a single site. In what follows we shall
establish stochastic limit laws for the ASIP’s key observables
presented in the previous section: Traversal Time, Overall
Load, Busy Period, First Occupied Site, and Draining Time.
The stochastic limit laws shall be established for the three
following limiting regimes:

(i) The Heavy-Traffic regime—in which the inflow rate
tends to infinity: λ → ∞.

(ii) The Large-System regime—in which the lattice size
tends to infinity: n → ∞.
(iii) The Balanced-System regime—in which the lattice size

tends to infinity, the particles’ mean sojourn time at a site tends
to zero, and the product of these parameters tends to a positive
limit: n → ∞, m → 0, and nm → τ ∈ (0,∞).

Throughout this section we denote by Z a Gauss-distributed
random variable with zero mean and unit variance (“Standard
Normal”), by E an exponentially distributed random variable
with unit mean (“Standard Exponential”), and by �n an
Erlang distributed random variable with n degrees of freedom.
Namely, �n is the sum of n IID copies of the random variable
E . In what follows the sign “≈” will denote asymptotic
equivalence in law.

A. Heavy traffic

The heavy-traffic regime considers ASIPs in which the
inflow rate is increased to infinity: λ → ∞. The ASIP
stochastic limit laws—under the heavy-traffic regime—are as
follows:

Traversal Time. As is clear from Eq. (3), the inflow rate
does not affect the traversal time T . On the other hand, in the
homogeneous ASIP the traversal time T is the sum of n IID
exponential random variables each with mean m. Hence, the
traversal time T admits the stochastic representation

T = m�n (18)

(recall that a random variable E is exponentially distributed
with unit mean if and only if the random variable mE is
exponentially distributed with mean m).

Overall Load. Increasing the inflow rate λ is expected to
result in an increase of the overall load L. And indeed, Eq. (5)
implies that the mean of the overall load L scales linearly
with λ. Consequently, we normalize the overall load L by
the dimensionless term λm and analyze the stochastic limit
of the normalized overall load L/(λm) (as λ → ∞). Setting
z = exp ( − θ/(λm)) in Eq. (6) we obtain the limit

lim
λ→∞

E

[
exp

(
−θ

L

λm

)]
=
(

1

1 + θ

)n

, (19)

(θ � 0). Since the right-hand side of Eq. (19) is the Laplace
transform of the Erlang distribution with n degrees of freedom,
we obtain that, as λ → ∞, the overall load L admits the
stochastic approximation

L ≈ λm�n, (20)

(λ → ∞).

Busy Period. As in the case of the overall load, increasing
the inflow rate λ is expected to result in an increase of the
duration of the busy period B. And indeed, Eq. (10) implies that
the mean of the busy period B scales like λn−1. Consequently,
we normalize the busy period B by the dimensionless term
(mλ)n−1 and analyze the stochastic limit of the normalized
busy period B/(mλ)n−1 (as λ → ∞). Using Eq. (11) we obtain
the limit

lim
λ→∞

E

[
exp

(
−θ

B

(mλ)n−1

)]
= 1

1 + mθ
, (21)

(θ � 0). Since the right-hand side of Eq. (21) is the Laplace
transform of the exponential distribution with mean m, we ob-
tain that the busy period B admits the stochastic approximation

B ≈ λn−1mnE (22)

(λ → ∞).
First Occupied Site. Increasing the inflow rate λ is expected

to increase to one the probability of finding the first site
occupied. And indeed, Eq. (14) yields the limit

lim
λ→∞

Pr(I = 1) = 1. (23)

Draining Time. Equation (23) implies that for large λ the
first occupied site is effectively the first site. Consequently,
for large λ the draining time D should coincide with the
traversal time T . And indeed, taking the limit λ → ∞ in
Eq. (17) confirms this conjecture and yields the stochastic
approximation

D ≈ m�n, (24)

(λ → ∞).

B. Large systems

The large-system regime considers ASIPs in which the
lattice size increases to infinity: n → ∞. The ASIP stochastic
limit laws—under the large-system regime—are as follows:

Traversal Time. In the homogeneous ASIP the traversal time
T is a sum of n IID exponential random variables—each with
mean m and variance m2. Consequently, the Central Limit
Theorem [37] implies that the traversal time T admits the
Gaussian stochastic approximation

T ≈ nm + √
nmZ, (25)

(n → ∞).
Overall Load. Equation (6) asserts that in the homogeneous

ASIP the overall load L is a sum of n IID geometric random
variables—each with mean λm and variance λm + (λm)2.
Consequently, the Central Limit Theorem [37] implies that the
overall load L admits the Gaussian stochastic approximation

L ≈ nλm + √
n
√

λm + (λm)2Z, (26)

(n → ∞).
Busy Period. Increasing the lattice size n is expected to

result in an increase of the busy period. Indeed, Eq. (10)
implies that for large n the mean of the busy period scales like
(1 + λm)n. Consequently, we normalize the busy period by
the dimensionless term (1 + λm)n and analyze the stochastic
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limit of the normalized busy period B/(1 + λm)n (as n → ∞).
Using Eq. (11) we obtain the limit

lim
n→∞ E

[
exp

(
−θ

B

(1 + λm)n

)]
= λ

λ + θ
, (27)

(θ � 0). Since the right-hand side of Eq. (27) is the Laplace
transform of the exponential distribution with mean 1/λ,
we obtain that the busy period B admits the stochastic
approximation

B ≈ (1 + λm)n
1

λ
E, (28)

(n → ∞).
First Occupied Site. Taking the limit n → ∞ in Eq. (14)

yields the geometric distribution

lim
n→∞ Pr(I = k) = q(1 − q)k−1, (29)

(k = 1,2,3, · · · ), where q = λm/(1 + λm).
Draining Time. Equation (29) implies that—in the limit

n → ∞—the First Occupied Site is geometrically distributed
with mean 1/q and that E[

∑I−1
k=1 �k] is a finite constant that

does not depend on n. Consequently, since the number of sites
tends to infinity (n → ∞), the draining time D effectively
equals the traversal time T . Combining this observation
together with Eq. (25) implies that the draining time D admits
the Gaussian stochastic approximation

D ≈ nm + √
nmZ (30)

(n → ∞). A rigorous proof of this result is given in the
Appendix.

C. Balanced systems

The balanced-system regime considers ASIPs in which the
number of sites increases to infinity (n → ∞) and the mean
sojourn time at a site decrease to zero (m → 0), while their
product tends to a positive limit: nm → τ ∈ (0,∞). Namely, in
this regime the large number of sites is balanced by rapid gate-
opening rates. With no loss of generality we henceforth set
m = τ/n and consider the limit n → ∞. The ASIP stochastic
limit laws, under the balanced-system regime, are as follows:

Traversal Time. Setting m = τ/n into Eq. (3) we obtain the
limit

lim
n→∞ E[exp(−θT )] = exp(−θτ ), (31)

(θ � 0). The right-hand side of Eq. (31) is the Laplace
transform of a degenerate random variable which admits the
value τ with probability one. Thus, the traversal time converges
in law to the deterministic value τ .

Overall Load. Setting m = τ/n into Eq. (6) we obtain the
limit

lim
n→∞ E[zL] = exp(−τλ(1 − z)), (32)

(|z| � 1). The right-hand side of Eq. (32) is the probability
generating function of the Poisson distribution with mean τλ.
Thus, the overall load converges in law to a Poisson random
variable with mean τλ.

Busy Period. Setting m = τ/n into Eq. (11) we obtain the
limit

lim
n→∞ E[exp(−θB)] = λ + θ

λ + θ exp (τ (λ + θ ))
, (33)

(θ � 0). The right-hand side of Eq. (33) can be derived from
the stochastic regeneration formula of Eq. (9) by setting T = τ

(see Appendix for details). We note that (in the limit n → ∞)
the busy period B is equal to τ with probability exp(−λτ ), and
is larger than τ otherwise. Indeed, B = τ if and only if there
are no particle arrivals during the traversal time τ—an event
which takes place with probability exp(−λτ ). Also, Eq. (33)
implies that (in the limit n → ∞) the mean of the busy period
is given by (exp(λτ ) − 1)/λ.

First Occupied Site. Consider the scaled first occupied site
Î = I/n. Setting m = τ/n into Eq. (14) we obtain the limits

lim
n→∞ Pr(Î � x) = 1 − exp(−τλx)

(34)
lim

n→∞ Pr(Î = ∞) = exp(−λτ )

(0 � x � 1); recall that the event {Î = ∞} represents the
(steady-state) scenario in which all sites are empty. Equa-
tion (34) implies that the scaled first occupied site Î converges,
in law, to a limit which has the density of an exponential
random variable, with mean λτ , on the unit interval and an
atom with probability exp(−λτ ) at infinity. The derivation of
Eq. (34) is given in the Appendix. Hence the scaled first oc-
cupied site Î admits the asymptotic stochastic approximation

Î ≈
⎧⎨
⎩
E/(λτ ) if E � λτ

∞ if E > λτ

, (35)

(n → ∞).
Draining Time. Setting m = τ/n into Eq. (17) we obtain

the limit

lim
n→∞ E[exp(−θD)] = θ exp(−λτ ) − λ exp(−θτ )

θ − λ
, (36)

(θ � 0). The derivation of Eq. (36) is given in the Appendix.
Equation (36) implies that an asymptotic stochastic approxi-
mation for the draining time is given by an amalgamation of
probability density function

fD(x) =
⎧⎨
⎩

exp(−λ(τ − x)) 0 < x � τ

0 otherwise
(37)

and a probability mass, exp(−λτ ), at zero. The validity of this
approximation is easily verified by taking Laplace transform
and recovering the right-hand side of Eq. (36).

Mapping the ASIP’s lattice to the unit interval—positioning
site k at the interval [(k − 1)/n,k/n]—the balanced-system
limiting regime is illustrated schematically in Fig. 6.

1. The M/D/∞ queue

The balanced-system limiting regime may be better under-
stood in light of the mapping between homogeneous ASIPs in
this regime and the M/D/∞ queue [45], which we describe
in this subsection.
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FIG. 6. (Color online) The homogeneous ASIP in the balanced-
system regime mapped onto the unit interval. The traversal time of an
interval of length �x is deterministic and equals to τ�x. Particles do
not cluster, remain separated at all times and leave the lattice exactly
τ units of time after their respective arrival epochs.

In queueing theory, the M/D/∞ queue represents a
system consisting of an infinite number of servers (or infinite
“broadband”), to which particles (“jobs” in the queueing
jargon) arrive following a Poisson process with rate λ. Each
particle, upon its arrival, is immediately attended by one of the
available servers; upon service completion a served particle
leaves the system. Service times are deterministic and of
common length τ , and the particles are served independently.
Note that the common deterministic service times assure that
particles will leave the system exactly τ units of time after their
respective arrival epochs, and will do so in a First In First Out
(FIFO) manner.

From the particles’ perspective the ASIP—in the balanced-
system limiting regime—is identical to the M/D/∞ queue.
Indeed, particles arrive to the lattice following a Poisson
process with rate λ. Each particle, upon its arrival to the lattice,
starts traversing it. In the balanced-system limiting regime the
particles’ traversal times are deterministic and of common
length τ ; upon “traversal completion” the particles leave
the lattice. Here again, the common deterministic traversal
times assure that particles will leave the lattice exactly τ

units of time after their respective arrival epochs, and will
do so separately, i.e., one by one, and in a FIFO manner.
We emphasize that in the balanced-system limiting regime
the particles remain separated and thus do not coalesce into
clusters.

Thus, the ASIP in the balanced-system regime—with
deterministic traversal time τ—is identical to a M/D/∞
queue with deterministic service time τ . This observation gives
rise to additional analogies between ASIPs in the limiting
balanced-system regime and the M/D/∞ queue. (i) The
ASIP’s overall load is equal in law to the M/D/∞ queue
size—the total number of jobs present (i.e., being served) in
the M/D/∞ queue in steady state, and is distributed according
to the Poisson distribution with mean τλ [45]. (ii) The ASIP’s
busy period is equal in law to the busy period of the M/D/∞
queue. Indeed, the busy period in the M/D/∞ queue follows

FIG. 7. (Color online) The M/D/∞ queue mapped onto the
ASIP in the balanced-system limiting regime. Each job in the
M/D/∞ queue is mapped to a particle on the unit interval. The
position of the particle is chosen such that the residual service
completion time in the M/D/∞ queue is equal to the residual
traversal time in the ASIP. Since particles move at a constant speed
1/τ , the latter is given by τ times the distance to the right edge of the
unit interval. The residual service completion time of the newest job
in the M/D/∞ queue determines the normalized position of the first
occupied site, Î , in the ASIP.

the stochastic regeneration formula:

B =
⎧⎨
⎩

τ if τ < �0,

�0 + B ′ if �0 � τ ,
(38)

in which τ is the service time, �0 is the exponential time
elapsing between the arrival epochs of two jobs and B ′ is an
IID copy of the busy period B. Note that Eq. (38) is a special
case of Eq. (9), in which the general traversal time T is replaced
by the deterministic traversal time τ . (iii) The ASIP’s draining
time is equal in law to the residual service-completion time of
the newest job in the M/D/∞ queue size. Indeed, the cumu-
lative distribution function of the residual service-completion
time, Tres, in the M/D/∞ queue is equal to the probability
that the interarrival time between jobs will exceed the value
τ − t and is hence given by

Pr(Tres � t) = exp ( − λ(τ − t)), (39)

(0 � t � τ ). One can easily verify that the Laplace transform
of Tres coincides with the right hand side of Eq. (36). The
mapping between the balanced-system limit of the ASIP and
the M/D/∞ queue is illustrated schematically in Fig. 7.

D. Comparison with simulations

In this section we compare the limit laws obtained above
with numerical simulations. Our main aim is to visually
demonstrate convergence, and to illustrate how general thumb
rules regarding the applicability of the limiting distributions as
useful approximations can be attained. Throughout the section
we use the following set of parameters:

(i) Heavy-Traffic regime: m = 1 and n = 10.
(ii) Large-System regime: m = 1 and λ = 1.

(iii) Balanced-System regime: λ = 1 and nm = 1.
We note that without loss of generality either λ or m can

always be set to unity.
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FIG. 8. (Color online) Asymptotic behavior of the traversal time
in the Large-System (top panel) and Balanced-System (bottom panel)
regimes.

Traversal Time. Recalling that the traversal time does
not depend on the particles’ arrival rate λ, we examine the
asymptotic behavior of this observable in the Large-System
and Balanced-System regimes only.

In the top panel of Fig. 8 we plot histograms of the
standardized traversal time, (T − n)/

√
n, in the Large-System

regime. As predicted by Eq. (25), with m = 1, convergence to
the standard Gaussian distribution is visible as the bell shape
curve gradually takes the place of the positively skewed, Erlang
like, distribution that characterizes the standardized traversal
time for small n.

In the bottom panel of Fig. 8 we plot histograms of
the traversal time, T , in the Balanced-System regime. As n

increases, histograms become sharply peaked around unity
reflecting the convergence to a deterministic random variable,
as predicted by Eq. (31). To that end we note that in the
Balanced-System regime the standard deviation of the traversal
time is of the order 1/

√
n.

Overall Load. In the top panel of Fig. 9 we plot cumulative
distribution functions of the load in the Heavy-Traffic regime.
As predicted by Eq. (19), with n = 10, convergence to the
Erlang distribution with ten degrees of freedom is clearly
visible as simulated curves virtually collapse onto the Erlang
curve for λ � 25. Convergence is also visible when plotting

FIG. 9. (Color online) Asymptotic behavior of the overall load
in the Heavy-Traffic (top panel), Large-System (middle panel) and
Balanced-System (bottom panel) regimes.

histograms as we do in the inset. Doing so, one should keep in
mind that the load is a discrete random variable for which there
is no proper probability density. This fact creates a somewhat
deceiving impression regarding convergence, as the onset of
“density like” histograms strongly depends on the preselected
bin widths which in turn affect bar heights in the histogram.

In the middle panel of Fig. 9 we plot cumulative probability
functions of the standardized load, (L − n)/

√
2n, in the
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Large-System regime. As predicted by Eq. (26), with λ = m =
1, convergence to the standard Gaussian distribution is clearly
visible as the simulated curves closely follow the standard
Gaussian curve even for moderate values of n. Convergence is
also visible when plotting histograms as we do in the inset.

In the bottom panel of Fig. 9 we plot the ratio between
the probability that the overall load in the system is k (k =
0,1,2, . . . ,6) and the limiting probability of this event in the
Balanced-System regime, for several different values of n. In
this type of plot, every deviation of the ratio from unity can be
interpreted as a deviation from the Poissonian limit law given
by Eq. (32). Values that are smaller/larger than unity mean
that the observed probability will be over/under estimated by
the Poissonian approximation. As n increases convergence to
the Poissonian limit (bars of unit height) is clearly visible and
it can be considered a fair approximation even for moderate
values of n. We note that under the chosen set of parameters,
the total error made by neglecting k > 6 terms is given by the
probability tail Pr(L > 6) ∼= 8.32 × 10−5.

Busy Period. In the top panel of Fig. 10 we plot probability
density curves of the normalized busy period, B/λ9, in the
Heavy-traffic regime. As predicted by Eq. (21), with m = 1
and n = 10, convergence to the exponential distribution with
unit mean (“Standard Exponential”) is clearly visible. Under
this choice of parameters the exponential approximation can
be considered very good for λ � 250.

In the middle panel of Fig. 10 we plot probability density
curves of the normalized busy period, B/2n, in the Large-
System regime. As predicted by Eq. (27), with λ = m = 1,
rapid convergence to the exponential distribution with unit
mean (“Standard Exponential”) is clearly visible. Under this
choice of parameters the exponential approximation can be
considered very good even for relatively small (n � 10) values
of n.

In the bottom panel of Fig. 10 we plot cumulative dis-
tribution functions of the busy period in the Balanced-System
regime. Convergence to the asymptotic cumulative distribution
function predicted by numerical inversion of the Laplace
transform given in Eq. (33), with λ = τ = 1, is clearly visible.
However, convergence seems slower than in the Heavy-Traffic
and Large-System regimes and the asymptotic distribution
can be considered a fair approximation only for relatively
large values of n (n � 1250). This slow convergence is due
to the discontinuity (at B = 1) of the cumulative distribution
function of the limiting busy-period.

First Occupied Site and Draining Time. In the top panel
of Fig. 11 we plot histograms of the draining time in the
Heavy-Traffic regime. As predicted by Eq. (24), with n =
10, convergence to the Erlang distribution with ten degrees
of freedom is clearly visible and the Erlang approximation
seems excellent even for relatively small particles’ arrival rate
(λ = 3). In the inset we plot the probability of finding the
first site occupied as a function of λ. Under the chosen set of
parameters this probability is given by Pr(I = 1) = λ/(1 + λ).
As delineated by Eq. (23) this probability rapidly approaches
unity as λ increases.

In the middle panel of Fig. 11 we plot histograms of the
standardized draining time, (D − n)/

√
n, in the Large-System

regime. As predicted by Eq. (30), with m = 1, convergence
to the standard Gaussian distribution is clearly visible and the

FIG. 10. (Color online) Asymptotic behavior of the busy period
the Heavy-Traffic (top panel), Large-System (middle panel), and
Balanced-System (bottom panel) regimes; “Standard exponential”
is a shorthand for the exponential distribution with unit mean.

Gaussian approximation seems fair for n � 250. Equation (14)
asserts that for homogeneous ASIPs the first occupied site fol-
lows a truncated geometric distribution for which Pr(I = k) =
q(1 − q)k−1 (k = 1,2,3, . . . ,n), where q = λm/(1 + λm) and
Pr(I = ∞) = (1 + λm)n. Hence, the probability that I = ∞,
i.e., all sites are empty, can also be understood as the total
error made in approximating Pr(I = k) (k = 1,2,3, . . .) by
the geometric limit, given in Eq. (29). Under the chosen set
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FIG. 11. (Color online) Asymptotic behavior of the first occupied
siteand draining time in the Heavy-Traffic (top panel), Large-System
(middle panel), and Balanced-System (bottom panel) regimes.

of parameters Pr(I = ∞) = 2−n, and the total error made by
making use of the geometric approximation rapidly decays to
zero as is clearly illustrated in the inset.

In the bottom panel of Fig. 11 we plot cumulative distri-
bution functions of the draining time in the Balanced-System
regime. Convergence to the asymptotic cumulative distribution
function predicted by integrating over the density in Eq. (37)
with λ = τ = 1, while taking into account the atom at zero
(i.e., the probability that D = 0) is clearly visible. Similarly,

cumulative distribution function of the first occupied site are
plotted in the inset and are shown to converge to the asymptotic
cumulative distribution function predicted by Eq. (34).

IV. ASYMPTOTIC ANALYSIS: THE GENERAL CASE

In this section we shift from homogeneous ASIPs to general
(inhomogeneous) ASIPs, and extend the stochastic limit laws
established in Sec. III to the general case. Throughout this
section we denote by mk = 1/μk the mean sojourn time of
particles in site k, by E an exponentially distributed random
variable with unit mean, and by Z a Gauss-distributed random
variable with zero mean and unit variance.

A. Heavy traffic

We remind the reader that the Heavy-Traffic regime
considers ASIP lattices in which the inflow rate tends to
infinity: λ → ∞. Throughout this subsection we set

〈m〉 = 1

n

n∑
k=1

mk (40)

and

〈m2〉 = 1

n

n∑
k=1

m2
k . (41)

The ASIP stochastic limit laws, under the heavy-traffic regime,
are as follows:

Traversal Time. As is clear from Eq. (3) the inflow rate does
not affect the traversal time T . The traversal time is a sum of n

independent exponential random variables with corresponding
means {m1, . . . ,mn}. Consequently, the Laplace transform of
the traversal time is given by

E[exp(−θT )] =
n∏

k=1

1

1 + mkθ
, (42)

(θ � 0).
Overall Load. Increasing the inflow rate λ is expected to

result in an increase of the overall load L. And indeed, Eq. (5)
implies that the mean of the overall load L scales linearly
with λ. Consequently, we normalize the overall load L by the
dimensionless term 〈m〉λ and analyze the stochastic limit of
the normalized overall load L/(〈m〉λ) (as λ → ∞). Setting
z = exp(−θ/(〈m〉λ)) in Eq. (6) we obtain the limit

lim
λ→∞

E

[
exp

(
−θ

L

〈m〉λ
)]

=
n∏

k=1

1

1 + mk

〈m〉θ
, (43)

(θ � 0). Equation (43) implies that the limiting overall load is
equal, in law, to the sum of n independent exponential random
variables with corresponding means {m1/〈m〉, . . . ,mn/〈m〉}.

Busy Period. As in the case of the overall load, increasing
the inflow rate λ is expected to result in an increase of the
duration of the busy period B. And indeed, Eq. (10) implies
that the mean of the busy period B scales like λn−1. Conse-
quently, we normalize the busy period B by the dimensionless
term (〈m〉λ)n−1 and analyze the stochastic limit of the
normalized busy period B/(〈m〉λ)n−1 (as λ → ∞). Using
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Eq. (11) we obtain the limit

lim
λ→∞

E

[
exp

(
−θ

B

(〈m〉λ)n−1

)]
= 1

1 + (〈m〉∏n
k=1

mk

〈m〉 )θ
,

(44)

(θ � 0). Equation (44) implies that the limiting busy period
is equal, in law, to an exponential random variable with
mean 〈m〉∏n

k=1(mk/〈m〉). Note that
∏n

k=1
mk

〈m〉 � 1 due to the
inequality of arithmetic and geometric means.

First Occupied Site. Increasing the inflow rate λ is expected
to increase to one the probability of finding the first site
occupied. And, indeed, Eq. (14) yields the limit

lim
λ→∞

Pr(I = 1) = 1. (45)

Draining Time. Equation (45) implies that for large λ the
first occupied site is effectively the first site. Consequently, for
large λ the draining time D should coincide with the traversal
time T . And indeed, taking the limit λ → ∞ in Eq. (17)
confirms this conjecture.

B. Large systems

We remind the reader that the large-system regime consid-
ers ASIPs in which the number of sites increases to infinity:
n → ∞. In Sec. III B we analyzed the large-system limit of
homogeneous ASIP lattices. Throughout our analysis we have
encountered sums of IID random variables and, in turn, applied
the classic Central Limit Theorem. In this subsection we will
make use of Lyapunov’s Central Limit Theorem, a variant
of the classical Central Limit Theorem in which the random
summands {ξk} are independent, but not necessarily identically
distributed [46]. Lyapunov’s theorem requires that there exists
some δ > 0 for which the moments of order (2 + δ) of the
random variables {|ξk|} exist and that the rate of growth of
these moments is limited by the condition

lim
n→∞

∑n
k=1 E[|ξk − E[ξk]|2+δ](∑n

k=1 Var[ξk]
) 2+δ

2

= 0 . (46)

The theorem then asserts that the sum
n∑

k=1

ξk − E[ξk]√∑n
k=1 Var[ξk]

(47)

converges in distribution to a standard normal random variable
Z, as n tends to infinity. A note regarding Lyapunov’s condition
appears in the Appendix.

Throughout this sections we will assume that the random
variables {�1,�2,�3, . . .} and {G1,G2,G3, . . .}, that were
defined, respectively, in subsections II A and II B obey Lya-
punov’s condition. In addition, we will assume that

∞∑
n=1

[
n−1∏
k=1

(1 + λmk)−1
n∑

k=1

mk

]
< ∞ . (48)

A note regarding the condition in Eq. (48) appears in the
Appendix. Provided that the conditions in Eqs. (46) and (48)
jointly hold, the ASIP stochastic limit laws, under the large-
system regime, are as follows:

Traversal Time. Equation (3) asserts that the traversal time
T is a sum of n independent exponential random variables,
{�1, . . . ,�n}, with the corresponding means {m1, . . . ,mn}
and variances {m2

1, . . . ,m
2
n}. Applying Lyapunov’s Central

Limit Theorem we obtain that the traversal time T admits
the Gaussian stochastic approximation

T ≈
n∑

k=1

mk +
√√√√ n∑

k=1

m2
kZ, (49)

(as n → ∞).
Overall Load. Equation (6) asserts that the overall load

L is a sum of n independent geometric random variables,
{G1, . . . ,Gn}, with the corresponding means {λm1, . . . ,λmn}
and variances {λm1 + (λm1)2, . . . ,λmn + (λmn)2}. Applying
Lyapunov’s Central Limit Theorem we obtain that the overall
load L admits the Gaussian stochastic approximation

L ≈
n∑

k=1

λmk +
√√√√ n∑

k=1

(λmk + (λmk)2)Z, (50)

(as n → ∞).
Busy Period. Increasing the lattice size n is expected

to result in an increase in the length of the busy period.
Indeed, Eq. (10) implies that for large n the mean of the
busy period scales like

∏n
k=1(1 + λmk). Consequently, we

analyze the stochastic limit of the normalized busy period
B/
∏n

k=1(1 + λmk) (as n → ∞). Using Eq. (11) we obtain
the limit

lim
n→∞ E

[
exp

(
−θ

B∏n
k=1(1 + λmk)

)]
= λ

λ + θ
, (51)

(θ � 0). Since the right-hand side of Eq. (51) is the Laplace
transform of an exponential distribution with mean 1/λ,
we obtain that the busy period B admits the stochastic
approximation

B ≈
n∏

k=1

(1 + λmk)
1

λ
E, (52)

(as n → ∞). The derivation of Eq. (51) is given in the
Appendix.

First Occupied Site. Taking the limit n → ∞ in Eq. (14)
yields

lim
n→∞ Pr(I = k) = λmk

1 + λmk

k−1∏
j=1

1

1 + λmj

, (53)

(k = 1,2,3, . . .). This result can be interpreted as an inhomo-
geneous geometric law. The derivation of Eq. (53) is given in
the Appendix.

Draining Time. In the Appendix we show that the regularity
condition given in Eq. (48) asserts that E[

∑I−1
k=1 �k] is a finite

constant that does not depend on n. Consequently, since the
number of sites tends to infinity (n → ∞), the draining time
D effectively equals the traversal time T . Combining this
observation together with Eq. (49) implies that the draining
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time D admits the Gaussian stochastic approximation

D ≈
n∑

k=1

mk +
√√√√ n∑

k=1

m2
kZ, (54)

(as n → ∞). The derivation of Eq. (54) is given in the
Appendix.

C. Balanced systems

We remind the reader that the balanced-system regime
considers ASIPs in which the number of sites tends to infinity
(n → ∞), and the mean sojourn time at each site tends to
zero (mk → 0 for all k). In the case of homogeneous ASIPs
the balance between the large number of sites and the rapid
gate-opening rates was attained by setting mk = τ/n where τ

is an arbitrary positive parameter. In the case of general ASIPs
the balance is attained by setting

mk = φ

(
k

n

)
1

n
, (55)

(k = 1, . . . ,n), where φ(u) is an arbitrary positive-valued
function defined on the unit interval (0 � u � 1). The inte-
grability conditions that the function φ(u) needs to meet are∫ 1

0 φ(u)du < ∞ and
∫ 1

0 φ(u)2du < ∞. In what follows, and

without loss of generality, we further set
∫ 1

0 φ(u)du = τ .
Applying this balanced-system setting, and taking the limit

n → ∞, the following results are obtained: (i) the traversal
time T admits the limit of Eq. (31); (ii) the overall load L

admits the limit given by Eq. (32); (iii) the busy period B

admits the limit given by Eq. (33); (iv) the draining time D

admits the limit given by Eq. (36). Namely, in the balanced-
system regime, the aforementioned observables—traversal
time, overall load, busy period, and draining time—admit the
same stochastic limit laws both in the case of homogeneous
ASIPs and in the case of general ASIPs. A difference between
homogeneous and general ASIPs is displayed by the first
occupied site I . Indeed, setting Î = I/n to be the scaled first
occupied site, we obtain the limits

lim
n→∞ Pr(Î > x) = exp

(
− λ

∫ x

0
φ(u)du

)
,

(56)
lim

n→∞ Pr(Î = ∞) = exp(−λτ ),

(0 � x � 1). We note that the above mentioned results can
also be obtained under milder assumptions and we refer the
reader to the Appendix for details and proofs.

As in the homogeneous setting, the general balanced-
system limiting regime can be understood as an M/D/∞
queue. Indeed, particles arrive to the lattice following a Poisson
process with rate λ. Each particle, upon its arrival to the lattice,
starts traversing it. Particles’ traversal times are deterministic
and of common length τ , and upon “traversal completion”
the particles leave the lattice. As in the homogeneous setting,
the common deterministic traversal times assure that particles
will leave the lattice exactly τ units of time after their
respective arrival epochs, and will do so in a FIFO manner.
One should however note the following difference between
the homogeneous and inhomogeneous settings. While in the
homogeneous setting particles traverse the lattice at a “constant

velocity”, in the inhomogeneous setting particles do so with a
“local velocity” that depends on their position along the lattice.
Specifically, in the homogeneous ASIP the traversal velocity is
position-independent and equals 1/τ (in units length per unit
time), whereas in the inhomogeneous ASIP the traversal veloc-
ity is position-dependent and is given by the function 1/φ(u).

V. CONCLUSIONS

In this paper we established stochastic limit laws for five
key observables of the ASIP: Traversal Time, Overall Load,
Busy Period, First Occupied Site, and Draining Time. Prior
to this study, existing knowledge on the ASIP asymptotic
statistical behavior was limited to homogeneous ASIPs in the
large-system limit. Moreover this knowledge was primarily
based on numerical simulations [2]. Here we considered
three different asymptotic limiting regimes: the Heavy-Traffic
regime, the Large-System regime, and the Balanced-System
regime. We showed that each of these limiting regimes yields a
set of stochastic limit laws for the ASIP’s five key observables.
Each set of limit laws established is, in effect, a characteristic
“finger print” of the asymptotic limiting regime applied. The
results were obtained analytically and in closed form, and
cover both homogeneous and inhomogeneous ASIPs. This
paper is the first out of two papers in which we analytically
validate and considerably generalize the numerical Monte
Carlo results reported in [2]. Our work joins a gallery of recent
studies bridging statistical physics and queueing theory.

APPENDIX

1. Proof of the distributional Little’s law

Let A(t) denote the number of Poisson arrivals during a
time interval of length t . Then

E[zA(T )] = ET[E[zA(T )|T ]] = ET[e−λ(1−z)T ] , (A1)

where in the second equality we have used fact that A(t)
follows the Poisson distribution with mean λt . The right-hand
side of Eq. (A1) is the Laplace transform of the traversal time
T evaluated at the point θ = λ(1 − z) and by use Eq. (3) we
therefore have

E[zA(T )] =
n∏

k=1

μk

μk + λ(1 − z)
. (A2)

Comparing this result with Eq. (6) it readily follows that
E[zL] = E[zA(T )].

2. Derivation of Eq. (11)

Considering Eq. (9) and utilizing the law of total expecta-
tion we write the Laplace transform of B as

E[exp(−θB)]

= Pr(T < �0)E[exp(−θT )|T < �0]

+ Pr(�0 � T )E[exp (−θ (�0 + B ′))|�0 � T ] . (A3)

The first term in Eq. (A3) is treated by noting that the
independence of the random variables �0 and T implies

E[exp(−θT )|T < �0] =
∫∞

0 f (t)e−θtPr(t < �0)dt

Pr(T < �0)
, (A4)
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where f (t) is the probability density function of T . Since �0 is
exponentially distributed with rate λ, Pr(�0 > t) = e−λt , and
we have

E[exp(−θT )|T < �0] = E[exp(−(θ + λ)T )]

Pr(T < �0)
. (A5)

We now note that the Laplace transform of the random variable
T is given by Eq. (3) and we therefore have

Pr(T < �0)E[exp(−θT )|T < �0] =
n∏

k=1

μk

μk + θ + λ
.

(A6)

The second term in Eq. (A3) is treated by noting that the
random variables {�0,T ,B ′} are independent, and that B ′ is
an IID copy of B. Therefore,

E[exp(−θ (�0 + B ′))|�0 � T ]

= E[exp(−θB)]
∫∞

0 f (t)
[ ∫ t

0 g(z)e−θzdz
]
dt

Pr(�0 � T )
, (A7)

where g(z) = λe−λz is the probability density function of �0.
The double integral gives

λ

λ + θ

∫ ∞

0
f (t)[1 − e−(λ+θ)t ]dt

= λ

λ + θ

[
1 −

n∏
k=1

μk

μk + θ + λ

]
, (A8)

and we conclude that

E[exp ( − θ (�0 + B ′))|�0 � T ]

=
λE[exp(−θB)]

[
1 −∏n

k=1
μk

μk+θ+λ

]
Pr(�0 � T )(λ + θ )

. (A9)

Substituting Eqs. (A6) and (A9) into Eq. (A3) and rearranging
terms we obtain Eq. (11). Equation (10) can be obtained
directly by using E[B] = − dE[exp(−θB)]

dθ
|θ=0.

3. Derivation of Eqs. (16) and (17)

Considering Eq. (15) and conditioning on the value of the
the first non-empty site I we obtain the following expressions:

E[D] = E[E[D|I ]] =
n∑

k=1

Pr(I = k)
n∑

j=k

1

μj

E[e−θD] = E[E[e−θD|I ]] = Pr(I = ∞)

+
n∑

k=1

Pr(I = k)
n∏

j=k

μj

θ + μj

. (A10)

Equations (16) and (17) follow by substituting Eq. (14) into
Eq. (A10).

4. Derivation of Eq. (30)

Intuitively, Eq. (30) is most easily understood by noting that
in the large-system limit, the draining and traversal times are
both given by infinite sums of independent exponential random
variables, D = ∑∞

k=I �k and T = ∑∞
k=1 �k , correspondingly.

Moreover, the only difference between the two infinite sums

is a sum of I − 1, independent, exponential random variables
whose expected value is

lim
n→∞ E

[
I−1∑
k=1

�k

]
= EI

[
E

[
I−1∑
k=1

�k|I
]]

= 1

λ
, (A11)

a finite constant that does not depend on n. Equation (A11)
readily follows from the geometric distribution of the first
occupied site in the large system limit, see Eq. (29). The
difference between the traversal time and the draining time
is hence negligible in the large-system limit.

More precisely, Eq. (30) is derived by substituting −iθ for
θ in (see in the sequel) Eq. (A21) to obtain the characteristic
function of the draining time

E[exp(iθD)] = −iθ

−iθ − λ

(
1

1 + λm

)n

+ λ

λ + iθ

(
1

1 − iθm

)n

. (A12)

The characteristic function of the standardized draining time,
D−nm

m
√

n
, follows:

E

[
exp

(
iθ

[
D − nm

m
√

n

])]

=
[ −iθ/(m

√
n)

−iθ/(m
√

n) − λ

(
1

1 + λm

)n

+ λ

λ + iθ/(m
√

n)

(
1

1 − iθ/
√

n

)n]
exp(−iθ

√
n) .

(A13)

Recalling the Taylor expansion

nln

[
1

1 − iθ/
√

n

]
= iθ

√
n − θ2/2 + O(1/

√
n) (A14)

and taking the large-system limit of Eq. (A13) we obtain

lim
n→∞ E

[
exp

(
iθ

[
D − nm

m
√

n

])]
= exp(−θ2/2) , (A15)

which is the characteristic function of a normal random
variable with zero mean and unit variance.

5. Derivation of Eq. (34)

We now note that

Pr(Î > x) =
∑

i/n>x

λ

n/τ + λ

1

(1 + λτ/n)i−1
+ Pr(Î = ∞)

(A16)

taking the limit n → ∞ we find that the first term is a Riemann
sum that converges to the integral

lim
n→∞ Pr(Î > x) = λτ

∫ 1

x

exp(−λτu)du, (A17)

and that the second term is given by

lim
n→∞ Pr(Î = ∞) = lim

n→∞

(
1

1 + λτ/n

)n

= exp(−λτ ). (A18)

Equation (34) readily follows.
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6. Derivation of Eq. (36)

In order to derive Eq. (36) we first note that, in the case of
a homogeneous ASIP lattice, Eq. (17) reads

E[exp(−θD)]

=
(

1

1 + λm

)n

+ λm

1 + λm

n∑
k=1

(
1

1 + λm

)k−1

×
(

1

1 + θm

)n−k+1

. (A19)

We sum the series by noting that

n∑
k=1

ak−1bn−k+1 = b(an − bn)

a − b
, (A20)

a formula that is easily proved by use of either geometric series
summation or mathematical induction. We obtain

E[exp(−θD)]

= θ

θ − λ

(
1

1 + λm

)n

+ λ

λ − θ

(
1

1 + θm

)n

. (A21)

Equation (36) follows from substituting m = τ/n into
Eq. (A21) and taking the limit n → ∞.

7. Derivation of the large system limiting regime—General case

a. Notes on regularity conditions

(1) In practice it is usually easiest to check the Lyapunov’s
condition for δ = 1 and it is easily verified that the condition
holds for the special case in which the following two limits
exist:

〈σ 2〉 = lim
n→∞

1

n

n∑
k=1

Var[ξk],

(A22)

〈κ3〉 = lim
n→∞

1

n

n∑
k=1

E[|ξk − E[ξk]|3].

(2) The fact that Lyapunov’s condition holds for the random
variables {�1,�2,�3 · · · } and {G1,G2,G3 · · · } implies that

∞∑
k=1

mk = ∞ ,

(A23)∞∏
k=1

(1 + λmk) = ∞ .

Indeed, since
∑n

k=1 E[|ξk − E[ξk]|2+δ] is monotonically in-
creasing with n, Eq. (46) implies that

∑∞
k=1 Var[ξk] diverges. In

the case of the random variables, {�1,�2,�3 · · · }, this means
that

∑∞
k=1 m2

k diverges and in the case of the random vari-
ables, {G1,G2,G3 · · · }, this means that

∑∞
k=1(λmk + λ2m2

k)
diverges. In any case, since

∑∞
k=1 mk < ∞ → ∑∞

k=1 m2
k < ∞

it follows that
∑∞

k=1 mk must diverge as well. In addition, since

l1 + λ

n∑
k=1

mk �
n∏

k=1

(1 + λmk) � eλ
∑n

k=1 mk , (A24)

it follows that
∑∞

k=1 mk and
∞∏

k=1
(1 + λmk) converge or diverge

together.
(3) The regularity condition in Eq. (48) implies that

lim
n→∞

[ ∑n
k=1 mk∏n−1

k=1(1 + λmk)

]
= 0 . (A25)

Since
mj

(1+λmj )∏n
k=1(1 + λmk)

�
∑n

k=1
mk

(1+λmk )∏n
k=1(1 + λmk)

�
∑n

k=1 mk∏n−1
k=1(1 + λmk)

(A26)

it follows that

lim
n→∞

[ mj

(1+λmj )∏n
k=1(1 + λmk)

]
= 0 ,

(A27)

lim
n→∞

[ ∑n
k=1

mk

(1+λmk )∏n
k=1(1 + λmk)

]
= 0 .

b. Busy period

From Eq. (11), the Laplace transform of B/
∏n

k=1(1 + λmk)
is given by

E

[
exp

(
−θ

B∏n
k=1(1 + λmk)

)]

= λ + θ/
∏n

k=1(1 + λmk)

λ + θ
∏n

k=1

[
1 + θmk/

(
(1 + λmk)

∏n
j=1(1 + λmj )

)] .

(A28)

Equation (A23) asserts that the second term in the nominator
of the right-hand side of Eq. (A28) is negligible in the large n

limit. Taking the logarithm of the second term in the right hand
side of the denominator of Eq. (A28) and using Eq. (A27) we
have

log

⎡
⎣ n∏

k=1

⎡
⎣1 + θmk

/⎛
⎝(1 + λmk)

n∏
j=1

(1 + λmj )

⎞
⎠
⎤
⎦
⎤
⎦

∼= θ

[ ∑n
k=1

mk

(1+λmk )∏n
k=1(1 + λmk)

]
−→ 0, (A29)

(as n → ∞). The result in Eq. (51) follows from the continuity
of the exponential function.

c. First occupied site

In order to obtain Eq. (53) it is enough to take the limit
n → ∞ in Eq. (14) and use Eq. (A23).

d. Draining time

Provided that Lyapunov’s condition holds for the random
variables, {�1,�2,�3, . . .}, Eq. (49) asserts that∑n

k=1 �k −∑n
k=1 mk√∑n

k=1 m2
k

d−→ Z, (A30)
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(as n → ∞). In order to show that

D −∑n
k=1 mk√∑n

k=1 m2
k

d−→ Z, (A31)

(as n → ∞), we note that D = ∑n
k=I�k and recall that if ξn

is a random variable that converges in distribution to ξ and the
difference between the random variables ξn and ζn converges
in probability to zero, then ζn also converges in distribution to
ξ [47]. It is therefore sufficient to show that

lim
n→∞ Pr

⎛
⎝
∣∣∣∣∣∣
∑I−1

k=1 �k√∑n
k=1 m2

k

> ε

∣∣∣∣∣∣
⎞
⎠ → 0 . (A32)

By use of Markov’s inequality we have

Pr

⎛
⎝
∣∣∣∣∣∣
∑I−1

k=1 �k√∑n
k=1 m2

k

> ε

∣∣∣∣∣∣
⎞
⎠ �

E
[∑I−1

k=1 �k

]
ε

√∑n
k=1 m2

k

. (A33)

By use of Eq. (53) the nominator in the right-hand side of
Eq. (A33) gives

E

[
I−1∑
k=1

�k

]
= EI

[
E

[
I−1∑
k=1

�k|I
]]

∼=
∞∑

n=1

λmn

1 + λmn

n−1∏
k=1

(1 + λmj )−1
n−1∑
k=1

mk . (A34)

Since

λmn

1+λmn

∑n−1
k=1mk∏n−1

k=1(1 + λmk)
�

∑n
k=1 mk∏n−1

k=1(1 + λmk)
, (A35)

the regularity condition in Eq. (48) asserts that E[
∑I−1

k=1 �k] is
a finite constant that does not depend on n. Recalling that Lya-
punov’s condition for the random variables, {�1,�2,�3, . . .}
implies that

∑∞
k=1 m2

k = ∞ (see Sec. A 7a), we conclude that

lim
n→∞

E
[∑I−1

k=1 �k

]
ε

√∑n
k=1 m2

k

= 0 (A36)

and the desired result, Eq. (54), follows.

8. Derivation of the balanced system limiting
regime—General case

a. Regularity conditions

In proving the results presented in Sec. IV C we first note
that the setup depicted there is a special case of a more general
setup. Here we will assume that the set {mk(n)} is chosen such
that there exists a positive-valued function φ(u) that obeys

lim
n→∞

∑
k/n<x

mk(n) =
∫ x

0
φ(u)du < ∞,

(A37)

lim
n→∞

∑
k/n<x

mk(n)2 = 0,

(0 � x � 1). In particular, and without loss of generality, we
denote

F (x) =
∫ x

0
φ(u)du, (A38)

(0 � x � 1), and set F (1) = τ . One can now easily verify
that Eq. (A37) holds for the special case in which mk(n) =
φ( k

n
) 1
n
,
∫ 1

0 φ(u)du = τ , and
∫ 1

0 φ(u)2du < ∞.

b. Traversal time

Taking the logarithm of Eq. (3) we obtain

log[E[exp(−θT )]] = −
n∑

k=1

log[1 + mk(n)θ ], (A39)

(θ � 0). We now note that

−
n∑

k=1

log[1 + mk(n)θ ] ∼= −θ

n∑
k=1

mk(n) − θ

2

n∑
k=1

mk(n)2

(A40)

and after taking the balanced-system limit of this equation we
have

lim
n→∞ −

n∑
k=1

log[1 + mk(n)θ ] = −θτ . (A41)

The desired result, Eq. (31), follows from the continuity of the
exponential function.

c. Overall load

Taking the logarithm of Eq. (6) we obtain

log[E[zL]] = −
n∑

k=1

log[1 + mk(n)λ(1 − z)], (A42)

(|z| � 1). We now note that

−
n∑

k=1

log[1 + mk(n)λ(1 − z)]

∼= −λ(1 − z)
n∑

k=1

mk(n) − λ(1 − z)

2

n∑
k=1

mk(n)2 , (A43)

and after taking the balanced-system limit of this equation we
have

lim
n→∞ −

n∑
k=1

log [1 + mk(n)λ(1 − z)] = −λ(1 − z)τ . (A44)

The desired result, Eq. (32), follows from the continuity of the
exponential function.

d. Busy period

Taking the balanced-system limit of Eq. (11) we have (by
use of continuity)

lim
n→∞ E[exp(−θB)]

= λ + θ

λ + θ limn→∞
∏n

k=1[1 + (λ + θ )mk(n)]
, (A45)
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(θ � 0). We now note that

log

[
n∏

k=1

[1 + (λ + θ )mk(n)]

]

=
n∑

k=1

log[1 + (λ + θ )mk(n)]

� (λ + θ )
n∑

k=1

mk(n) + λ + θ

2

n∑
k=1

mk(n)2, (A46)

and after taking the balanced-system limit of this equation we
have

lim
n→∞ log

[
n∏

k=1

[1 + (λ + θ )mk(n)]

]
= (λ + θ )τ . (A47)

The desired result, Eq. (33), follows from the continuity of the
exponential function.

e. First occupied site

We note that

Pr(Î > x)

= Pr(Î = ∞) +
∑

k/n>x

λ

1/mk(n) + λ

1∏k−1
j=1 (1 + λmj (n))

.

(A48)

Taking the balanced-system limit of both sides we find that the
first term is given by

lim
n→∞ Pr(Î = ∞) = lim

n→∞

n∏
k=1

1

1 + λmk(n)
= exp(−λτ ) .

(A49)

The second term converges to the integral

Pr(x < Î � 1) = λ

∫ 1

x

φ(u) exp ( − λF (u))du (A50)

which in turn gives

Pr(x < Î � 1) = exp (−λF (x)) − exp(−λτ ) . (A51)

Equation (56) readily follows.

f. Draining time

We first note that

E[exp(−θD)] = EÎ[E[exp(−θD)|Î ]] . (A52)

Taking the balanced-system limit of both sides we have

lim
n→∞ E[exp(−θD)] = exp(−λτ ) + λ

∫ 1

0
φ(u) exp (−λF (u))

× exp (−θ (τ − F (u)))du , (A53)

and the desired result, Eq. (36), follows.
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