
Asymmetric Inclusion Process as a Showcase of Complexity

Shlomi Reuveni,1,2 Iddo Eliazar,3 and Uri Yechiali2

1School of Chemistry, Tel-Aviv University, Tel-Aviv 69978, Israel
2Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

3Department of Technology Management, Holon Institute of Technology, Holon 58102, Israel
(Received 31 October 2011; revised manuscript received 21 May 2012; published 11 July 2012)

The asymmetric inclusion process is a lattice-gas model which replaces the ‘‘fermionic’’ exclusion

interactions of the asymmetric exclusion process by ‘‘bosonic’’ inclusion interactions. Combining together

probabilistic andMonte Carlo analyses, we showcase themodel’s rich statistical complexity—which ranges

from ‘‘mild’’ to ‘‘wild’’ displays of randomness: Gaussian load and draining, Rayleigh outflow with linear

aging, inverse-Gaussian coalescence, intrinsic power-law scalings and power-law fluctuations and

condensation.
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The asymmetric inclusion process (ASIP), a lattice-gas
model in one dimension, was introduced and analyzed in [1].
The ASIP is an exactly solvable ‘‘bosonic’’ counterpart of
the ‘‘fermionic’’ asymmetric exclusion process (ASEP)—a
fundamental model in nonequilibrium statistical physics
[2–4]. In both processes, random events cause particles
to propagate unidirectionally along a one-dimensional lat-
tice. In the ASEP particles are subject to exclusion inter-
actions that keep them singled apart, whereas in the ASIP
particles are subject to inclusion interactions that coalesce
them into inseparable clusters. We note that other coales-
cence (also known as coagulation) processes, in which
particles attract or cluster, have been studied in the past
and we refer the interested reader to [5] and to references
therein.

The formulation of the ASIP is as follows. Consider a
one-dimensional lattice of n sites indexed k ¼ 1; . . . ; n.
Each site is followed by a gate—labeled by the site’s
index—which controls the site’s outflow. Particles arrive
at the first site (k ¼ 1) following a Poisson process with
rate �, the openings of gate k are timed according to a
Poisson process with rate �k (k ¼ 1; . . . ; n), and the nþ 1
Poisson processes are mutually independent. Note that
from this definition it follows that the times between
particle arrivals, and the times between the openings
of gate k, are independent and exponentially distrib-
uted—the former with mean 1=�, and the latter with
mean 1=�k (k ¼ 1; . . . ; n). At an opening of gate k all
particles present at site k transit simultaneously, and in
one cluster (one ‘‘batch’’), to site kþ 1—thus joining
particles that may already be present at site kþ 1
(k ¼ 1; . . . ; n� 1). At an opening of the last gate (k ¼ n)
all particles present at the last site (k ¼ n) exit the lattice
simultaneously. The ASIP model is illustrated in Fig. 1.

The ASIP links together the ASEP with an apparently
unrelated model—the tandem Jackson network (TJN),
which is a fundamental service model in queuing theory
[6–8]. All three models—ASEP, TJN, and ASIP—share

the aforementioned sites-gates lattice structure. To pin-
point the difference between the models consider the
two following characteristic capacities: (i) site capacity
csite—the number of particles that can simultaneously oc-
cupy a given site, and (ii) gate capacity cgate—the number

of particles that are simultaneously transferred through
a given gate when it opens. In the ASEP csite ¼ 1 and
cgate ¼ 1 (or cgate ¼ 1), in the TJN csite ¼ 1 and

cgate ¼ 1, and in the ASIP csite ¼ 1 and cgate ¼ 1. The

case cgate ¼ 1 is also referred as ‘‘unlimited batch ser-

vice’’ and the ASIP can hence be thought of as a TJN with
this additional property. The capacity classification is sum-
marized in Table I—from which it is evident that the ASIP
is, in effect, the ‘‘missing puzzle piece’’ connecting to-
gether the well established ASEP and TJN models.
The analysis conducted in [1] concludes that the ASIP,

despite its simple description, displays highly complex
stochastic dynamics. An iterative scheme for the compu-
tation of the multidimensional probability generating func-
tion (PGF) of the ASIP’s site occupancies at steady state
was established. Yet, the PGF turns out to be analytically
intractable even for small n—a fact that is vivid from the
very rapid growth in complexity of the explicit PGF ex-
pressions for n ¼ 1, 2, 3 [1]. Interestingly, the ASIP’s
load—defined as the total number of particles present in
the lattice—is tractable, and explicit results for its steady
state distribution were obtained.
Homogeneous ASIPs are characterized by identical

gate opening rates: �1 ¼ � � � ¼ �n. The subclass of

FIG. 1 (color online). An Illustration of the ASIP model.
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homogeneous ASIPs is of special importance. Indeed, it
has been shown [1] that amongst the class of general ASIPs
the subclass of homogeneous ASIPs is optimal with re-
spect to various measures of efficiency (in what follows
� ¼ �1 þ � � � þ�n denotes the ASIP’s total gate opening
rate): (i) minimization of the load-mean subject to a given
�; (ii) minimization of the load-variance subject to a given
�; (iii) maximization of the zero-load probability subject
to a given�; (iv) minimization of the load-variance subject
to a given load mean.

In this Letter, combining together analytic results and
Monte Carlo simulations, we study the homogeneous ASIP
with rates: � ¼ �1 ¼ � � � ¼ �n ¼ 1. The analysis, focus-
ing on the ASIPs steady state in large lattices (n � 1), will
reveal a rich assortment of statistical behaviors which
manifest the ASIP’s intrinsic complexity.

In what follows we denote by XkðtÞ the number of
particles present in site k at time t, and set XðtÞ ¼ ðX1ðtÞ;
. . . ; XnðtÞÞ. The random vector XðtÞ represents the ASIP’s
occupancy at time t (t � 0). The stochastic processes
ðXðtÞÞt�0 is asymptotically stationary, and it converges in
law (as t ! 1) to a stochastic limit X ¼ ðX1; . . . ; XnÞ [1].
The random variable Xk represents the number of particles
present at site k at steady state, and the random vector X
represents the ASIP’s occupancy at steady state. As noted
above the PGF of the random vector X is effectively
intractable. Henceforth, given a vector v ¼ ðv1; . . . ; vnÞ
we denote by jvj ¼ v1 þ � � � þ vn its sum of components,
and by #ðvÞ the number of its nonzero components.

In systems where fluctuations around the average level
of the occupancy vector are not too wild, an average based
description provides a fair, first order, approximation to the
systems’ behavior. This holds for the ASEP and TJN, but
does not hold for the ASIP. Analysis asserts that the ASIP’s
mean occupancy at steady state is given by hXki ¼ �=�k

(k ¼ 1; . . . ; n) [1]. Thus, for our homogeneous ASIP
hXki ¼ 1. On the other hand, Monte Carlo analysis de-
picted in Fig. 2 asserts that the following power-law
asymptotics hold (k � 1):

PrðXk > 0Þ � k�1=2;

hXkjXk > 0i � k1=2;

�ðXkÞ=hXki � k1=4;

(1)

where �ðXkÞ denotes the standard deviation of the random
variable Xk. Namely, at steady state (i) the probability that

site k is occupied decreases like k�1=2, (ii) the conditional
mean number of particles occupying site k, given that the

site is occupied, increases like k1=2 [9], and (iii) the stan-
dard deviation of the number of particles occupying site k,
measured with respect to the mean number of particles

occupying site k, increases like k1=4. The power-law
asymptotics of Eq. (1) imply that ‘‘downstream sites’’
(k � 1) are rarely occupied, but when they are—they are
occupied by a large number of particles (in comparison to
the mean occupancy hXki ¼ 1). This ‘‘all-or-none’’ type of
steady-state behavior results in large occupancy fluctua-
tions of downstream sites, and hence renders the ‘‘aver-
aged’’ description of the ASIP rather limited.
The power-law asymptotics of Eq. (1) are further induced

to the ASIP’s density of occupied sites: Dn ¼ 1
n #ðXÞ.

A Monte Carlo analysis depicted in Fig. 2 asserts that the
following power-law asymptotics hold (n � 1):

hDni � n�1=2; �ðDnÞ=hDni � n�1=4; (2)

where �ðDnÞ denotes the standard deviation of the density
Dn. Namely, at steady state the particles occupying the
lattice sites condense to a vanishingly small fraction Dn of
sites: (i) the mean density of occupied sites decreases to zero

like n�1=2; (ii) the standard deviation of the density of

FIG. 2 (color online). Top panel: The probability that site k is
occupied, as a function of the index k, on a log-log plot; the
linear fit implies a power law decay with exponent �1=2. Top
panel inset: The mean and the standard deviation (STD) of the
occupancy of site k, as a function of the index k. Each site is
occupied, on average, by a single particle, yet the fluctuations
around the mean grow like k1=4, and are hence typically much
larger than the mean occupancy itself. Bottom panel: The mean
and the relative STD of the density of occupied sites, as a
function of the lattice size n, on a log-log plot; the linear fits
imply power law decays with respective exponents �1=2 and
�1=4—which, in turn, manifests condensation.

TABLE I. Capacity classification of the ASEP, TJN, and ASIP
models.

csite ¼ 1 csite ¼ 1
cgate ¼ 1 ASEP TJN

cgate ¼ 1 ASEP ASIP
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occupied sites, measured with respect to the mean density of

occupied sites, decreases like n�1=4. This power-law con-
densation of particles is yet another manifestation of the ‘all-
or-none’ steady-state behavior noted above.

We now turn to explore four key observables �n of the
ASIP at steady state: Load, draining time, interexit time,
and coalescence time. A Monte Carlo analysis asserts that
these four observables (to be defined momentarily) are
random variables admitting asymptotic stochastic approx-
imations of the form (n � 1):

�n � an�þ bn; (3)

where an and bn are deterministic scaling coefficients, and
where� is a limiting random variable. For each observable
the coefficients an, bn, and the limit � will be specified
hereinafter.

Load.—As noted above, the ASIP’s load is the total
number of particles present in the lattice: �n ¼ jXj. For
the ASIP’s load the coefficients are an ¼

ffiffiffiffiffiffi
2n

p
and bn ¼ n,

and the limit � is Gaussian with zero mean and unit
variance. This result is identical, in form, to the standard
central limit theorem (CLT) [10]. However, while the
standard CLT setting requires the random variables
fXkgnk¼1 to be independent and identically distributed, in

the ASIP the random variables fXkgnk¼1 are neither inde-

pendent nor identically distributed. Rather surprisingly, it
was established that, at steady state [1]: The load of an
ASIP with rates ð�;�1; . . . ; �nÞ is equal, in law, to the sum
of loads of n independent single-site ASIPs with respective
rates ð�;�1Þ; . . . ; ð�;�nÞ. Thus, in the case of homogene-
ous ASIPs, the CLT can be applied to obtain the load
asymptotics.

Draining time.—Consider the ASIP with no inflow
(� ¼ 0), and assume that at time t ¼ 0 the ASIP’s occu-
pancy is given by the steady state vector: Xð0Þ ¼ X. The
ASIP’s draining time is the time elapsing till the lattice is
clear of particles: �n ¼ infft � 0jjXðtÞj ¼ 0g. In other
words, the ASIP’s draining time is the random time re-
quired for ‘‘draining out’’ an ASIP at steady state, after
having blocked the inflow of new-coming particles. For the
ASIP’s draining time the coefficients are an ¼

ffiffiffi
n

p
and

bn ¼ n, and the limit � is Gaussian with zero mean and
unit variance. In effect, Monte Carlo analysis illustrated in
Fig. 3 asserts that the draining time �n is approximately
gamma with mean n and variance n. In turn, this gamma
approximation implies that the draining time �n is equal,
in law, to the sum of n independent exponential random
variables with unit mean [10]. Thus, the CLT applies to the
draining-time asymptotics as well.

Interexit time.—The openings of the last ASIP gate are
governed by a Poisson process with unit rate (�n ¼ 1), and
when the last gate opens all the particles present in the last
site exit the lattice. Equation (1) asserts that the steady-
state probability that the last site is nonempty is given by

PrðXn > 0Þ � n�1=2. Consequently, not every opening of

the last gate indeed results in an exit of particles from the
lattice. The ASIP’s interexit time—for an ASIP in steady
state—is defined as the time elapsing between two con-
secutive time epochs at which particles exit the lattice. For
the ASIP’s interexit time the coefficients are an ¼

ffiffiffiffiffiffiffi
�n

p
and bn ¼ 0, and the limit� is Rayleigh with unit mean and
probability tail

Prð�> tÞ ¼ expð��t2=4Þ (4)

(t > 0). In effect, the Monte Carlo analysis illustrated in
Fig. 4 shows that the Rayleigh approximation well captures
the data even for relatively small n.
The hazard rate hTðtÞ (t > 0) of a random time T is

defined as the limit hTðtÞ¼ lim�!0
1
� PrðT� tþ�jT>tÞ

[11]. Namely, given that the random time T did not realize
during the time interval [0, t], the realization rate of the
random time T immediately after time t is hTðtÞ. On the one
hand, the ASIP’s interarrival time is exponential—which is
the unique random time characterized by a constant hazard
rate. On the other hand, the ASIP’s interexit time is
approximately Rayleigh—which is the unique random
time characterized by a linear hazard rate. Namely,
the interarrival time is memory less (due to its constant

FIG. 3 (color online). Gamma approximation of the draining
time; bars represent simulated histograms, and dashed lines
represent Gamma density fits. The mean and the variance of
the Gamma distribution, for n ¼ ½50; 100; 150�, are given re-
spectively by [49, 99, 149] and [51.1, 101.3, 151.2]. Inset: The
Gaussian limit of the scaled draining time.

FIG. 4 (color online). Rayleigh approximation of the interexit
time; bars represent simulated histograms, and dashed lines
represent Rayleigh density fits. The mean and variance of the
Rayleigh distribution, for n ¼ ½50; 100; 250�, are given respec-
tively by [12.6, 17.8, 28.1] and [43.3, 86.2, 215.4]. Inset: The
Rayleigh limit of the scaled interexit time.
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hazard rate), whereas the interexit time is aging linearly:
h�ðtÞ ¼ ð�=2Þ � t. Thus, in the transition from the ASIP’s
inflow to the ASIP’s outflow an aging effect emerges.

Coalescence time.—Consider a circular ASIP in which
the output of the last site is the input of the first site,
and assume that at time t¼0 all sites are occupied:
#ðXð0ÞÞ¼n. As time progresses, gates open and particles
coalesce into larger and larger particle clusters. Eventually,
all particles will coalesce to a single ‘super cluster’.
The ASIP’s coalescence time is the time elapsing till
all particles coalesce together and form the ‘‘super
cluster’’:�n ¼ infft � 0j #ðXðtÞÞ ¼ 1g. For the ASIP’s co-
alescence time the coefficients are an ¼ n2=6 and bn ¼ 0,
and the limit � is inverse Gaussian with unit mean and
probability density function

d

dt
Prð� � tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi

2��
p t�3=2 exp

�
�ðt� 1Þ2

2�t

�
(5)

(t > 0; � ¼ 2=5). In effect, the Monte Carlo analysis illus-
trated in Fig. 5 shows that the inverse-Gaussian approxi-
mation well captures the data even for relatively small n.
We note that the inverse-Gaussian distribution character-
izes the first passage time of Brownian motion with linear
drift [12]: the probability distribution of the random time
infft � 0jtþ ffiffiffi

�
p

BðtÞ ¼ 1g, where ðBðtÞÞt�0 is Brownian
motion, is quantified by the probability density function
of Eq. (5).

The three random times explored above—the draining
time, the interexit time, and the coalescence time—are, in
effect, first passage times of the ASIP [13]. The four
asymptotic stochastic approximation results are summa-
rized in Table II.

The ASEP and the TJN are two fundamental models
describing unidirectional flow along one-dimensional lat-
tices, the first applied in nonequilibrium statistical physics,
and the latter applied in queueing theory. When classified
according to their local capacities, the ASIPmodel emerges
as a missing puzzle piece. From a statistical-physics

perspective the ASIP replaces the ASEP’s fermionic
exclusion interactions by Bosonic inclusion interactions.
From a queueing-theory perspective the ASIP is a TJN
model with unlimited batch service.
In this Letter, we combined together probabilistic and

Monte Carlo analyses to explore the ASIP’s rich statistical
complexity which ranges from various ‘‘mild’’ and ‘‘inter-
mediate’’ forms of randomness (displayed by the load and
by the first passage times), to ‘‘wild’’ forms of randomness
(displayed by the occupancies and by the density of occu-
pied sites) [14]. Full mathematical proofs for the vast
majority of the results presented herein have already
been obtained and will be discussed in detail in two forth-
coming research papers. We hope that this Letter will
stimulate the transfer of knowledge between the
statistical-physics and the queueing-theory communities,
two scientific communities sharing the common goal of
modeling complex stochastic systems.
We acknowledge David Mukamel and Ori Hirschberg

for fruitful discussions.
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FIG. 5 (color online). Inverse-Gaussian approximation of the
coalescence time; bars represent simulated histograms, and
dashed lines represent inverse-Gaussian density fits. The mean
and the variance, for n ¼ ½50; 75; 100�, are given respectively by
[416, 937, 1669] and [69 984, 354 334, 1 126 670]. Inset: The
inverse-Gaussian limit of the scaled coalescence time.

TABLE II. Asymptomatic stochastic approximations of the
ASIP observables: load, draining time, interexit time, and co-
alescence time.

an bn � h�i �2ð�Þ
Load

ffiffiffiffiffiffi
2n

p
n Gaussian 0 1

Draining time
ffiffiffi
n

p
n Gaussian 0 1

Interexit time
ffiffiffiffiffiffiffi
�n

p
0 Rayleigh 1 4��

�

Coalescence time n2=6 0 Inv. Gauss. 1 2=5
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