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We introduce and explore the asymmetric inclusion process (ASIP), an exactly solvable bosonic counterpart
of the fermionic asymmetric exclusion process (ASEP). In both processes, random events cause particles to
propagate unidirectionally along a one-dimensional lattice of n sites. In the ASEP, particles are subject to
exclusion interactions, whereas in the ASIP, particles are subject to inclusion interactions that coalesce them into
inseparable clusters. We study the dynamics of the ASIP, derive evolution equations for the mean and probability
generating function (PGF) of the sites’ occupancy vector, obtain explicit results for the above mean at steady
state, and describe an iterative scheme for the computation of the PGF at steady state. We further obtain explicit
results for the load distribution in steady state, with the load being the total number of particles present in all
lattice sites. Finally, we address the problem of load optimization, and solve it under various criteria. The ASIP
model establishes bridges between statistical physics and queueing theory as it represents a tandem array of
queueing systems with (unlimited) batch service, and a tandem array of growth-collapse processes.
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I. INTRODUCTION

In this paper, we introduce and explore an exactly solvable
lattice-gas model in one dimension: the asymmetric inclusion
process (ASIP). Joining a recent gallery of innovative research
papers [1–4], which establish bridges between statistical
physics and queueing theory, the ASIP model describes
(i) a “bosonic” counterpart of the “fermionic” asymmetric
exclusion process (ASEP) [5,6], (ii) a tandem array of
queueing systems with batch service [7,8], and (iii) a tandem
array of growth-collapse processes [9,10].

A. ASEP

The ASEP, a stochastic process taking place on a discrete
one-dimensional lattice of n sites, plays a paradigmatic
role in nonequilibrium statistical physics. The ASEP has
a long history, having first appeared in the literature as
a model of biopolymerization [11] and transport across
membranes [12]. Over the years, the ASEP and models that
resemble it in spirit were used to study a wide range of
physical phenomena: transport of macromolecules through
thin vessels [13], hopping conductivity in solid electrolytes
[14], reptation of polymer in a gel [15], traffic flow [16],
gene translation [17,18], surface growth [19,20], sequence
alignment [21], molecular motors [22], and the directed
motion of tracer particles in the presence of dynamical
backgrounds [23–26].

The ASEP serves as a model for a unidirectionally driven
lattice gas of particles subject to exclusion interactions.
Particles are fed, randomly in time, into the leftmost site
of a one-dimensional lattice and propagate unidirectionally
(to the right) through the lattice. Particles hop from each
site to its right-neighboring site randomly in time, with the
hopping restricted by the exclusion principle, which allows
sites to be occupied by no more than one particle at a time.
At the rightmost site, particles exit the system randomly in
time. The random inflow into the leftmost site, the random

instants of hopping from site to site, and the random outflow
from the rightmost site are all governed by independent
“exponential clocks” with given rates. The exclusion principle
causes jamming throughout the lattice, and renders the ASEP
dynamics highly nontrivial. Despite its simple description and
its one dimensionality, the ASEP displays a complex and
intricate behavior [5,6,27].

B. ASIP

The exclusion principle is central to the ASEP. While this
principle is often suitable for the description of the physical
scenario at hand, this is not always the case. Altering the
ASEP such that arbitrarily many particles are allowed to
simultaneously occupy any given site, one ends up with two
different models: the tandem Jackson network (which we shall
discuss momentarily) and the ASIP. The ASIP is similar to the
ASEP, albeit replacing the fermionic exclusion principle by
a bosonic inclusion principle. The ASIP’s inclusion principle
allows each site to be occupied by an arbitrary number of
particles at the same time, and all particles that simultaneously
occupy a site are “glued” together into inseparable particle
clusters that move together to the next site (or out of the
system, in the case of the rightmost site). The mathematical
details of the ASIP model are further described in Sec. II of this
paper.

C. Other bosonic models

Other bosonic models have been studied in the past. A
noteworthy representative is the tandem Jackson network.
The tandem Jackson network [28–30] is a sequential array
of n service stations. Jobs arrive at the leftmost station
randomly in time. At each station, (i) arriving jobs queue up
in line (according to their order of arrival) and await service;
(ii) only one job is served at a time, and the service durations
are governed by exponential clocks; (iii) after service, jobs
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TABLE I. Occupancy-service classification of one-dimensional
lattice-gas models. The columns specify the occupancy capacity per
site (the upper bound for the number of particles (jobs) allowed to
simultaneously occupy a given site), and the rows specify the service
capacity per site (the upper bound for the size of the particle clusters
(job batches) served simultaneously by a given site). If the occupancy
capacity is unity, then the ASEP model is attained (regardless of the
service capacity). An unlimited occupancy capacity coupled with
a unit service capacity yields tandem Jackson networks. Unlimited
occupancy and service capacities yield the bosonic batch service
ASIP model.

Occupancy Occupancy
capacity: 1 capacity: ∞

Service capacity: 1 ASEP Tandem Jackson
Service capacity: ∞ ASEP ASIP

move on to the next station (to the right). After service at
the rightmost station, jobs leave the system. The translation
between the aforementioned queueing theory setting and a
physical setting is straightforward: jobs are particles and
service stations are sites. From a queueing perspective, the
ASIP is a tandem Jackson network with batch service:
all particles present at a given service station are served
collectively (and thus move together to the next service
station, or out of the system). An occupancy-service classi-
fication of one-dimensional lattice-gas models is presented in
Table I. We note that intermediate service capacities (larger
than one but finite) are also possible [7,31].

The tandem Jackson network belongs to the wide family of
Jackson networks, a fundamental class of queueing systems
[28–30]. Devised in the early 1960s, Jackson networks were
applied to model the then emerging packet-switched networks
(e.g., the ARPANET), which turned out to be the precursors of
the nowadays World Wide Web. Jackson networks (and related
queueing networks) have also been studied in various physical
contexts [1–4] and are closely related to the zero-range process
[32–34].

In the zero-range process, particles hop from site to site
on a network [usually a one-dimensional (1D) lattice] with
a hop rate that depends, most generally, on the number of
particles at the departure site and on the departure site itself.
In the zero-range process, each site may be occupied by an
arbitrary number of particles, and interactions are mediated via
the dependence of the hopping rate on the number of particles
that occupy a given site. The tandem Jackson network can
be viewed as a zero-range process in which hopping rates
depend only on the departure site (and are independent of the
number of particles occupying this site) and general Jackson
networks can be mapped onto the zero-range process as
well. Interestingly, both Jackson networks and the zero-range
process are characterized by steady-state distributions that are
of a product form. This fact implies that the number of particles
in a given site is statistically independent from the number
of particles in any other site throughout the system. In light
of this fact, the ASIP is very much distinct. While sharing
resemblance with the tandem Jackson network and with the
zero-range process, the steady-state distribution of the ASIP

is not characterized by a simple product form. This fact is a
mere manifestation of the fact that, in the ASIP, the occupancy
of a given site depends on the occupancies of all the sites
that precede it. Note, however, that the ASIP model is exactly
solvable.

D. Batch service and growth-collapse processes

The notion of batch service is strongly related to growth-
collapse processes, which play an important role in both
queueing theory and statistical physics. Consider a single
service station with batch service. Jobs arrive to the station
randomly in time, causing the queue to grow steadily; when
service is rendered, all jobs are served simultaneously, causing
the queue to collapse to zero. Stochastic growth-collapse
temporal patterns thus emerge from the application of batch-
service policies [7,8,10,35,36]. In statistical physics, growth-
collapse temporal patterns emerge in a host of complex
systems, examples including sand-pile models and systems in
self-organized criticality [37], stick-slip models of interfacial
friction [38], Burridge-Knopof–type models of earthquakes
and continental drift [39], stochastic Ornstein-Uhlenbeck
capacitors [40], and geometric Langevin equations [41]. The
ASIP model is, in effect, a tandem array of growth-collapse
processes.

E. General outline of this paper

In this paper, we comprehensively explore the ASIP model.
Our focus is set on the analysis of the stochastic dynamics
and the stationary statistics of the ASIP’s occupancy vector,
the n-dimensional vector counting the number of particles
present in each lattice site (at any given time). We derive
evolution equations and steady-state equations for the mean
and for the probability generating function (PGF) of the
ASIP’s occupancy vector. Explicit steady-state solutions are
obtained for the mean. Explicit steady-state solutions are also
obtained for the PGF of small ASIP systems (n = 1,2,3),
and a computational scheme for solving the steady-state PGF
equations for ASIP systems of arbitrary size is presented.
We show that the steady-state PGF solutions explode in
complexity as the lattice size increases, thus rendering the
ASIP’s occupancy vector analytically intractable for large n.

The ASIP’s load is the total number of particles present
in the lattice. In comparison to the ASIP’s occupancy vector,
analytical tractability of the ASIP’s load is much more simple.
Indeed, we obtain closed-form results for the mean, variance,
and PGF of the ASIP’s load in steady state. Interestingly, the
load’s PGF admits a product form representation, which, in
turn, implies a surprising stochastic decomposition structure.
Moreover, with the explicit steady-state load results at hand, we
further study load optimization in steady state, seeking system
parameters, namely, the rates of the underlying exponential
clocks that optimize the ASIP in various aspects. Our analysis
concludes that optimality is attained by homogeneous ASIP
systems in which the underlying exponential clocks all have
the same rate.

The remainder of the paper is organized as follows. In
Sec. II, we define the ASIP, derive its Markovian law of motion,
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and present a Monte Carlo algorithm for the simulation of its
stochastic evolution. The mean analysis and the PGF analysis
of the ASIP are carried out, respectively, in Secs. III and IV.
The solution of the ASIP’s PGF in steady state is discussed in
Sec. V. The ASIP’s load and load optimization are analyzed,
respectively, in Secs. VI and VII.

II. ASIP MODEL

The asymmetric inclusion process is described as follows.
Consider a system composed of a sequence of n gates labeled
k = 1, . . . ,n. Each gate is preceded by a waiting zone, and
the one preceding gate k is henceforth referred to as the kth
waiting zone (k = 1, . . . ,n). Particles arrive at the first waiting
zone following a Poisson process �0 with rate λ, the openings
of gate k follow a Poisson process �k with rate μk , and the
Poisson processes {�0,�1, . . . ,�n} are independent. At an
opening of gate k (gate-opening instant), all particles that are
present at the kth waiting zone move on to the (k + 1)th waiting
zone, thus joining the particles already present in the latter
waiting zone (k = 1, . . . ,n − 1). At an opening of gate n, all
particles that are present at the nth waiting zone leave the
system. We emphasize that the very definition of the Poisson
process precludes the possibility of two or more gates opening
simultaneously (indeed such events have zero probability).
Time durations between consecutive gate-opening events are
exponentially distributed and, thus, series of hops can occur
within an arbitrarily small time interval, but can not occur
simultaneously. Particles’ motion is hence restricted to jumps
between consecutive sites. The ASIP model is illustrated in
Fig. 1.

In the ASIP model, the capacity of the waiting zones
is unbounded. Namely, the number of particles allowed to
accumulate in each waiting zone is unlimited. In general, one
can consider waiting zones with finite capacity, where lk is
the maximum capacity of the kth waiting zone (k = 1, . . . ,n;
lk = 1,2, . . .). In this case, at an opening of gate k, not
all particles that are present at the kth waiting zone shall
necessarily be allowed to move on to the (k + 1)th waiting
zone (k = 1, . . . ,n − 1). Specifically, if at the opening instant
of gate k there are xk particles in the kth waiting zone, and
xk+1 particles in the (k + 1)th waiting zone, then exactly

FIG. 1. (Color online) An illustration of the ASIP model. Particles
arrive at the first waiting zone following a Poisson process with rate λ.
The times between consecutive openings of gate k are exponentially
distributed with mean 1/μk . The inflow process and the gate openings
are assumed independent. At an opening of gate k, all particles
present at the kth waiting zone move on to the (k + 1)th waiting zone,
thus joining the particles already present in the latter waiting zone
(k = 1, . . . ,n − 1). At an opening of gate n, all particles that are
present at the nth waiting zone leave the system.

min (xk,lk+1 − xk+1) particles will move from the kth waiting
zone to the (k + 1)th waiting zone. Note that the ASEP
model is attained by the capacity limits lk = 1, and that
the ASIP model is attained by the capacity limits lk = ∞
(k = 1, . . . ,n).

We now turn to describe the traversal time, the Markovian
dynamics, and the Monte Carlo simulation of the ASIP
model. Henceforth, we shall use the shorthand notation
μ = μ1 + · · · + μn for the system’s cumulative service
rate.

A. Traversal time

Consider the random time T it takes a particle to traverse
the system, henceforth termed the ASIP’s traversal time. That
is, T is the time elapsing from the instant a particle arrives at
the first waiting zone until the instant it leaves the system. Due
to the memoryless property of the exponential distribution,
the time elapsing from the arrival of a particle to waiting
zone k (at an arbitrary time epoch) until the first opening
of gate k thereafter, is exponentially distributed with mean
1/μk . A particle arriving to the system would thus wait an
exponentially distributed random time (with mean 1/μ1) until
moving from the first waiting zone to the second waiting
zone, then wait an exponentially distributed random time (with
mean 1/μ2) until moving from the second waiting zone to
the third waiting zone, and so forth. Since the gate openings
are governed by independent Poisson processes, we conclude
that the traversal time T admits the following stochastic
representation:

T = E1 + · · · + En, (1)

where {E1, . . . ,En} is a sequence of independent and ex-
ponentially distributed random times with corresponding
means {1/μ1, . . . ,1/μn}. Consequently, the mean and the
variance of the traversal time T are given, respectively,
by

E[T ] = 1

μ1
+ · · · + 1

μn

(2)

and

Var[T ] = 1

μ2
1

+ · · · + 1

μ2
n

. (3)

B. Markovian dynamics

Let Xk(t) denote the number of particles present in the kth
waiting zone (k = 1, . . . ,n) at time t (t � 0), and set X(t) =
[X1(t), . . . ,Xn(t)]. The vector X(t) represents the system’s
occupancy at time t . Observe the system at times t and t ′ =
t + � (for small �) and use the shorthand notation X = X(t)
and X′ = X(t ′). The stochastic connection between the random
vectors X and X′, characterizing the Markovian law of motion

041101-3



SHLOMI REUVENI, IDDO ELIAZAR, AND URI YECHIALI PHYSICAL REVIEW E 84, 041101 (2011)

of the stochastic process [X(t)]t�0, is given by

(X′
1, . . . ,X

′
n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(X1,X2,X3, . . . ,Xn−1,Xn) w.p. 1 − (λ + μ)� + o(�),

(X1 + 1,X2,X3, . . . ,Xn−1,Xn) w.p. λ� + o(�),

(0,X1 + X2,X3, . . . ,Xn−1,Xn) w.p. μ1� + o(�),

(X1,0,X2 + X3, . . . ,Xn−1,Xn) w.p. μ2� + o(�),
...

...

(X1,X2,X3, . . . ,0,Xn−1 + Xn) w.p. μn−1� + o(�),

(X1,X2,X3, . . . ,Xn−1,0) w.p. μn� + o(�),

(4)

where w.p. stand for “with probability”.
Equation (4) follows from considering the totality of events that may take place within the time interval (t,t ′]. There are

n + 1 such events, and we label them according to the Poisson processes inducing them: (0) the arrival of a particle to
the first waiting zone, occurring with probability λ� + o(�), in which case X1 �→ X′

1 = X1 + 1; (1) opening of the first
gate, occurring with probability μ1� + o(�), in which case X1 �→ X′

1 = 0 and X2 �→ X′
2 = X1 + X2; (2) opening of the

second gate, occurring with probability μ2� + o(�), in which case X2 �→ X′
2 = 0 and X3 �→ X′

3 = X2 + X3; . . .; (n − 1)
opening of the gate before last, occurring with probability μn−1� + o(�), in which case Xn−1 �→ X′

n−1 = 0 and Xn �→ X′
n =

Xn−1 + Xn; (n) opening of the last gate, occurring with probability μn� + o(�), in which case Xn �→ X′
n = 0. The first line

on the right-hand side of Eq. (4) represents the scenario in which no event takes place, which occurs with the complementary
probability 1 − (λ + μ)� + o(�).

C. Monte Carlo simulation

The ASIP’s random trajectory [X(t)]t�0 changes discretely rather than continuously. Indeed, between the underlying Poissonian
events, arrival of a particle to the system, or an opening of one of the n gates, the ASIP’s trajectory does not change. Consider now
the ASIP’s trajectory at the instant it changes (i.e., arrival of a particle or an opening of a gate). Let Yk(s) denote the number of
particles present in the kth waiting zone (k = 1, . . . ,n) immediately after the sth Poissonian event took place (s = 1,2, . . .), and
set Y(s) = [Y1(s), . . . ,Yn(s)]. Observe the system at two consecutive Poissonian events, s and s ′ = s + 1, and use the shorthand
notation Y = Y(s) and Y′ = Y(s ′). The properties of the exponential distribution imply the following [42]:

(i) The time elapsing between two consecutive Poissonian events s and s ′ = s + 1 is exponentially distributed with mean
1/(λ + μ).

(ii) The stochastic connection between the random vectors Y and Y′, characterizing the Markovian law of motion of the
stochastic process [(Y(s)]∞s=1, is given by

(Y ′
1, . . . ,Y

′
n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Y1 + 1,Y2,Y3, . . . ,Yn−1,Yn) w.p. λ/(λ + μ),

(0,Y1 + Y2,Y3, . . . ,Yn−1,Yn) w.p. μ1/(λ + μ),

(Y1,0,Y2 + Y3, . . . ,Yn−1,Yn) w.p. μ2/(λ + μ),
...

...

(Y1,Y2,Y3, . . . ,0,Yn−1 + Yn) w.p. μn−1/(λ + μ),

(Y1,Y2,Y3, . . . ,Yn−1,0) w.p. μn/(λ + μ).

(5)

(iii) The time elapsing between the two consecutive Poissonian events s and s ′ = s + 1, and the change Y �→ Y′, are mutually
independent.
Equation (5) follows from considering the totality of events that lead to a change Y �→ Y′. There are n + 1 such events,
and we label them according to the Poisson processes inducing them: (0) the arrival of a particle to the first waiting zone,
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occurring with probability λ/(λ + μ), in which case Y1 �→
Y ′

1 = Y1 + 1; (1) opening of the first gate, occurring with
probability μ1/(λ + μ), in which case Y1 �→ Y ′

1 = 0 and
Y2 �→ Y ′

2 = Y1 + Y2; (2) opening of the second gate, occurring
with probability μ2/(λ + μ), in which case Y2 �→ Y ′

2 = 0
and Y3 �→ Y ′

3 = Y2 + Y3; . . .; (n − 1) opening of the gate
before last, occurring with probability μn−1/(λ + μ), in
which case Yn−1 �→ Y ′

n−1 = 0 and Yn �→ Y ′
n = Yn−1 + Yn; (n)

opening of the last gate, occurring with probability μn/(λ +
μ), in which case Yn �→ Y ′

n = 0. Properties (i), (ii), and
(iii) establish, in effect, a simple and straightforward Monte
Carlo algorithm for the simulation of the ASIP’s random
trajectory.

III. MEAN DYNAMICS AND MEAN FIELD ANALYSIS

In this section, we study the dynamics of the means of
the random vectors X(t) (t � 0) and Y(s) (s = 1,2, . . .).
Throughout the section, we use the shorthand vector notation

λ = (λ,0, . . . ,0)T , and the shorthand matrix notation

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ1 . . .

μ1 −μ2 . . .

μ2 −μ3

. . .
. . .

μn−2 −μn−1

μn−1 −μn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

(Note: In the above matrix, all blank spaces represent zero
entries.)

A. Mean dynamics of X(t)

We denote the mean of the random vector X(t) by

eX(t) = (E[X1(t)], . . . ,E[Xn(t)])�. (7)

Observe the system at times t and t ′ = t + �. Conditioning on
X(t) and utilizing the Markovian dynamics of Eq. (4) yields

E[X(t ′)] = E[E[X(t ′)| X(t)]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − (λ + μ)�)E[X(t)] + λ�E[X(t) + (1,0, . . . ,0)�]

+
(μ1�)E[X(t) + [−X1(t),X1(t),0, . . . ,0]�]

+
(μ2�)E[X(t) + [0, −X2(t),X2(t), . . . ,0]�]

+ · · · +
(μn−1�)E[X(t) + [0, . . . ,0, −Xn−1(t),Xn−1(t)]�]

+
(μn�)E[X(t) + [0, . . . ,0, −Xn(t)]�]

+
o(�).

(8)

By rearranging the terms of Eq. (8), dividing by �, and taking
� → 0, we conclude that

deX

dt
(t) = MeX + λ. (9)

Equation (9) represents the mean dynamics of the random
vector X(t). Namely, it transforms the Markovian dynamics
of Eq. (4) to a differential equation that governs the temporal
evolution of the mean vector eX(t) (t � 0). The solution of
Eq. (9) can be shown to be given by

eX(t) = M−1[exp(Mt) − I]λ. (10)

B. Mean dynamics of Y(s)

We denote the mean of the random vector Y(s) by

eY(s) = (E[Y1(s)], . . . ,E[Yn(s)])�. (11)

Observe the system at two consecutive s and s ′ = s + 1
Poissonian events. Conditioning on Y(s) and utilizing the law
of motion presented in Eq. (5) yields

E[Y(s ′)] = E[E[Y(s ′)|Y(s)]]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
λ+μ

E[Y(s) + (1,0, . . . ,0)�]

+
μ1

λ+μ
E[Y(s) + [−Y1(s),Y1(s),0, . . . ,0]�]

+
μ2

λ+μ
E[Y(s) + [0, − Y2(s),Y2(s), . . . ,0]�]

+ · · · +
μn−1

λ+μ
E[Y(s) + [0, . . . ,0,−Yn−1(s),Yn−1(s)]�]

+
μn

λ+μ
E[Y(s) + [0, . . . ,0,−Yn(s)]�].

(12)

Rearranging the terms of Eq. (12), we conclude that

(λ + μ)[eY(s ′) − eY(s)] = MeY(s) + λ. (13)
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Equation (13) represents the mean dynamics of the random
vector Y(s). That is, it transforms the law of motion of Eq. (5)
to a difference equation that governs the temporal evolution of
the mean vector eY(s) (s = 1,2, . . .). The solution of Eq. (13)
can be shown to be given by

eY(s) = M−1

[(
I + 1

λ + μ
M

)s

− I
]

λ. (14)

C. Mean field analysis in steady state

Consider now the ASIP model in steady state. In steady
state, the stochastic processes [X(t)]t�0 and [Y(s)]∞s=1 are
stationary, and hence their respective means are time homo-
geneous: eX(t) ≡ eX (t � 0) and eY(s) ≡ eY (s = 1,2, . . .).
Substituting the time-homogeneous vectors eX(t) ≡ eX and
eY(s) ≡ eY, respectively, into Eqs. (9) and (13), yields the
common equation

0 = Me + λ (15)

[where e = (e1, . . . ,en) is the unknown vector]. Namely,
both the mean vectors eX and eY are governed by
Eq. (15).

A straightforward computation of Eq. (15) yields the
steady-state solution

ek = E[Xk(t)] = E[Yk(s)] = λ

μk

(16)

(k = 1, . . . ,n). Combining Eqs. (2) and (16) together further
yields the following steady-state formula:

E

[
n∑

k=1

Xk (t)

]
= E

[
n∑

k=1

Yk (s)

]
=

n∑
k=1

λ

μk

= λE[T ]. (17)

Equation (17) asserts that, at steady state, the mean number
of particles in the system is given by the product λE[T ]: the
flow rate λ into the system times the mean traversal time E[T ],
the mean sojourn time of an arbitrary particle in the system.
Note that, although the random variables {X1(t), . . . ,Xn(t)}
[and similarly {Y1(s), . . . ,Yn(s)}] are intricately dependent,
these dependencies do not affect the mean behavior given by
Eq. (17). Equation (17) is the ASIP version of the well known
Little’s law in queueing theory [43].

D. Beyond the mean field description

In the ASEP model, the mean approximation well describes
the system: the ASEP statistical behavior can be represented
by a mean field plus an additional small noise term. Moreover,
the ASEP’s mean field approximation improves as the system
size grows larger. The statistical behavior of the ASIP model
is dramatically different: fluctuations of the ASIP’s occupancy
vector grow as the system becomes larger. This phenomenon is
demonstrated in Fig. 2, in which a homogeneous ASIP system
is simulated: For each site k, we numerically calculate the
steady-state mean and standard deviation of the number of

FIG. 2. (Color online) Large fluctuations and the emergence
of scaling laws in the ASIP model. We have simulated a ho-
mogeneous ASIP system with 10 000 sites, λ = 1, and μk = 1
for k = 1, . . . ,10 000. The mean and standard deviation in the
number of particles at site k are plotted as a function of the site
index. As expected, we find that, regardless of the site index, on
average, each site is occupied by a single particle (ek = λ

μk
= 1).

Conversely, the standard deviation in the number of particles exhibits
a power law dependence on k and grows like ∼k1/4 [dashed line is
given by N (k) = 1.5 × k1/4]. As fluctuations around the mean are
typically much larger than the mean itself, it is clear that a “mean
field” description is unable to capture the physics of large ASIP
systems.

particles Xk present in the kth waiting zone; the simulation
vividly shows a power law growth of the standard deviation as
a function of the system’s size (number of gates). The dramatic
difference between the statistical behaviors of the ASEP and
ASIP models is due to the different “service policies” of these
models, as expressed in Table I. Contrary to the ASEP model,
the batch service of the ASIP model causes an “all or none”
effect, which, in turn, leads to site occupancy fluctuations, the
typical order of magnitude of which can be much larger than
the mean occupancy itself.

The mean field approximation fails to capture the com-
plexity and the interdependencies of the ASIP model. To fully
capture the intricate statistics of the ASIP model, we now turn
to analyze its multidimensional probability distributions via
probability generating functions.

IV. PGF DYNAMICS

In this section, we study the dynamics of the probability
generating functions (PGFs) of the random vectors X(t)
(t � 0) and Y(s) (s = 1,2, . . .).

A. PGF dynamics of X(t)

The PGF of the random vector X(t) is given by

GX(t,z1,z2, . . . ,zn) = E
[
z
X1(t)
1 z

X2(t)
2 , . . . ,zXn(t)

n

]
(18)

(|zk| � 1, k = 1, . . . ,n). Observe the system at times t and
t ′ = t + � and use again the shorthand notation X = X(t) and
X′ = X(t ′). By conditioning on X and utilizing the Markovian
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dynamics of Eq. (4), we have

E

[
n∏

k=1

z
X

′
k

k

]
= E

[
E

[
n∏

k=1

z
X

′
k

k |X
]]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1 − (λ + μ)�]E

[
n∏

k=1
z
Xk

k

]
+ (λ�)E

[
z1

n∏
k=1

z
Xk

k

]
+
(μ1�)E

[
z
X1
2

n∏
k 	=1

z
Xk

k

]
+ (μ2�)E

[
z
X2
3

n∏
k 	=2

z
Xk

k

]
+ · · · +
(μn−1�)E

[
z
Xn−1
n

n∏
k 	=(n−1)

z
Xk

k

]
+ (μn�)E

[
n∏

k 	=n

z
Xk

k

]
+
o(�).

(19)

Using the PGF notation of Eq. (18), Eq. (19) reads as

GX(t ′,z1,z2, . . . ,zn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1 − (λ + μ)�]GX(t,z1,z2,z3, . . . ,zn−1,zn)

+
(λ�)z1GX(t,z1,z2,z3, . . . ,zn−1,zn)

+
(μ1�)GX(t,z2,z2,z3, . . . ,zn−1,zn)

+
(μ2�)GX(t,z1,z3,z3, . . . ,zn−1,zn)

+ · · · +
(μn−1�)GX(t,z1,z2,z3, . . . ,zn,zn)

+
(μn�)GX(t,z1,z2,z3, . . . ,zn−1,1)

+
o(�).

(20)

By rearranging the terms of Eq. (20), dividing by �, and taking
� → 0, we conclude that

∂GX

∂t
(t,z1, . . . ,zn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[λ(z1 − 1) − μ]GX(t,z1,z2,z3, . . . ,zn−1,zn)

+
μ1GX(t,z2,z2,z3, . . . ,zn−1,zn)

+
μ2GX(t,z1,z3,z3, . . . ,zn−1,zn)

+ · · · +
μn−1GX(t,z1,z2,z3, . . . ,zn,zn)

+
μnGX(t,z1,z2,z3, . . . ,zn−1,1).

(21)

Equation (21) represents the PGF dynamics of the random
vector X(t). Namely, it transforms the Markovian dynamics of
(4) to a differential equation of the form

∂GX

∂t
(t,z) = [AGX](t,z), (22)

where z = (z1,z2, . . . ,zn), and where A is an operator that acts
only on the z part of the PGF GX(t,z).

B. PGF dynamics of Y(s)

The PGF of the random vector Y(s) is given by

GY(s,z1,z2, . . . ,zn) = E
[
z
Y1(s)
1 z

Y2(s)
2 , . . . ,zYn(s)

n

]
(23)

(|zk| � 1, k = 1, . . . ,n). Observe the system at two consec-
utive s and s ′ = s + 1 Poissonian events, and use again the
shorthand notation Y = Y(s) and Y′ = Y(s ′). By conditioning
on Y and utilizing the law of motion of Eq. (5), we have

E

[
n∏

k=1

z
Y

′
k

k

]
= E

[
E

[
n∏

k=1

z
Y

′
k

k |Y
]]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
λ+μ

E

[
z1

n∏
k=1

z
Yk

k

]
+ μ1

λ+μ
E

[
z
Y1
2

n∏
k 	=1

z
Yk

k

]
+
μ2

λ+μ
E

[
z
Y2
3

n∏
k 	=2

z
Yk

k

]
+ μ3

λ+μ
E

[
z
Y3
4

n∏
k 	=3

z
Yk

k

]
+ · · · +
μn−1

λ+μ
E

[
z
Yn−1
n

n∏
k 	=(n−1)

z
Yk

k

]
+ μn

λ+μ
E

[
n∏

k 	=n

z
Yk

k

]
.

(24)

By using the PGF notation Eq. (23) and rearranging terms,
Eq. (24) reads as

GY(s ′,z1, . . . ,zn) − GY(s,z1, . . . ,zn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(z1−1)−μ

λ+μ
GY (s,z1, . . . ,zn)

+
μ1

λ+μ
GY(s,z2,z2, . . . ,zn)

+
μ2

λ+μ
GY(s,z1,z3,z3, . . . ,zn)

+ · · · +
μn−1

λ+μ
GY(s,z1, . . . ,zn,zn)

+
μn

λ+μ
GY(s,z1, . . . ,zn−1,1).

(25)

Equation (25) represents the PGF dynamics of the random
vector Y(s). Namely, it transforms the law of motion of Eq. (25)
to a difference equation of the form

GY(s ′,z) − GY(s,z) = [BGY](s,z), (26)

where z = (z1,z2, . . . ,zn), and where B is an operator that acts
only the z part of the PGF GY(s,z).

C. Steady state

Consider now the ASIP model in steady state. The stochas-
tic processes [X(t)]t�0 and [Y(s)]∞s=1 are stationary and, hence,
their respective PGFs are time homogeneous: GX(t,z) ≡
GX(z) (t � 0) and GY(s,z) ≡ GY(z) (s = 1,2, . . .). Substi-
tuting the time-homogeneous PGFs GX(t,z) ≡ GX(z) and
GY(s,z) ≡ GY(z), respectively, into Eqs. (21) and (25) yields
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the common equation

[λ(1 − z1) + μ]G(z1,z2,z3, . . . ,zn−1,zn)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1G(z2,z2,z3, . . . ,zn−1,zn)

+
μ2G(z1,z3,z3, . . . ,zn−1,zn)

+ · · · +
μn−1G(z1,z2,z3, . . . ,zn,zn)

+
μnG(z1,z2,z3, . . . ,zn−1,1)

(27)

[where G(z) is the unknown function]. Namely, both the PGFs
GX(z) and GY(z) are governed by Eq. (27).

Assuming that Eq. (27) admits a unique solution (we shall
address the issue of uniqueness in Sec. V), we obtain the
following: In steady state, the distribution of the vector X(t)
coincides with the distribution of the vector Y(s). Namely, in
steady state, the ASIP displays the same statistics at arbitrary
time and Poissonian events time epochs. In the nomenclature
of queueing theory, such a phenomenon is termed PASTA
(Poisson arrivals see time average [43]).

The PASTA phenomenon is a central concept in queueing
theory, which implies that arriving customers find, on average,
the same workload in the queueing system as an outside
observer looking at the system at an arbitrary point in time.
More precisely, the fraction of customers finding on arrival
the system in some state S is exactly the same as the fraction
of time the system is in state S. While well known results
in queueing theory assert that the PASTA phenomenon holds
for classes of systems with Poissonian arrivals (also known as
M/ · /· queueing systems), this phenomenon does not hold for
general systems. Indeed, even very simple queueing systems
may fail to satisfy the PASTA phenomenon.

As an example, consider the D/D/1 queueing system.
In this system, customers arrive to a service station with a
single server in which they are processed according to their
order of arrival. The customers’ interarrival times and service
times are deterministic. Let darr and dser denote, respectively,
the deterministic interarrival and service times. Exactly every
darr time units a new customer arrives at the service station,
this customer must be served for exactly dser time units
before leaving the system. Clearly, the queue will explode
if dser > darr, will be perfectly balanced if dser = darr, and will
be stationary if dser � darr. If dser < darr, then the queue cycles
will coincide with the customers’ arrival epochs, the server
will be busy for dser time units after arrival, and will be idle in
the remaining darr-dser time units. Clearly, arriving customers
always observe an empty system (upon arrival). Hence, the
fraction of customers finding the system nonempty is zero. On
the other hand, the fraction of time the system is nonempty is
dser/darr. The DD1 queueing model vividly exemplifies how
the PASTA phenomenon can be violated even in very simple
systems. On the other hand, the PASTA phenomenon can hold
in complex processes such as the running maxima of nonlinear
shot noise [44]. The fact that the PASTA phenomenon holds
for all ASIP systems is far from being trivial.

We now turn to describe the embedding phenomenon,
another useful property of the ASIP. Consider two ASIP
models: model (A) with m gates and parameters

{λ,μ1, . . . ,μm}, and model (B) with n gates and parameters
{λ,μ1, . . . ,μn}, where m < n. Equation (27) implies the fol-
lowing embedding phenomenon: The steady-state distribution
of model (A) coincides with the steady-state distribution of the
first m coordinates of model (B). The derivation of the em-
bedding phenomenon follows from substituting zm+1 = · · · =
zn = 1 in Eq. (27). The intuitive understanding of the embed-
ding phenomenon follows from the fact that, in an ASIP model
with n gates, the operation of the first m gates (k = 1, . . . ,m)
is indifferent to whatever happens in the following gates
(k = m + 1, . . . ,n). In other words, an observation of the first
m gates in an ASIP model with n gates is indistinguishable
from an observation of an ASIP model with m gates (and the
same parameters).

V. STEADY-STATE ANALYSIS

In this section, we explore Eq. (27) governing the steady-
state PGF of the ASIP model.

A. Explicit solution: n = 1

Consider the ASIP model with a single gate (n = 1). In this
case, Eq. (27) reduces to

[λ(1 − z1) + μ1]G(z1) = μ1G(1). (28)

Noting that G(1) = 1, and setting p1 = μ1/(μ1 + λ), Eq. (28)
implies that

G(z1) = μ1

λ(1 − z1) + μ1
= p1

1 − (1 − p1)z1
. (29)

The PGF of Eq. (29) characterizes the geometric law on the
non-negative integers. Indeed, expanding both sides of Eq. (29)
to power series (in the variable z1) yields the probability
distribution

Pr(X1 = j ) = Pr(Y1 = j ) = (1 − p1)jp1, (30)

where j = 0,1,2, . . . .
The probabilistic explanation of Eq. (30) is as follows:

When n = 1, we can think about a competition between
two Poissonian processes: gate openings and particle arrivals.
The Poissonian nature of these processes implies that the
probability that the first Poissonian event is an arrival of
a particle is 1 − p1. Similarly, the probability that the first
Poissonian event is a gate opening is p1. The memoryless
property of the exponential distribution implies that, in order
for exactly k particles to leave the system at a gate-opening
moment, exactly k consecutive arrivals must be followed
by a single gate opening. Hence, the random variable Y1 is
geometrically distributed (on the non-negative integers) with
parameter p1. As a result of the PASTA phenomenon described
in the preceding section, the distribution of the system vector
at steady state is equal in law to the distribution of the system
vector immediately after Poissonian events, implying that X1

coincides, in law, with Y1.
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B. Explicit solution: n = 2

In this section, we present, via the special case of n = 2,
an iterative scheme for the solution of Eq. (27). In the basic
step of the scheme, one uses Eq. (27) in order to obtain
expressions for each of the generating functions that appear on
its right-hand side. By repeating the basic step, time and again,
a branching tree structure of generating functions forms. In this
tree, each “parent” generating function is expressed by a set
of “daughter” generating functions. As we shall demonstrate,
the daughter generating functions become somewhat simpler
with every step of the scheme. Eventually, the daughter
generating functions become trivial, forming the “leaves” of
our branching tree. The scheme terminates once all daughter
generating functions turn into leaves. The PGF is then obtained
from transcending upward from the leaves of the tree to its root.
At the root, an explicit, and by construction unique, expression
for the PGF is attained.

Consider the ASIP model with two gates (n = 2). In this
case, Eq. (27) reduces to

[λ(1 − z1) + μ1 + μ2]G(z1,z2) =

⎧⎪⎨
⎪⎩

μ1G(z2,z2)

+
μ2G(z1,1).

(31)

Now, following the scheme’s basic step, we iteratively apply
Eq. (31) to the daughters G(z2,z2) and G(z1,1).

For the daughter G(z2,z2), the basic step yields

[λ(1 − z2) + μ1 + μ2]G(z2,z2) =

⎧⎪⎨
⎪⎩

μ1G(z2,z2)

+
μ2G(z2,1)

(32)

from which we obtain that

G(z2,z2) = μ2

λ(1 − z2) + μ2
G(z2,1). (33)

In turn, for the daughter G(z2,1), Eq. (31) yields

[λ(1 − z2) + μ1 + μ2]G(z2,1) =

⎧⎪⎨
⎪⎩

μ1G(1,1)

+
μ2G(z2,1)

(34)

from which we obtain that

G(z2,1) = μ1

λ(1 − z2) + μ1
G(1,1). (35)

For the daughter G(z1,1), the iteration yields

[λ(1 − z1) + μ1 + μ2]G(z1,1) =

⎧⎪⎨
⎪⎩

μ1G(1,1)

+
μ2G(z1,1)

(36)

from which we obtain that

G(z1,1) = μ1

λ(1 − z1) + μ1
G(1,1). (37)

The leaves of our tree are characterized by the PGF G(1,1),
which trivially equals unity. Hence, setting G(1,1) = 1 in the
leaves Eqs. (35) and (37) yields the daughters G(z2,1) and
G(z1,1). Substituting the daughter G(z2,1) into Eq. (33) yields
the daughter

G(z2,z2) = μ2

λ(1 − z2) + μ2

μ1

λ(1 − z2) + μ1
. (38)

Finally, substituting the daughters G(z2,z2) and G(z1,1) into
Eq. (31) yields the root

G(z1,z2) =

⎧⎪⎨
⎪⎩

μ2
1μ2

[λ(1−z2)+μ2][λ(1−z2)+μ1][λ(1−z1)+μ1+μ2]

+
μ1μ2

[λ(1−z1)+μ1][λ(1−z1)+μ1+μ2] .

(39)

Summarizing, we have found that, for n = 2, the scheme
terminates after two iterations. The result is a treelike structure,
the leaves of which are trivial constants all equal to unity.
Knowing the constants that stand in the base of the tree, we
are able to calculate the functions that occupy the second
lowest level. The PGF G(z1,z2) was computed by iterating
this procedure, i.e., by using known functions at the current
knowledge level of the tree in order to compute the functions
at the next level. A tree sketch of the solution steps for
the ASIP model with two gates (n = 2) is depicted in
Fig. 3.

C. Explicit solution: n = 3

The iterative scheme described in the preceding section
applies, in theory, to the ASIP model with an arbitrary number
of gates. In practice, however, the solution’s complexity
increases rapidly with the number of gates n. Thus, effectively,
for large n, the PGF of the ASIP model is not tractable.
To illustrate just how dramatically the solution complexity
increases, consider the ASIP model with three gates (n = 3).
In the Appendix, we show that the expression for G(z1,z2,z3)

FIG. 3. (Color online) Schematic illustration of the iterative
solution of Eq. (27) for n = 2. Step A: Eq. (27) is iterated repeatedly,
in a branching-tree structure, until reaching the leaves G(1,1) = 1.
Step B: The tree is folded back, yielding the value of the root G(z1,z2)
[Eq. (39)].
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is given by

G(z1,z2,z3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ3
1μ

2
2μ3/[λ(1−z2)+μ1+μ3]

[λ(1−z2)+μ2+μ3][λ(1−z3)+μ3][λ(1−z1)+μ][λ(1−z3)+μ2][λ(1−z3)+μ1]

+
μ3

1μ
2
2μ3/[λ(1−z2)+μ1+μ3]

[λ(1−z2)+μ2+μ3][λ(1−z1)+μ][λ(1−z3)+μ2][λ(1−z3)+μ1][λ(1−z2)+μ1+μ2]

+
μ2

1μ
2
2μ3/[λ(1−z2)+μ1+μ3]

[λ(1−z2)+μ2+μ3][λ(1−z1)+μ][λ(1−z2)+μ1][λ(1−z2)+μ1+μ2]

+
μ2

1μ2μ3

[λ(1−z2)+μ2+μ3][λ(1−z1)+μ][λ(1−z2)+μ2][λ(1−z2)+μ1]

+
μ2

1μ
2
2μ3

[λ(1−z1)+μ1+μ3][λ(1−z3)+μ3][λ(1−z1)+μ][λ(1−z3)+μ2][λ(1−z3)+μ1]

+
μ2

1μ
2
2μ3/[λ(1−z1)+μ1+μ3]

[λ(1−z1)+μ][λ(1−z3)+μ2][λ(1−z3)+μ1][λ(1−z1)+μ1+μ2]

+
μ1μ

2
2μ3

[λ(1−z1)+μ1+μ3][λ(1−z1)+μ][λ(1−z1)+μ1][λ(1−z1)+μ1+μ2]

+
μ2

1μ2μ3

[λ(1−z1)+μ][λ(1−z2)+μ2][λ(1−z2)+μ1][λ(1−z1)+μ1+μ2]

+
μ1μ2μ3

[λ(1−z1)+μ][λ(1−z1)+μ1][λ(1−z1)+μ1+μ2] .

(40)

Equation (40) well exemplifies the intrinsic complexity of
the ASIP model. A tree sketch of the solution steps for
the ASIP model with three gates (n = 3) is depicted in
Fig. 4.

We note that at first glance it might seem possible to
derive the steady-state marginal distributions of the random
variables {X1(t), . . . ,Xn(t)} iteratively, namely, to establish
a recursion equation relating the PGF of Xk(t) to the PGF
of Xk−1(t), and then solve it. However, the random variables
{X1(t), . . . ,Xk(t)} are correlated, and when trying to establish
the aforementioned recursion equation for the PGF of Xk(t),
we end up with the multidimensional PGF of the entire
vector [X1(t), . . . ,Xk(t)]. This is yet another feature of the
intractability of the ASIP model.

FIG. 4. Schematic illustration of the iterative solution of Eq. (27)
for n = 3. Step A: Eq. (27) is iterated repeatedly, in a branching-tree
structure, until reaching the leaves G(1,1,1) = 1. Step B: The tree is
folded back, yielding the value of the root G(z1,z2,z3) [Eq. (40)].

VI. LOAD ANALYSIS

In Secs. IV and V, we studied the PGF dynamics and
steady-state solution of the random vectors X(t) and Y(s),
and demonstrated intractability for large n. In this section, we
study the load of the ASIP model: the total number of particles
in the system, given by the sum of coordinates of the random
vectors X(t) and Y(s). Surprisingly so, the load turns out to be
analytically tractable.

A. Load analysis of X(t)

Let X(k)(t) denote the total number of particles present, at
an arbitrary time t (t � 0), in the first k waiting zones. The
random variable X(k)(t) is the sum of the first k coordinates
of the random vector X(t), i.e., X(k)(t) = X1(t) + · · · + Xk(t)
(k = 1, . . . ,n).

Observe the system at times t and t ′ = t + �, and use
the shorthand notation X(k) = X(k)(t) and X′

(k) = X(k)(t ′) (k =
1, . . . ,n). Equation (4) implies that the stochastic connection
between the random sums X(k) and X′

(k), characterizing the
Markovian dynamics of the stochastic process [X(k)(t)]t�0, is
given by

X′
(k) =

⎧⎪⎨
⎪⎩

X(k) w.p. 1 − (λ + μk)� + o(�),

X(k) + 1 w.p. λ� + o(�),

X(k−1) w.p. μk� + o(�).

(41)

Equation (41) follows from considering the events that may
take place and result in a change X(k) �→ X′

(k) 	= X(k) within
the time interval (t,t ′]. There are exactly two such events, and
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we label them according to the Poisson processes inducing
them: (0) the arrival of a particle to the first waiting zone,
occurring with probability λ� + o(�), in which case X(k) �→
X′

(k) = X(k) + 1; (k) opening of the kth gate, occurring with
probability μk� + o(�), in which case X(k) �→ X′

(k) = X(k−1).
The first line on the right-hand side of Eq. (41) represents the
scenario in which no event takes place, which occurs with
the complementary probability 1 − (λ + μk)� + o(�).

Let

GX(k) (t,z) = E[zX(k)(t)] (42)

(|z| � 1) denote the PGF of the random sum X(k)(t). Setting
z1 = · · · = zk = z and zk+1 = · · · = zn = 1, and noting that,
by definition, GX(k) (t,z) = GX(t,z, . . . ,z,1, . . . ,1), Eq. (21)
yields

∂GX(k)

∂t
(t,z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[λ(z − 1) − μ]GX(k) (t,z)

+
μ1GX(k) (t,z)

+ · · · +
μk−1GX(k) (t,z)

+
μkGX(k−1) (t,z)

+
μk+1GX(k) (t,z)

+ · · · +
μn−1GX(k) (t,z)

+
μnGX(k) (t,z).

(43)

Equation (43), in turn, implies that the PGF dynamics of the
random sum X(k)(t) is given by

∂GX(k)

∂t
(t,z) = [λ(z − 1) − μk]GX(k) (t,z) + μkGX(k−1) (t,z).

(44)

B. Load analysis of Y(s)

Let Y(k)(s) denote the total number of particles present,
immediately after the sth Poissonian event (s = 1,2, . . .), in
the first k waiting zones. The random variable Y(k)(s) is the
sum of the first k coordinates of the random vector Y(s), i.e.,
Y(k)(s) = Y1(s) + · · · + Yk(s) (k = 1, . . . ,n).

Observe the system at two consecutive s and s ′ = s + 1
Poissonian events, and use the shorthand notation Y(k) =
Y(k)(s) and Y ′

(k) = Y(k)(s ′) (k = 1, . . . ,n). Equation (5) implies
that the stochastic connection between the random sums Y(k)

and Y ′
(k), characterizing the law of motion of the stochastic

process [Y(k)(s)]∞s=1, is given by

Y ′
(k) =

⎧⎪⎪⎨
⎪⎪⎩

Y(k) w.p. μ−μk

λ+μ
,

Y(k) + 1 w.p. λ
λ+μ

,

Y(k−1) w.p. μk

λ+μ
.

(45)

Equation (45) follows from considering the events that result in
a change Y(k) �→ Y ′

(k) 	= Y(k). There are exactly two such events,

and we label them according to the Poisson processes inducing
them: (0) the arrival of a particle to the first waiting zone,
occurring with probability λ/(λ + μ), in which case Y(k) �→
Y ′

(k) = Y(k) + 1; (k) opening of the kth gate, occurring with
probability μk/(λ + μ), in which case Y(k) �→ Y ′

(k) = Y(k−1).
The first line on the right-hand side of Eq. (45) represents the
scenario in which a gate other than the kth gate opens, which
occurs with the complementary probability (μ − μk)/(λ + μ).

Let

GY(k) (s,z) = E[zY(k)(s)] (46)

(|z| � 1) denote the PGF of the random sum Y(k)(s). Setting
z1 = · · · = zk = z and zk+1 = · · · = zn = 1, and noting that,
by definition, GY(k) (s,z) = GY(s,z, . . . ,z,1, . . . ,1), Eq. (25)
yields

GY(k) (s
′,z) − GY(k) (s,z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(z−1)−μ

λ+μ
GY(k) (s,z)

+
μ1

λ+μ
GY(k) (s,z)

+ · · · +
μk−1

λ+μ
GY(k) (s,z)

+
μk

λ+μ
GY(k−1) (s,z)

+
μk+1

λ+μ
GY(k) (s,z)

+ · · · +
μn−1

λ+μ
GY(k) (s,z)

+
μn

λ+μ
GY(k) (s,z).

(47)

Equation (47), in turn, implies that the PGF dynamics of the
random sum Y(k)(s) is given by

GY(k) (s
′,z) − GY(k) (s,z) = λ(z − 1) − μk

λ + μ
GY(k) (s,z)

+ μk

λ + μ
GY(k−1) (s,z). (48)

C. Steady state

Consider now the ASIP model in steady state. In steady
state, the stochastic processes [X(k)(t)]t�0 and [Y(k)(s)]∞s=1
are stationary, and hence their respective PGFs are time
homogeneous: GX(k) (t,z) ≡ GX(k) (z) (t � 0) and GY(k) (s,z) ≡
GY(k) (z) (s = 1,2, . . .). Substituting the time-homogeneous
PGFs GX(k) (t,z) ≡ GX(k) (z) and GY(k) (s,z) ≡ GY(k) (z), respec-
tively, into Eqs. (44) and (48) yields the common equation

Gk(z) = μk

μk + λ(1 − z)
Gk−1(z) (49)

(k = 1, . . . ,n). Namely, both the PGFs GX(k) (z) and GY(k) (z)
are governed by Eq. (49).

Note that X(1)(t) = X1(t) and Y(1)(s) = Y1(s) and, hence,
the PGF G1(z) is given by Eq. (29). Using the initial condition
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G1(z) and iterating Eq. (49), we obtain that

E[zX(k)(t)] = E[zY(k)(s)] = μ1

μ1 + λ(1 − z)
· · · μk

μk + λ(1 − z)

= p1

1 − (1 − p1)z
· · · pk

1 − (1 − pk)z
, (50)

where pk = μk/(μk + λ) (k = 1, . . . ,n). As the initial con-
dition implies, in the case k = 1, Eq. (50) coincides with
Eq. (29). Interestingly, for k > 1, Eq. (50) attains a product-
form representation. This product form implies that both
X(k)(t) and Y(k)(t) are characterized by the following stochastic
decomposition: The random variables X(k)(t) and Y(k)(t)
are equal, in law, to the total number of particles in k

independentand single gated ASIP systems with respective
parameters (λ,μ1), . . . ,(λ,μk).

The PGF G(z) = p/[1 − (1 − p)z] characterizes a geomet-
ric law on the non-negative integers, which, in turn, has mean
1−p

p
and variance 1−p

p2 . Combining this fact together with the
aforementioned stochastic representation, we obtain that the
mean and variance of the random variables X(k)(t) and Y(k)(t)
are given, respectively, by

E[X(k)(t)] = E[Y(k)(s)] = λ

(
1

μ1
+ · · · + 1

μk

)
(51)

and

Var[X(k)(t)] = Var[Y(k)(s)] = λ

(
μ1 + λ

μ2
1

+ · · · + μk + λ

μ2
k

)
.

(52)

We emphasize that Eq. (50) implies that the distribution of
X(n)(t) and Y(n)(s) is independent of the order of the gates.
Consequently, permuting the gates (each gate carrying its own
opening rate with it) has no effect on the distribution of the
ASIP load. Thus, from a load perspective, the ASIP model is
invariant with respect to gate permutations.

VII. LOAD OPTIMIZATION

To design an efficient ASIP system, one would like to
minimize the system’s load, i.e., to minimize the number
of particles “in process” termed “work-in-process” (WIP in
production models [45]). In this section, we explore the
optimization of the ASIP’s load. In what follows, we consider
as given the exogenous inflow rate λ, and optimize the
endogenous service rates {μ1,μ2, . . . ,μn}.

A. Optimality

We begin with the combinatorial optimization of the ASIP
model. Namely, given a collection of n gates, each with its
own service rate, we seek an ordering of gates that renders a
target-functional optimal. As explained in the previous section,
the distribution of the ASIP’s load is invariant with respect to
gate permutations. Hence, for any target functional based on
the ASIP’s load distribution, optimization is trivial: all gate
permutations yield the same target-functional value.

Let us turn now to examine constrained optimization of the
ASIP model. To that end, we consider four optimization prob-
lems in which we seek to minimize a target functional based
on the ASIP’s load distribution, subject to a given constraint.

(i) Minimization of the load mean subject to a given
cumulative service rate. Assume that the cumulative service
rate μ is fixed and constant. Here, we seek an optimal allocation
of the cumulative service rate μ to the different gates, the goal
being a minimal load mean. Recalling Eq. (17), which asserts
that the load mean is given by the product λE[T ], we note
that the minimization of the load mean is equivalent to the
minimizing of the traversal time. By applying Eq. (51), we
obtain the constrained optimization problem

min

{
λ

(
1

μ1
+ · · · + 1

μn

)}
s.t.

μ1 + · · · + μn = μ, (53)

where s.t. stand for “subject to”.
(ii) Minimization of the load variance subject to a given

cumulative service rate. Assume that the cumulative service
rate μ is fixed and constant. Here, we seek an optimal allocation
of the cumulative service rate μ to the different gates, the goal
being a minimal load variance. By applying Eq. (52), we obtain
the constrained optimization problem

min

{
λ

(
μ1 + λ

μ2
1

+ · · · + μn + λ

μ2
n

)}
s.t.

μ1 + · · · + μn = μ. (54)

(iii) Minimization of the load variance subject to a given
load mean. Assume that the load mean is predetermined to
equal the value v (alternatively, assume that the traversal time
is predetermined to equal the value v/λ). Here, we seek the
optimal service rates that render the load variance minimal.
By applying Eqs. (51) and (52), we obtain the constrained
optimization problem

min

{
λ

(
μ1 + λ

μ2
1

+ · · · + μn + λ

μ2
n

)}
s.t.

λ

(
1

μ1
+ · · · + 1

μn

)
= v. (55)

This optimization problem is analogous to the Markowitz
optimization of financial portfolios in which one seeks to
minimize the portfolio variance, subject to a predetermined
portfolio mean [46].

(iv) Maximization of the zero-load probability subject to a
given cumulative service rate. Assume that the cumulative
service rate is fixed and constant. Here, we seek an optimal al-
location of the cumulative service rate to the different gates, the
goal being a maximal zero-load probability Pr[X(n)(t) = 0].
This zero-load probability is attained by setting z = 0 into the
PGF of the load X(n)(t). By setting z = 0 into the right-hand
side of Eq. (50), we obtain the constrained optimization
problem

max

{
μ1

μ1 + λ
. . .

μn

μn + λ

}
s.t.

μ1 + · · · + μn = μ. (56)
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Note that the constrained optimization problem (56) is
equivalent to the constrained optimization problem

min

{
ln

(
1 + λ

μ1

)
+ · · · + ln

(
1 + λ

μn

)}
s.t.

μ1 + · · · + μn = μ. (57)

The four aforementioned optimization problems admit the
general form

min {f (x1) + · · · + f (xn)}
s.t.

x1 + · · · + xn = c, (58)

where f (x) is a convex function and the variables are positive
valued: x1, . . . ,xn > 0. Indeed, (i) in the first problem,
xk = μk , c = μ, and f (x) = λ/x; (ii) in the second problem,
xk = μk , c = μ, and f (x) = (λ/x) + (λ/x)2; (iii) in the third
problem, xk = 1/μk , c = v/λ, and f (x) = (λx) + (λx)2;
and (iv) in the fourth problem, xk = μk , c = μ, and
f (x) = ln(1 + λ/x). The Lagrange function corresponding
to the optimization problem of Eq. (58) is given by

L(x1, . . . ,xn; θ ) =
(

n∑
k=1

f (xk)

)
+ θ

(
c −

n∑
k=1

xk

)
. (59)

Differentiating the Lagrange function with respect to the
variable xk and equating the partial derivative to zero yields
the equation

f ′(xk) = θ . (60)

Now, since the function f (x) is convex [f ′′(x) > 0], its
derivative f ′(x) is monotone increasing. This implies that
Eq. (60) admits a unique solution, which, in turn, implies that
the unique critical point of the Lagrange function satisfies
x1 = · · · = xn. Since the target function

∑n
k=1 f (xk) is

convex, and the constraint
∑n

k=1 xk = c is linear, we conclude
that [47] the global minimum of the optimization problem
(58) is given by x1 = · · · = xn = c/n.

Thus, the solution to all four aforementioned optimization
problems turns out to be a homogeneous ASIP system, with
service rates μ1 = μ2 = · · · = μn. This optimization conclu-
sion highlights the importance of homogeneous ASIP systems
within the class of general ASIP systems. The optimality of
the homogeneous solution is illustrated graphically in Fig. 5.

B. Deviations from optimality and bottlenecks

Having concluded that homogeneous ASIP systems are
optimal, we turn to discuss deviations from optimality. Of
particular interest is the sensitivity of the target function to
small changes in the optimal service rates vector. To this end,
we find it useful to borrow the “bottleneck” concept from
the ASEP nomenclature [48]. Bottlenecks are sites where the
hopping rate of particles is reduced compared to the rest of
the system. In the ASEP, the main effect of bottlenecks is
to decrease the current (or flow) through the system [49].
In the ASIP, the steady-state flow of particles is always
given by λ and, hence, is independent of the service rates
{μ1,μ2, . . . ,μn}. Interestingly, bottlenecks are nevertheless

FIG. 5. (Color online) Optimality of homogeneous ASIP sys-
tems. Panels (a)–(c) are associated with the optimization problems
presented in Eqs. (53), (54), and (56), respectively. In all three panels,
results are shown for ASIP systems with 25 gates (n = 25) and an
inflow rate of λ = 1. The constraint parameters μ in Eqs. (53) and (54)
and v in Eq. (56) are taken to equal 25 (μ = v = 25). The optimal
solution under these conditions is identical for all three problems
and is given by μ1 = μ2 = · · · = μ25 = 1. The value of the target
function, evaluated at randomly drawn rate vectors (μ1, . . . ,μ25), is
plotted vs the Euclidean distance of these vectors from the optimal
rate vector (1,1, . . . ,1). The optimality of the latter is clearly visible.
In each panel, rate vectors are randomly drawn 25 000 times in the
two following methods: Gaussian sampling and uniform sampling.
In the Gaussian sampling, Gaussian noise is added to the optimal
rate vector. This vector is then normalized to form a rate vector that
complies with the problem constraints. In the uniform sampling, the
interval [0,25] is dissected into 25 segments by randomly drawing 24
numbers from a uniform distribution over that interval. The lengths
of these segments are then taken to represent the rate vector [in the
case of panels (a) and (b)] or the inverse rate vector ( 1

μ1
, . . . , 1

μ25
) in

the case of panel (c).
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useful in understanding deviations from optimality since both
the load mean and load variance of an ASIP system are
sensitive to their existence.

When it comes to the sensitivity of the target function to
perturbations around the optimal solution, Fig. 5(c) shows
a strikingly different behavior compared to Figs. 5(a) and
5(b). While in Figs. 5(a) and 5(b), small deviations from the
optimal rates vector may change the target function by orders
of magnitude, this is hardly the case in the Fig. 5(c).

This phenomenon can easily be understood by noting that in
the first two optimization problems discussed above, the given
cumulative service rate constraint does not impose a lower
bound on the service rates in the system. This constraint can
therefore be satisfied even in the presence of a site, the service
rate of which is infinitesimally small. A single bottleneck
(or defect) within an otherwise (almost) homogeneous ASIP
system will result in nothing but a slight deviation from the
optimal solution. However, since the load mean and load
variance are highly sensitive to the existence of bottlenecks,
the impact on the target function will be tremendous.

The situation is considerably different when the given
cumulative service rate constraint is replaced by a given
load-mean constraint as is done in the third optimization
problem above. The latter imposes a lower bound on the service
rates in the system. Moreover, in order to satisfy the constraint,
the existence of a bottleneck forces the allocation of extremely
high service rates to many other sites. And so, the impact of
bottlenecks on the target function is both limited and, when
substantial, accompanied by a discernible deviation from the
optimal solution.

VIII. CONCLUSIONS

We introduced and analyzed the asymmetric inclusion
process (ASIP), a model for a unidirectionally driven lattice
gas of particles subject to inclusion interactions. The ASIP
represents a bosonic counterpart of the fermionic asymmetric
exclusion process (ASEP), a tandem array of Markovian
queueing systems with (unlimited) batch service and a tandem
array of growth-collapse processes. The ASIP, counterwise
to its simple description, is highly complex and intractable.
Nonetheless, we succeeded in penetrating the ASIP’s in-
tractability by obtaining the following results: (i) explicit
evolution equations for the mean and PGF; (ii) explicit solution
of the mean in steady state; (iii) explicit equations for the
PGF in steady state; (iv) explicit solution of the steady-state
PGF for small systems (n = 1,2,3), and an iterative scheme
for the computation of the steady-state PGF for systems of
arbitrary size; (v) explicit solution of the mean, variance, and
PGF of the load in steady state; and (vi) explicit solutions of
various load-optimization problems, rendering homogeneous
ASIP models optimal. Our paper joins a recent and novel set
of research papers bridging the seemingly distinct fields of
statistical physics and queueing theory.
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APPENDIX

We solve (27) for the ASIP with three gates n = 3. In this
case, Eq. (27) reduces to

[λ(1 − z1) + μ]G(z1,z2,z3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ1G(z2,z2,z3)

+
μ2G(z1,z3,z3)

+
μ3G(z1,z2,1).

(A1)

Now, following the scheme’s basic step, we iteratively apply
Eq. (A1) to the daughters G(z2,z2,z3), G(z1,z3,z3), and
G(z1,z2,1).

From the embedding property (see Sec. IV C), the daughter
G(z1,z2,1) is equal to G(z1,z2) and is hence known and given
by Eq. (39). For the daughter G(z1,z3,z3), the basic step yields

[λ(1 − z1) + μ]G(z1,z3,z3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ1G(z3,z3,z3)

+
μ2G(z1,z3,z3)

+
μ3G(z1,z3,1)

(A2)

from which we obtain

[λ(1 − z1) + μ1 + μ3]G(z1,z3,z3) =

⎧⎪⎨
⎪⎩

μ1G(z3,z3,z3)

+
μ3G(z1,z3,1).

(A3)

Again, the daughter G(z1,z3,1) is known and given by Eq. (39).
For the daughter G(z3,z3,z3), the basic step yields

[λ(1 − z3) + μ]G(z3,z3,z3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ1G(z3,z3,z3)

+
μ2G(z3,z3,z3)

+
μ3G(z3,z3,1)

(A4)

from which we obtain

[λ(1 − z3) + μ3]G(z3,z3,z3) = μ3G(z3,z3,1). (A5)

We conclude that

G(z1,z3,z3) =

⎧⎪⎨
⎪⎩

μ1μ3G(z3,z3,1)
[λ(1−z1)+μ1+μ3][λ(1−z3)+μ3]

+
μ3G(z1,z3,1)

λ(1−z1)+μ1+μ3
.

(A6)

We now return to the daughter G(z2,z2,z3); applying the
basic step yields

[λ(1 − z2) + μ]G(z2,z2,z3) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ1G(z2,z2,z3)

+
μ2G(z2,z3,z3)

+
μ3G(z2,z2,1)

(A7)
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from which we obtain

[λ(1 − z2) + μ2 + μ3]G(z2,z2,z3) =

⎧⎪⎨
⎪⎩

μ2G(z2,z3,z3)

+
μ3G(z2,z2,1).

(A8)

Here, both the daughter G(z2,z2,1) and the daughter
G(z2,z3,z3) are known and given by Eqs. (38) and (A6),
respectively. We conclude that

G(z2,z2,z3)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ1μ2μ3G(z3,z3,1)
[λ(1−z2)+μ1+μ3][λ(1−z2)+μ2+μ3][λ(1−z3)+μ3]

+
μ2μ3G(z2,z3,1)

[λ(1−z2)+μ1+μ3][λ(1−z2)+μ2+μ3]

+
μ3G(z2,z2,1)

λ(1−z2)+μ2+μ3
.

(A9)

By substituting the expressions for G(z2,z2,z3) and
G(z1,z3,z3) into Eq. (A1), we obtain

[λ(1 − z1) + μ]G(z1,z2,z3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2
1μ2μ3G(z3,z3,1)

[λ(1−z2)+μ1+μ3][λ(1−z2)+μ2+μ3][λ(1−z3)+μ3]

+
μ1μ2μ3G(z2,z3,1)

[λ(1−z2)+μ1+μ3][λ(1−z2)+μ2+μ3]

+
μ1μ3G(z2,z2,1)
λ(1−z2)+μ2+μ3

+
μ1μ2μ3G(z3,z3,1)

[λ(1−z1)+μ1+μ3][λ(1−z3)+μ3]

+
μ2μ3G(z1,z3,1)
λ(1−z1)+μ1+μ3

+
μ3G(z1,z2,1).

(A10)

By substituting the expressions for G(z3,z3,1), G(z2,z3,1),
G(z2,z2,1), G(z1,z3,1), and G(z1,z2,1) into Eq. (A10), we
obtain the final expression for G(z1,z2,z3) given in Eq. (40).
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