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Abstract

We study a system of two non-identical and separate M/M/1/• queues with capacities

(buffers) C1 < ∞ and C2 = ∞, respectively, served by a single server that alternates between

the queues. The server’s switching policy is threshold-based, and, in contrast to other threshold

models, is determined by the state of the queue that is not being served. That is, when neither

queue is empty while the server attends Qi (i = 1, 2), the server switches to the other queue as

soon as the latter reaches its threshold. When a served queue becomes empty we consider two

switching scenarios: (i) Work-Conserving, and (ii) Non-Work-Conserving. We analyze the two

scenarios using Matrix Geometric methods and obtain explicitly the rate matrix R, where its

entries are given in terms of the roots of the determinants of two underlying matrices. Numerical

examples are presented and extreme cases are investigated.
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1 Introduction

We study two-queue polling-type systems governed by a threshold-based switching policy where, in

contrast to many other works in the literature, the server’s switching decisions are determined by
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the queue that is not being served. Specifically, whenever the server attends queue i (Qi), i = 1, 2,

it serves the customers there until the first moment thereafter when the number of customers in

the other queue, Qj , j 6= i reaches its threshold level. At that instant the server immediately

switches to Qj (preemptive policy), unless the number of customers in Qi is greater than or equal

to Qi’s own threshold level. In the latter situation the server remains in Qi until the number of

customers there is reduced below Qi’s threshold level, and only then does it switch to Qj . When a

served Qi becomes empty, we consider two switching scenarios: (i) Work-Conserving: If Qj is not

empty, the server switches immediately; otherwise, it remains idle until either one of the queues

becomes non empty. (ii) Non-Work-Conserving: The server remains in Qi (idle or busy) until the

first moment when Qj reaches its threshold level. For each Qi we assume that the queue’s capacity

is Ci and that customers arrive according to a Poisson process with rate λi. The service time for

each individual customer is exponentially distributed with mean 1/µi. All the arrival and service

processes are independent. For Q1 we let C1 < ∞, while for Q2 we set C2 = ∞. We note that

if both capacities C1 and C2 are infinite, the problem will be completely different and will require

an entirely different approach than the current one. The threshold levels are K ≤ C1 for Q1, and

N < C2 for Q2. The system is depicted in Figure 1.1.

 

K 

Server 

λ1 

Q1 with Capacity C1 < ∞ 

Threshold level K ≤ C1 

µ1 or µ2 

λ2 

Q2 with Capacity C2 = ∞ 

Threshold level N < C2 

N 

Figure 1.1: Two Queues Served by a Single Alternating Server with Threshold Policy.

A motivation for such a model is, for example, an automated traffic light (or a traffic policeman)

that regulates the traffic of vehicles crossing an intersection. The traffic light alternates right-of-way
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priority between two directions as follows: when one direction has the right-of-way and the accumu-

lating number of cars in the other direction reaches a threshold, the right-of-way is transferred to

the latter direction, and vice versa. Another application arises in data centers, where a rack of discs

requires special attention when the amount of recorded data exceeds a certain limit (threshold),

causing an inefficient operation that calls for a clean-up action. A more abstract example refers to

human beings, who often behave in a similar manner: while working on a given task, they let the

load of other tasks pile up. Only when the amount of work of another task exceeds a threshold do

they switch their attention to that task.

Single-server polling systems, where the server visits the queues in a cyclic order, mostly under

Exhaustive, Gated, Globally-Gated, or k-limited service regimes, have been studied extensively in

the queueing literature (see e.g. Takagi [20], Boxma, Levy and Yechiali [5], Yechiali [21], Boon et al.

[3], and many references therein). Threshold based polling systems have also been treated (see e.g.

Lee [12], Lee and Sengupta [13], Haverkot et al. [10], Boxma et al. [6, 7], Avram and Gómez-Corral

[2], Perel [16] and many others). In most of the above-mentioned studies, the switching policy is

determined by the state of the queue that is presently being served. Recently, Avrachenkov et al. [1]

studied a two-queue finite-buffers system with a threshold-based switching policy. Using algebraic

methods, they investigated the effects of buffer sizes, arrival rates and service rates on the system’s

performance.

In this paper we concentrate on the derivation of the joint distribution function of the queue-size

process for each of the two scenarios described above. To this end, we formulate each system as a

quasi birth-and-death (QBD) process having a three-dimensional state space. We study the sys-

tem’s steady-state behavior by applying Matrix Geometric methods (see e.g., Neuts [14], Latouche

and Ramaswami [11]) and obtain explicitly the rate matrix R. A detailed analysis of the Work-

Conserving switching scenario is presented, while the Non-Work-Conserving scenario is only briefly

discussed (since its analysis is very similar to that of the former). The two scenarios are compared

numerically.

The structure of the paper is as follows: In Section 2 the mechanism of the Work-Conserving

scenario is characterized. In Section 3 the system is defined as a QBD process and a Matrix Ge-

ometric approach is employed to derive the system’s steady-state probabilities. Investigating the

rate matrix R reveals that its elements are closely related to the roots of two polynomial equations,
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det (A(z)) = 0, and det (B(z)) = 0, where A(z) and B(z) are two matrices related to the Probabil-

ity Generating Functions (PGFs) of the phases of the QBD process. We show that the entries of

the rate matrix R are explicitly calculated in terms of the roots of the determinants of the above

two matrices. The theoretical relationship between the diagonal elements of R and the roots of the

matrices A(z) and B(z) has not been analytically investigated, but has already been observed in

other studies such as Paz and Yechiali [15], Perel N. and Yechiali [17] and Hanukov et al. [9]. In

Section 4 the Non-Work-Conserving switching scenario is briefly treated, while in Section 5 numer-

ical results are presented and the two scenarios are compared. The numerical results are followed

by a discussion pointing out various phenomena occurring as a result of changes in parameters and

queue capacities. Section 6 deals with extreme cases, while Section 7 concludes the paper.

2 Work-Conserving Scenario: Model Description

Consider a single-server two-queue polling-type system where the server’s switching instants be-

tween the queues follow a threshold policy based on the queue that is not being served. Each queue

i (Qi), i = 1, 2, operates as an M/M/1/Ci queue, with a Poisson arrival rate λi and exponentially

distributed service time having mean 1/µi. The overall capacity of Q1 is 1 ≤ C1 <∞ and of Q2 is

C2 =∞. That is, customers arriving at Q1 and finding C1 customers present there are blocked and

balk from the system. When the server attends a non-empty Q1 (Q2, respectively), it continues

serving customers there until the first moment thereafter when the number of customers in the

other queue, Q2 (Q1), reaches its threshold level, N (K). At that instant the server immediately

switches to Q2 (Q1) and continues serving there until the first moment thereafter when the queue

size in Q1 (Q2) reaches K (N). At that moment the server switches back to Q1 (Q2), and so forth.

Denoting by Li(t) the number of customers in Qi at time t, then, if at a called-for switching moment

from Q1 (Q2) to Q2 (Q1) the number of customers in Q1 (Q2) is still L1(t) ≥ K (L2(t) ≥ N), the

server remains in Q1 (Q2) until the first moment thereafter when L1(t) (L2(t)) reduces to K − 1

(N − 1), and only then switches to Q2 (Q1). When the server empties Q1 (Q2) while L2(t) > 0

(L1(t) > 0), it immediately switches to the other queue. To keep the analysis less cumbersome we

analyze the case where K = C1 and N < C2 (noting that the analysis of the case where K < C1 is

similar). Let I(t) = 1 if at time t the server attends Q1, and I(t) = 2 if the server attends Q2. The

triple (L1(t), L2(t), I(t)) defines a non reducible continuous-time Markov chain with transition-rate
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Figure 2.1: Transition-rate diagram of (L1(t), L2(t), I(t)). Work-Conserving.

diagram depicted in Figure 2.1 (the numbers 1 or 2 appearing next to each node indicate whether

I(t) = 1, or I(t) = 2, respectively). Each box (k, n) depicts both the state where I(t) = 1 and

the state where I(t) = 2. It will be shown that a necessary and sufficient condition for stability is

λ2 < µ2. In such a case, let Li = limt→∞ Li(t) and I = limt→∞ I(t). Consequently, for a system in

steady state, let Pkn(i) = P(L1 = k, L2 = n, I = i), where 0 ≤ k ≤ K; 0 ≤ n; i = 1, 2.

3 The QBD Process

3.1 Matrix Geometric

The triple (L1(t), L2(t), I(t)) defines a quasi birth-and-death (QBD) process, where L2(t) denotes

the level and the pair (L1(t), I(t)) indicates the phase of the process. We order the resulting infinite-

state space S as follows: We start with column L2 = 0 and go down the boxes from L1 = 0 to

L1 = K, where in each box we specify first the state associated with I = 1, and then the state asso-

ciated with I = 2 (if any). We proceed similarly with columns L2 = 1, 2, 3, ..., N,N + 1, ... . Thus,

the state’s space is S = {(0, 0, 1), (0, 0, 2), (1, 0, 1), (2, 0, 1), ..., (K, 0, 1) ; (0, 1, 2), (1, 1, 1), (1, 1, 2),
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..., (K − 1, 1, 1), (K − 1, 1, 2), (K, 1, 1) ; ... ; (0, N − 1, 2), ..., (K − 1, N − 1, 1), (K − 1, N − 1, 2),

(K,N−1, 1) ; (0, N, 2), (1, N, 2), ..., (K−1, N, 2), (K,N, 1), (K,N, 2) ; (0, N+1, 2), (1, N+1, 2), ...,

(K − 1, N + 1, 2), (K,N + 1, 1), (K,N + 1, 2) ; ...}.

The generator matrix Q is given by

Q =



B0
1 B0

0 0 · · · · · · · · · · · · · · · · · · · · · · · ·

B1
2 B1 B0 0 · · · · · · · · · · · · · · · · · · · · ·

0 B2 B1 B0 0 · · · · · · · · · · · · · · · · · ·
...

. . .
. . .

. . .
. . .

. . . · · · · · · · · · · · · · · ·
...

... 0 B2 B1 B0 0 · · · · · · · · · · · ·
...

...
... 0 B2 B1 BN−1

0 0 · · · · · · · · ·
...

...
...

... 0 AN2 A1 A0 0 · · · · · ·
...

...
...

...
... 0 A2 A1 A0 0

. . .

...
...

...
...

...
. . .

. . .
. . .

. . .
. . .

. . .



,

where 0 is a matrix of zeros, and starting from the upper diagonal, B0
0 , B0, B

N−1
0 , A0; B

0
1 , B1, A1;

B2, B
1
2 , AN2 and A2 are the following matrices: B0

0 is of size (K + 2)× 2K, B0 is of size 2K × 2K,

BN−1
0 is of size 2K × (K + 2), A0 is of size (K + 2)× (K + 2); B0

1 is of size (K + 2)× (K + 2), B1 is

of size 2K × 2K, A1 is of size (K + 2)× (K + 2); B2 is of size 2K × 2K, B1
2 is of size 2K × (K + 2),

AN2 is of size (K + 2)× 2K, and A2 is of size (K + 2)× (K + 2). The above matrices are given by

B0
0 =



λ2 0 · · · · · · · · · · · · · · · 0

λ2 0 · · · · · · · · · · · · · · · 0

0 λ2 0
. . .

. . .
. . .

. . .
...

0 0 0 λ2 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . . 0

0 · · · · · · · · · · · · λ2 0 0

0 · · · · · · · · · · · · 0 0 λ2


,

B0 = diag(λ2),
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BN−1
0 =



λ2 0 · · · · · · · · · · · · · · · 0

0 λ2 0 · · · · · · · · · · · · 0

0 λ2 0 · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 · · · · · · · · · · · · λ2 0 0

0 · · · · · · · · · · · · λ2 0 0

0 · · · · · · · · · · · · 0 λ2 0


,

A0 = diag(λ2).

With β0 = λ1 + λ2; β1 = λ1 + λ2 + µ1; and β2 = λ1 + λ2 + µ2,

B0
1 =



−β0 0 λ1 · · · · · · · · · · · · 0

0 −β0 λ1 0 0 · · · · · · 0

µ1 0 −β1 λ1 0
. . . · · · 0

0 0 µ1 −β1 λ1 0 0 · · ·

0 0 0 µ1 −β1 λ1 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

...
... µ1 −β1 λ1

0 · · · · · · · · · · · · 0 µ1 −(λ2 + µ1)



,

B1 =



−β2 0 λ1 · · · · · · · · · · · · 0

µ1 −β1 0 λ1 0 · · · · · · 0

0 0 −β2 0 λ1
. . . · · · 0

0 µ1 0 −β1 0 λ1 0 · · ·

0 0 0 0 −β2 0 λ1 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

...
... 0 −β2 λ1

0 · · · · · · · · · · · · µ1 0 −(λ2 + µ1)



,
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A1 =



−β2 λ1 0 · · · · · · 0

0 −β2 λ1 0
... 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . −β2 0 λ1
...

. . .
. . . µ1 −(λ2 + µ1) 0

...
. . .

. . .
. . . 0 −(λ2 + µ2)


,

B1
2 =



0 µ2 0 · · · · · · · · · 0

0 0 0 · · · · · · · · ·
...

...
. . . µ2

. . .
. . .

. . .
...

...
. . .

. . . 0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . µ2 0

...
. . .

. . .
. . .

. . .
. . . 0


, B2 =



µ2 0 · · · · · · · · · · · · 0

0 0 0 · · · · · · · · ·
...

...
. . . µ2

. . .
. . .

. . .
...

...
. . .

. . . 0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . µ2 0

...
. . .

. . .
. . .

. . .
. . . 0


,

AN2 =



µ2 0 · · · · · · 0

0 0 µ2
. . .

...
...

. . .
. . .

. . .
...

0 0 0 0 0
...

. . .
. . . 0 µ2


, A2 =



µ2 0 · · · · · · · · · 0

0 µ2 0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . . µ2
. . .

...

0 0 0 0 0 0
...

. . .
. . .

. . . 0 µ2


.

Define the steady-state probability vector ~P =
(
~P0, ~P1, ..., ~PN , ...

)
, satisfying ~PQ = ~0, ~P · ~e = 1,

where ~0 is a vector of 0’s and ~e is a vector of 1’s. Also, the probability vector

~Pn =


(P00(1), P00(2), P10(1), P20(1), ..., PK−1,0(1), PKn(1)) , n = 0,

(P0n(2), ..., PK−1,n(1), PK−1,n(2), PKn(1)) , 0 < n < N,

(P0n(2), ..., PK−1,n(2), PKn(1), PKn(2)) , n ≥ N,
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satisfies

~P0B
0
1 + ~P1B

1
2 = ~0, (3.1)

~P1B
0
0 + ~P1B1 + ~P2B2 = ~0, (3.2)

~Pn−1B0 + ~PnB1 + ~Pn+1B2 = ~0, 2 ≤ n ≤ N − 2, (3.3)

~PN−2B0 + ~PN−1B1 + ~PNA
N
2 = ~0, (3.4)

~PN−1B
N−1
0 + ~PNA1 + ~PN+1A2 = ~0, (3.5)

~Pn−1A0 + ~PnA1 + ~Pn+1A2 = ~0, n ≥ N + 1. (3.6)

Summing equations (3.1)-(3.6) and rearranging terms, we arrive at

µ1

(
P1•(1)− P10(1) + PK•(1)−

N−1∑
n=0

PK,n(1)

)
+ λ2

(
P00(1) +

K−1∑
k=1

Pk,N−1(1)

)

= µ2 (P•1(2)− P01(2) + PKN (2)) + λ1

(
P00(2) +

N−1∑
n=1

PK−1,n(2)

)
. (3.7)

Indeed, equation (3.7) states that the mean switching rate from state I = 1 to state I = 2 (left

hand side of (3.7)) is equal to the mean switching rate from state I = 2 to state I = 1 (right hand

side of (3.7)).

Let A = A0 +A1 +A2. Then,

A =



−λ1 λ1 0 · · · · · · 0

0 −λ1 λ1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

...
... −λ1 0 λ1

0 · · · · · · µ1 −µ1 0

0 0 0 0 0 0


.

Let ~π =
(
π0, π1, ..., πK−1, π

(1)
K , π

(2)
K

)
be the stationary probability vector of the matrix A, i.e.

~πA = ~0 and ~π · ~e = 1. Then, ~π = (0, 0, . . . , 0︸ ︷︷ ︸
K+1 times

, 1). Thus, the stability condition ~πA0~e < ~πA2~e (see

[14]) becomes

λ2 < µ2. (3.8)

The probability vectors are given by

~Pn = ~PNR
n−N , n ≥ N, (3.9)
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where R is the minimal non negative solution of the matrix quadratic equation

A0 +RA1 +R2A2 = 0. (3.10)

The vectors ~P0, ~P1, ..., ~PN , can be found by solving the set of equations (3.1)-(3.4), together with

the normalization equation,

N−1∑
n=0

~Pn~e+ ~PN [I −R]−1~e = 1,

where I is the identity matrix. We note that the above set of equations could be solved efficiently

using the Level-Dependent QBD approach, see Bright and Taylor [8] and Phung-Duc et al. [19].

The mean total number of customers in Qi, E[Li], i = 1, 2 is given by

E[L1] =~P0
~Z0 +

N−1∑
n=1

~Pn ~Z +
∞∑
n=N

~Pn ~ZN , (3.11)

E[L2] =
∞∑
n=1

n~Pn~e =
N−1∑
n=1

n~Pn~e+
∞∑
n=N

n~PNR
n−N~e

=
N−1∑
n=1

n~Pn~e+ (N − 1)~PN [I −R]−1~e+ ~PN [I −R]−2~e, (3.12)

where, ~Z0 = (0, 0, 1, 2, ...,K− 1,K), ~Z = (0, 1, 1, 2, 2, ...,K− 1,K− 1,K) and ~ZN = (0, 1, 2, ...,K−

1,K,K).

We denote the elements of the matrix R by Rlm, for 0 ≤ l,m ≤ K + 1. By using equation (3.10)

and explicitly writing the (K + 2)2 equations for the (K + 2)2 elements of R, we conclude that

the matrix R is an upper triangular matrix, with only one non-zero element, RK,K−1, beneath the

main diagonal. Therefore, solving equation (3.10) yields an analytic closed-form expression for the

elements of the rate matrix R. We will show that the elements of R are closely related to the roots

of two polynomial equations, det (A(z)) = 0, and det (B(z)) = 0, where A(z) and B(z) are two

matrices related to the probability generating functions (PGFs) defined in the following section.

3.2 Probability Generating Functions

In this section we briefly describe an alternative approach to solving the QBD process, namely,

the PGF approach. It can be argued that given the analysis of Section 3.1, the PGF approach is

redundant. Nevertheless, in our case, a brief investigation via the PGF method is useful for gaining
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further insights into the analysis of the system (see e.g. Phung-Duc [18]).

Splitting the set of equations (3.1)-(3.6) into two separate sets, one for I = 1, running from

k = 0 to k = K; the other for I = 2, running over all n ≥ 0, allows us to define two sets of

probability generating functions: For I = 1, Gk(z) =
∑
n
Pkn(1)zn, 1 ≤ k ≤ K; while for I = 2,

Fk(z) =
∑
n
Pkn(2)zn, 0 ≤ k ≤ K. After some algebra, one obtains two sets of linear equations,

where the unknowns are the sought-for PGFs, as follows:

A(z)~G(z) = ~P (z), B(z)~F (z) = ~Π(z), (3.13)

where the column vectors ~G(z) and ~P (z) are of order K, while their counterparts, ~F (z) and ~Π(z),

are of order K + 1. The square matrices A(z) and B(z) are of orders K and K + 1, respectively.

Specifically,

~G(z) = (G1(z), G2(z), ..., GK(z))t ,

~F (z) = (F0(z), F1(z), ..., FK(z))t ,

~P (z) = (P1(z), P2(z), ..., PK(z))t ,

~Π(z) = (Π0(z),Π1(z), ...,ΠK(z))t ,

with

Pk(z) =



λ1 (P00(1) + P00(2))− λ2P1,N−1(1)zN + µ2P11(2), k = 1

−λ2Pk,N−1(1)zN + µ2Pk1(2), 2 ≤ k ≤ K − 2

µ1
N−1∑
n=0

PKn(1)zn − λ2PK−1,N−1(1)zN + µ2PK−1,1(2), k = K − 1

λ1
N−1∑
n=1

PK−1,n(2)zn + µ2PKN (2)zN−1, k = K

Πk(z) =



µ1zG1(z)− µ1zP10(1) + λ2z
2P00(1)− µ2(1− z)P00(2), k = 0

−λ1zP00(2) + λ2P1,N−1(1)zN+1 − µ2zP11(2), k = 1

λ2Pk,N−1(1)zN+1 − µ2zPk1(2), 2 ≤ k ≤ K − 2

µ1zGK(z) + λ2PK−1,N−1(1)zN+1 − µ2zPK−1,1(2)− µ1
N−1∑
n=0

PKn(1)zn, k = K − 1

−λ1
N−1∑
n=1

PK−1,n(2)zn+1 − µ2PKN (2)zN , k = K

11



A(z) =



α(z) −µ1 0 · · · · · · · · · 0

−λ1 α(z) −µ1 0 · · · · · · 0

0 −λ1 α(z) −µ1 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . −λ1 α(z) −µ1 0

0
. . .

. . .
. . . −λ1 α(z) 0

0 · · · · · · · · · 0 −λ1 αK(z)


,

where

α(z) = λ1 + µ1 + λ2(1− z),

αK(z) = µ1 + λ2(1− z),

and

B(z) =



β(z) 0 0 · · · · · · 0

−λ1z β(z) 0 0 · · · 0

0 −λ1z β(z) 0 0
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −λ1z β(z) 0

0 · · · · · · 0 −λ1z βK(z)


,

where

β(z) = (λ2z − µ2)(1− z) + λ1z,

βK(z) = (λ2z − µ2)(1− z).

We first explore the roots of |A(z)| = 0.

Theorem 3.1. For any λ1 > 0, µ1 > 0, λ2 > 0 and K ≥ 1, |A(z)| is a polynomial of degree K

possessing K distinct roots in the open interval (1,∞), where one of them is zK = 1 + µ1
λ2

.

Proof. The proof is detailed in the Appendix.

Now, we address the roots of |B(z)| = 0.
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Theorem 3.2. For any λ2 > 0, µ2 > 0, λ1 > 0 and K ≥ 1, |B(z)| is a polynomial of degree

2(K + 1) possessing a single root at z∗ = 1, another root of multiplicity K, z1, in the open interval

(0, 1), and a root z2 (also of multiplicity K), in the open interval (1,∞). Another root, z3 = µ2
λ2

,

exists in the open interval (0, 1) iff λ2 > µ2.

Proof. The matrix B(z) possesses nonzero elements on the main diagonal and on the lower main

diagonal. All other entries are 0. Therefore,

|B(z)| =
K∏
k=0

Bkk(z) = (β(z))K βK(z), (3.14)

where Bkk(z) is the k-th element of the diagonal of B(z). The polynomial β(z) has only two roots:

z1 =
λ2+µ2+λ1−

√
(λ2+µ2+λ1)2−4λ2µ2
2λ2

< 1, and z2 =
λ2+µ2+λ1+

√
(λ2+µ2+λ1)2−4λ2µ2
2λ2

> 1. Therefore,

z1 and z2 are roots of |B(z)|, each of multiplicity K. The polynomial βK(z) has only two roots:

z∗ = 1, and z3 = µ2
λ2

. Clearly, z3 < 1 if and only if λ2 > µ2 (in which case the system is unstable).

This completes the proof of Theorem 3.2.

Note 3.1. The root z1 above is the Laplace-Stieltjes Transform (evaluated at λ1) of the busy period

in an M/M/1 queue with arrival rate λ2 and service rate µ2. The mean duration of such a busy

period is 1
µ2−λ2 , which is finite (stable system) if and only if λ2 < µ2.

3.3 The Structure of R

By explicitly writing equation (3.10) it is observed that R is an (almost fully) upper diagonal

matrix with only a single non-zero element in the diagonal below the main. This is illustrated in

the example below for K = 8.

R =



R00 R01 R02 R03 R04 R05 R06 R07 0 R09

0 R11 R12 R13 R14 R15 R16 R17 0 R19

0 0 R22 R23 R24 R25 R26 R27 0 R29

0 0 0 R33 R34 R35 R36 R37 0 R39

0 0 0 0 R44 R45 R46 R47 0 R49

0 0 0 0 0 R55 R56 R57 0 R59

0 0 0 0 0 0 R66 R67 0 R69

0 0 0 0 0 0 0 R77 0 R79

0 0 0 0 0 0 0 R87 R88 R89

0 0 0 0 0 0 0 0 0 R99



,
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Solving for the elements on the main diagonal, it follows that

Rkk =
1

z2
, for all 0 ≤ k ≤ K − 1,

RKK =
1

zK
,

RK+1,K+1 =
1

z3
.

With β2 = λ1 + λ2 + µ2 and
0∑
i=1

(·) , 0, one can calculate successively the other elements of R,

which results in

R0k =
λ1R0,k−1 + µ2

∑k−1
i=1 R0iR0,k−i

β2 − 2µ2/z2
, for all 1 ≤ k ≤ K − 1,

Rl,l+k = R0k, for all 1 ≤ l ≤ K − 2, 1 ≤ k ≤ K − (l + 1),

RK,K−1 =
µ1

1
zK

β2 − µ2
(

1
z2

+ 1
zK

) ,
Rk,K = 0, for all 0 ≤ k ≤ K + 1, k 6= K,

RK,K+1 =
µ2RK,K−1RK−1,K+1 + λ1RK,K−1

λ2 + µ2 − µ2
(

1
z2

+ 1
z3

) (3.15)

RK−1,K+1 =
λ1

1
z3

λ2 + µ2 − µ2
(

1
z2

+ 1
z3

) ,
Rl,K+1 =

µ2
∑K−(l+1)

k=1 Rl,l+kRl+k,K+1 + λ1Rl,K−1

λ2 + µ2 − µ2
(

1
z2

+ 1
z3

) , for all 0 ≤ l ≤ K − 2.

We indicate that all the elements on the main diagonal of R are the inverse of the roots of |A(z)| = 0

and |B(z)| = 0 in the open interval (1,∞) (see Subsection 3.2), while all other elements are

expressed in terms of the inverse of those roots along with parameters of the system. Furthermore,

in any diagonal, starting with the main and above, all the elements along the diagonal are equal to

each other, except for the last two.

4 Non-Work-Conserving Scenario

We now briefly present a Non-Work-Conserving switching scenario: if a served Qi becomes empty,

the server remains in Qi until the number of customers in Qj reaches its threshold. The transition-

rate diagram of the triple (L1(t), L2(t), I(t)) for this scenario is depicted in Figure 4.1.
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Figure 4.1: Transition-rate diagram of (L1(t), L2(t), I(t)). Non-Work-Conserving.

4.1 The QBD Process

Constructing the QBD process that represents this scenario leads to a generator matrix Q with

exactly the same structure as the generator matrix in Section 3. However, some matrices appearing

in Q are slightly different, namely the matrices B0
0 and B1

2 simply become B0 and B2, respectively,

and B0
1 is given by

B0
1 =



−β0 0 λ1 · · · · · · · · · · · · 0

0 −β0 0 λ1 0 · · · · · · 0

µ1 0 −β1 0 λ1
. . . · · · 0

0 0 0 −β0 0 λ1 0 · · ·

0 0 µ1 0 −β1 0 λ1 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

...
... 0 −β0 λ1

0 · · · · · · · · · · · · µ1 0 −(λ2 + µ1)


(2K+1)×(2K+1)

.

All other matrices remain the same. Therefore, the stability condition for this case is λ2 < µ2, as

in the Work-Conserving scenario (see equation (3.8)).
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Equation (3.7) above, equating the switching rates between the queues, transforms in the Non-

Work-Conserving scenario into

µ1

(
PK•(1)−

N−1∑
n=0

PK,n(1)

)
+ λ2

K−1∑
k=0

Pk,N−1(1) = µ2PKN (2) + λ1

N−1∑
n=0

PK−1,n(2). (4.1)

Notice that in this case a switch occurs only when the non served queue reaches its threshold and

the served queue is beneath its threshold level.

With ~P0 = (P00(1), P00(2), P1,0(1), P1,0(2), P2,0(1), P2,0(2), ..., PK−1,0(1), PK−1,0(2), PKn(1)) and the

same rate matrix, R, we have

~Pn = ~PNR
n−N , n ≥ N, (4.2)

As before, the vectors ~P0, ~P1, ..., ~PN−1, are obtained by solving the following set of linear equations:

~P0B
0
1 + ~P1B2 = ~0,

~Pn−1B0 + ~PnB1 + ~Pn+1B2 = ~0, 1 ≤ n ≤ N − 2,

~PN−2B0 + ~PN−1B1 + ~PNA
N
2 = ~0,

N−1∑
n=0

~Pn~e+ ~PN [I −R]−1~e = 1.

The mean number of customers in Qi, i = 1, 2 is given by

E[L1] =
N−1∑
n=0

~Pn ~Z +
∞∑
n=N

~Pn ~ZN =
N−1∑
n=0

~Pn ~Z + ~PN [I −R]−1 ~ZN , (4.3)

E[L2] =

∞∑
n=1

n~Pn~e =
N−1∑
n=1

n~Pn~e+
∞∑
n=N

n~PNR
n−N~e

=
N−1∑
n=1

n~Pn~e+ (N − 1)~PN [I −R]−1~e+ ~PN [I −R]−2~e, (4.4)

where ~Z = (0, 0, 1, 1, 2, 2, ...,K − 1,K − 1,K) and ~ZN = (0, 1, 2, ...,K − 1,K,K).

5 Numerical Examples and Comparison Between the Scenarios

This section presents several numerical results, followed by a discussion. Define SR to be the average

switching rate between the queues and Wi to be the the time a customer resides in Qi. Tables 5.1 –
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5.4 exhibit results for both scenarios for the performance measures E[Li], E[Wi], i = 1, 2, and SR,

where K = 10 and N = 3, for different values of λ1, λ2, µ1, and µ2. In each table we investigate

the impact of one of the parameters, while all other parameters remain unchanged. Specifically,

Tables 5.1, 5.2, 5.3 and 5.4 present, respectively, the impact of λ1, λ2, µ1, and µ2.

Table 5.1: The impact of λ1, when λ2 = 3, µ1 = 3, µ2 = 4, K = 10 and N = 3

Work-Conserving Scenario Non-Work-Conserving Scenario

Values of λ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

0.001 0.0038 3.0008 3.7679 1.0002 0.0011 7.7611 3.0025 7768.78 1.0008 0.0005

0.01 0.0381 3.0077 3.8105 1.0026 0.0111 7.7841 3.0251 786.066 1.0084 0.0049

0.1 0.4337 3.0875 4.3382 1.0292 0.0906 7.9875 3.2348 87.3689 1.0782 0.0451

0.5 3.3355 3.5958 7.2424 1.1986 0.2570 8.5919 3.9322 24.9671 1.3107 0.1748

1 6.8243 4.2937 10.0213 1.4312 0.3198 9.0279 4.4828 17.4707 1.4943 0.2701

2 9.1070 5.0466 12.2017 1.6822 0.3768 9.4572 5.0683 14.2979 1.6894 0.3587

4 9.7206 5.5190 12.9615 1.8397 0.4103 9.7470 5.5139 13.3463 1.8380 0.4061

10 9.9126 5.8187 13.2168 1.9396 0.4097 9.9131 5.8181 13.2404 1.9394 0.4095

100 9.9924 5.9845 13.3232 1.9948 0.3804 9.9924 5.9845 13.3232 1.9948 0.3804

100000 10 6 13.3333 2 0.3750 10 6 13.3333 2 0.3750

Table 5.2: The impact of λ2, when λ1 = 2, µ1 = 3, µ2 = 4, K = 10 and N = 3

Work-Conserving Scenario Non-Work-Conserving Scenario

Values of λ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

0.001 1.8717 0.0020 0.9413 2.0281 0.0002 1.8861 1.0086 0.9489 1008.65 0.0003

0.01 1.8749 0.0203 0.9430 2.0277 0.0098 2.0171 1.0017 1.0175 100.17 0.0033

0.1 1.9281 0.1810 0.9703 1.8104 0.0828 3.1637 0.9486 1.6344 9.4862 0.0303

0.5 2.5291 0.6191 1.2863 1.2383 0.2697 5.8629 0.9968 3.2727 1.9936 0.1302

1 3.8554 1.0983 2.0402 1.0983 0.3786 7.2984 1.3298 4.4786 1.3298 0.2609

2 7.1581 2.4053 4.9487 1.2026 0.4811 8.6921 2.4900 7.1384 1.2500 0.4437

2.5 8.3307 3.4013 7.5063 1.3605 0.4655 9.1169 3.4441 9.5361 1.3776 0.4393

3 9.1070 5.0466 12.2017 1.6822 0.3768 9.4572 5.0683 14.2979 1.6894 0.3587

3.5 9.6263 9.3307 25.6908 2.6659 0.2175 9.7449 9.3449 28.5923 2.6700 0.2084

3.75 9.8203 16.9278 50.5541 4.5141 0.1188 9.8713 16.9409 55.2392 4.5176 0.1142
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Table 5.3: The impact of µ1, when λ1 = 2, λ2 = 3, µ2 = 4, K = 10 and N = 3

Work-Conserving Scenario Non-Work-Conserving Scenario

Values of µ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

0.001 9.9991 2997.74 5323.26 999.247 0.0010 9.9991 2997.74 5323.39 999.246 0.0010

0.01 9.9939 300.667 821.572 100.222 0.0068 9.9939 300.665 821.753 100.222 0.0066

0.1 9.9833 34.5552 300.373 11.5184 0.0284 9.9834 34.5548 300.677 11.5183 0.0281

0.5 9.9354 10.7279 79.4401 3.5760 0.1160 9.9368 10.7272 80.0763 3.5757 0.1143

1 9.8580 7.5220 39.4318 2.5073 0.2091 9.8684 7.5218 40.4425 2.5073 0.2036

2 9.6044 5.7383 19.213 1.9128 0.3272 9.6948 5.7441 20.7735 1.9147 0.3137

4 8.3313 4.6364 8.5645 1.5455 0.3913 9.1639 4.6948 11.107 1.5649 0.3665

10 4.8172 3.5796 3.1374 1.1932 0.4523 7.4667 3.9222 5.7012 1.3074 0.2731

100 3.0412 3.0335 1.7714 1.0112 0.5349 5.3816 3.5102 3.3611 1.1700 0.1561

100000 2.9057 3 1.6812 1 0.5387 5.1592 3.4778 3.1780 1.1592 0.1456

Table 5.4: The impact of µ2, when λ1 = 2, λ2 = 3, µ1 = 3, K = 10 and N = 3

Work-Conserving Scenario Non-Work-Conserving Scenario

Values of µ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

3.25 9.7635 14.0703 41.7325 4.6901 0.1266 9.8288 14.0774 45.4663 4.6925 0.1229

3.5 9.5435 8.1925 22.3185 2.7308 0.2264 9.6876 8.2028 24.8562 2.7343 0.2184

3.75 9.3248 6.1210 15.5966 2.0403 0.3091 9.5642 6.1361 17.7984 2.0454 0.2963

4 9.1070 5.0466 12.2017 1.6822 0.3768 9.4572 5.0683 14.2979 1.6894 0.3587

10 4.5628 1.3895 2.4663 0.4632 0.7896 8.6360 1.5888 6.1304 0.5296 0.5712

100 2.0034 0.6175 1.0091 0.2058 1.0283 8.3652 0.7077 5.4933 0.2359 0.4774

1000 1.8836 0.5691 0.9475 0.1897 1.0454 8.3468 0.6454 5.4634 0.2151 0.4681

100000 1.8715 0.5640 0.9412 0.1880 1.0471 8.3448 0.6388 5.4603 0.2129 0.4671

Tables 5.5 – 5.8 present numerical results for the Work-Conserving Scenario, where K = 10.

In each table, results for N = 5 vs. N = 10 are compared. Tables 5.5, 5.6, 5.7 and 5.8 show,

respectively, the impact of λ1, λ2, µ1 and µ2.
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Table 5.5: The impact of λ1, when λ2 = 3, µ1 = 3, µ2 = 4 and K = 10, for N = 5 vs. N = 10

N = 5 N = 10

Values of λ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

0.001 0.0035 3.0011 3.4991 1.0004 0.0010 0.0033 3.0013 3.3457 1.0004 0.0010

0.01 0.0353 3.0115 3.5321 1.0038 0.0100 0.0337 3.0137 3.3669 1.0046 0.0097

0.1 0.3967 3.1370 3.9676 1.0457 0.0800 0.3652 3.1793 3.6526 1.0598 0.0766

0.5 3.1723 4.0857 6.8097 1.3619 0.2108 2.9212 5.0758 6.1318 1.6919 0.1835

1 6.8590 5.4946 9.9274 1.8315 0.2663 6.9622 8.8247 9.8080 2.9416 0.2280

2 9.1678 6.8062 12.2579 2.2687 0.3523 9.2348 11.5552 12.3213 3.8517 0.3418

4 9.7298 7.4634 12.9733 2.4878 0.4044 9.7337 12.4387 12.9783 4.1462 0.4031

10 9.9128 7.8144 13.2171 2.6048 0.4093 9.9127 12.8139 13.2171 4.2713 0.4093

100 9.9924 7.9845 13.3232 2.6615 0.3804 9.9924 12.9845 13.3232 4.3282 0.3804

100000 10 8 13.3333 2.6667 0.3750 10 13 13.3333 4.3333 0.3750

Table 5.6: The impact of λ2, when λ1 = 2, µ1 = 3, µ2 = 4 and K = 10, for N = 5 vs. N = 10

N = 5 N = 10

Values of λ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

0.001 1.8717 0.0020 0.9413 2.0282 0.0010 1.8717 0.0020 0.9413 2.0282 0.0010

0.01 1.8748 0.0203 0.9429 2.0346 0.0098 1.8748 0.0203 0.9429 2.0347 0.0098

0.1 1.9152 0.2065 0.9635 2.0653 0.0820 1.9134 0.2105 0.9625 2.1051 0.0819

0.5 2.4010 0.9070 1.2173 1.8140 0.2478 2.2904 1.2223 1.1568 2.4445 0.2358

1 3.6890 1.7258 1.9385 1.7258 0.3165 3.4624 2.9291 1.7970 2.9291 0.2657

2 7.2094 3.7460 4.9463 1.8730 0.4043 7.3061 7.4733 4.9495 3.7366 0.3395

2.5 8.4136 4.9939 7.5479 1.9976 0.4163 8.5297 9.4168 7.6077 3.7667 0.3851

3 9.1678 6.8062 12.2579 2.2687 0.3523 9.2348 11.5552 12.3213 3.8517 0.3418

3.5 9.6540 11.1979 25.7421 3.1994 0.2089 9.6786 16.0952 25.7896 4.5986 0.2068

3.75 9.8336 18.8324 50.6023 5.0202 0.1151 9.8444 23.7698 50.6418 6.3386 0.1145
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Table 5.7: The impact of µ1, when λ1 = 2, λ2 = 3, µ2 = 4 and K = 10, for N = 5 vs. N = 10

N = 5 N = 10

Values of µ1 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

0.001 9.9991 2999.66 5323.38 999.886 0.0009 9.9991 3004.59 5323.48 1001.53 0.0009

0.01 9.9939 302.617 821.678 100.872 0.0066 9.9939 307.577 821.763 102.526 0.0066

0.1 9.9834 36.5466 300.388 12.1822 0.0282 9.9834 41.5401 300.4 13.8467 0.0281

0.5 9.9359 12.7071 79.4439 4.2357 0.1145 9.9361 17.6921 79.4459 5.8974 0.1142

1 9.8611 9.4703 39.4444 3.1568 0.2041 9.8630 14.4321 39.4518 4.8107 0.2028

2 9.6257 7.6086 19.2534 2.5362 0.3129 9.6427 12.4986 19.2857 4.1662 0.3083

4 8.4234 6.2305 8.5797 2.0768 0.3571 8.5580 10.6908 8.6138 3.5636 0.3353

10 4.6743 4.1513 2.9030 1.3838 0.4273 4.4013 5.7058 2.5209 1.9019 0.3831

100 2.7595 3.0671 1.5244 1.0224 0.5422 2.3724 3.1326 1.2205 1.0442 0.5493

100000 2.6128 3 1.4336 1 0.5477 2.2490 3 1.1521 1 0.5592

Table 5.8: The impact of µ2, when λ1 = 2, λ2 = 3, µ1 = 3 and K = 10, for N = 5 vs. N = 10

N = 5 N = 10

Values of µ2 E[L1] E[L2] E[W1] E[W2] SR E[L1] E[L2] E[W1] E[W2] SR

3.25 9.7811 15.9701 41.7695 5.3234 0.1233 9.7945 20.9096 41.8002 6.9699 0.1228

3.5 9.5774 10.051 22.3682 3.3503 0.2180 9.6069 14.9445 22.4138 4.9815 0.2157

3.75 9.3734 7.9324 15.6516 2.6441 0.2936 9.4213 12.7628 15.7077 4.2543 0.2880

4 9.1678 6.8062 12.2579 2.2687 0.3523 9.2348 11.5552 12.3213 3.8517 0.3418

10 4.4701 2.2132 2.4084 0.7377 0.5783 4.2789 4.1358 2.2890 1.3786 0.4236

100 1.9898 1.1127 1.0022 0.3709 0.7879 1.9633 2.0981 0.9887 0.6994 0.6333

1000 1.8823 1.0462 0.9468 0.3487 0.8025 1.8797 1.9929 0.9455 0.6643 0.6445

100000 1.8714 1.0392 0.9412 0.3464 0.8040 1.8714 1.9819 0.9412 0.6606 0.6456

Discussion

1. When comparing the two scenarios (Tables 5.1 – 5.4), the average switching rate between

the queues, SR, is always smaller in the Non-Work-Conserving scenario than in the Work-

Conserving scenario, while the opposite statement holds for E[Li] and E[Wi], i = 1, 2. This

occurs since, in the Non-Work-Conserving scenario, the server may remain idle in an empty

queue even if there are waiting customers in the other queue, causing a decrease in the

switching rate on the one hand, and an increase in mean queue sizes and mean waiting times,
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on the other hand.

2. When λ1 →∞ or µ1 → 0 the performance measures of the two scenarios approach the same

values, independently of all other parameters. See Tables 5.1 and 5.3, for λ1 ≥ 10, and

µ1 ≤ 0.5, respectively.

3. When the arrival rate into one of the queues, say λi, is relatively small, the corresponding

measures E[Li] and E[Wi] in the Non-Work-Conserving scenario are significantly greater than

the comparable values in the Work-Conserving scenario (see Tables 5.1 and 5.2). This follows

since the server remains idle in an empty queue as long as the threshold level in the opposite

queue has not been reached. Hence, the customers of Qi wait for a long time until Qi’s

threshold is reached, upon which the server is called for service there.

4. In the Non-Work-Conserving scenario, initially, as λ1 increases, E[W1] decreases. However for

large values of λ1 (λ1 ≥ 10), E[W1] increases as λ1 increases. This occurs since increasing val-

ues of λ1 cause L1 to ascend at a faster rate, which increases the switching rate and decreases

the time intervals between switches. In the Work-Conserving scenario, E[W1] increases when

λ1 increases (see Table 5.1). Notice that E[L1] increases in both scenarios.

5. Table 5.2 exhibits an apparently counter-intuitive phenomenon for both scenarios, namely, as

λ2 increases, E[W2] first decreases and then increases. A similar phenomenon occurs in the

Non-Work-Conserving scenario for the values of E[L2].

6. In Tables 5.1, 5.2, 5.5 and 5.6, SR first increases and then decreases when λ1 (λ2) increases,

the exact point of change in direction (increase or decrease) depends on the entire set of

parameters. This occurs in both scenarios. In contrast, for the Work-Conserving scenario,

when λ1 and λ2 are fixed but µ1 or µ2 increase (Tables 5.3, 5.4, 5.7 and 5.8), SR always

increases.

7. The rate of service µ2 of the unbounded Q2 has a more profound effect then µ1 (the service

rate of the bounded Q1) on the values of E[L1] and E[L2] (and consequently on E[W1] and

E[W2]). See Tables 5.3, 5.4, 5.7 and 5.8.

21



6 Extreme Cases

We investigate the influence of extreme values of λ1, λ2, µ1 and µ2 (as they reach 0 or ∞) on the

system’s performance measures in the two different switching scenarios. Some of the cases (e.g.

λ2 → ∞ or µ2 → 0, λ1 → 0, λ2 → 0) follow directly from basic queueing principles. Other cases

require more intricate analysis.

We first address extreme cases that lead to identical system structure in the two policies, and then

address extreme cases that lead to different system structures.

λ2 →∞ or µ2 → 0

These two cases are not stable, since the stability condition, λ2 < µ2, is not satisfied.

µ1 → 0

The system is unstable. Once the server attends Q1 and the number of customers there is at its

threshold level, meaning that L1 = K, the number of customers there will not reduce below the

threshold level and the server will never switch back to Q2 even when the number of customers in

Q2 reaches its threshold, N . Therefore, the number of customers in Q2 will increase to ∞.

λ1 → 0

It is clear that in both scenarios, P(I = 1) = 0 and P(I = 2) = 1, meaning that Q2 operates as an

M(λ2)/M(µ2)/1 system. Therefore, P(L1 = 0) = 1 and Ploss(1) ≡ P (L1 = K) = 0. Clearly then,

E[L2] = ρ2
1−ρ2 , where ρi = λi

µi
, i = 1, 2.

λ2 → 0

It is straightforward that P(I = 1) = 1, and P(I = 2) = 0. Therefore, Q1 operates as an

M(λ1)/M(µ1)/1/K system for which Ploss(1) =
ρK1 (1−ρ1)
1−ρK+1

1

, and E[L1] = ρ1
1−ρ1 −

(K+1)ρK+1
1

1−ρK+1
1

.

λ1 →∞

When λ1 →∞, Q1 is always at its maximum capacity, meaning L1 ≡ K and Ploss(1) = 1. In such

a case, the server serves the customers of Q1 until the number of customers in Q2 reaches its maxi-

mum value, N . Then, at the next instant when the server completes a service of a customer in Q1,

it immediately switches to Q2. Then, before a service completion in Q2, an arrival at Q1 will occur,

causing a switch back to Q1 as soon as the number of customers at Q2 reduces below N . Hence, the

only possible states with nonzero probabilities are (K,n, 1), for n ≥ N−1, and (K,n, 2), for n ≥ N .

Therefore, P(I = 1) =
∑∞

n=N−1 PKn(1) = PK•(1), and P(I = 2) =
∑∞

n=N PKn(2) = PK•(2). As a
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consequence, P (I = 1) = 1− ρ2, P (I = 2) = ρ2 and E[L2] = ρ2
1−ρ2 +N − (1− ρ2) + λ2

µ1
.

Note that the parameter K does not appear in any of the results above.

The next two extreme cases lead to a different system structure in each of the switching scenarios.

µ1 →∞

In the Work-Conserving switching scenario, if µ1 →∞ then, whenever the server is at Q1, he im-

mediately reduces the number of customers there to 0, and will remain at Q1 until the first moment

thereafter that a customer arrives at Q2. Therefore, P(I = 1) = P00(1). The server stays in Q2

until Q1 reaches its threshold and Q2 is below its own threshold, N . If Q1 reaches its threshold

and Q2 is not below its threshold, the server stays at Q2 until the number of customers there is

reduced below Q2’s threshold, upon which the server switches to Q1, and immediately empties the

queue and returns to Q2. Note that in this case Ploss(1) = PK•(2).

In the Non-Work-Conserving switching scenario, P(I = 1) = P0•(1) =
∑N−1

n=0 P0n(1). The server

will remain at Q1 until the first moment when the number of customers in Q2 reaches the value N

and will remain there until the number of customers in Q1 reaches the value K. Then, given that

Q2 is below the threshold N , the server will switch to Q1 and immediately reduce the occupancy

there to 0. Note that in this case Ploss(1) = PK•(2) as well.

µ2 →∞

In the Work-Conserving switching scenario, when µ2 → ∞, the server immediately empties Q2

upon entering it and resides there until a customer arrives at Q1. Therefore, P(I = 2) = P00(2).

The server remains in Q1 until Q2 reaches its threshold and Q1 is below the threshold K. If Q2

reaches its threshold and Q1 is not below its threshold, the server stays at Q1 until the number of

customers there reduces below K, upon which the server switches to Q2, empties it instantaneously,

and returns to Q1. In this case Ploss(1) = PK•(1).

In the Non-Work-Conserving case, P(I = 2) = P•0(2) =
∑K−1

k=0 Pk0(2). The server will remain at

Q2 until the first moment when the number of customers in Q1 reaches the value K and will remain

there until the number of customers in Q2 reaches the value N . Then, if Q1 is below the threshold

K, the server will switch to Q2 and immediately reduce the occupancy there to 0. In this case, too,

Ploss(1) = PK•(1).
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7 Concluding Remarks and Future Investigations

This paper studies a two-queue polling-type system with a non-orthodox threshold-based switching

policy, which depends on the queue that is not being served. Employing the Matrix Geometric

method, we derive the joint steady-state probabilities of the system’s state and its performance

measures. We reveal that the entries of the main diagonal of the rate matrix R of the Matrix

Geometric are the reciprocal of the roots of matrices defining the Probability Generating Functions

associated with the phases of the QBD process. We remark that this phenomenon appears in other

studies such as Paz and Yechiali [15], Perel N. and Yechiali [17], Phung-Duc [18], and Hanukov et al.

[9]. This relationship has not been shown analytically as a general property and it calls for further

investigation. Furthermore, unlike many cases in which the rate matrix is calculated numerically, we

are able to derive closed-form expressions for all the elements of R. Another direction of research is

to study the non-preemptive version of the model. A third direction, which is much more involved,

is to assume that the switch-over times are non-zero. Finally, the analysis of the case when both

capacities are infinite seems to be a challenging task.
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A Appendix

Proof of Theorem 3.1

Proof. Let q0(z) = 1. Define the minors of the diagonal of A(z), starting from the upper left-hand

corner, as follows:

q1(z) = α(z), q2(z) =

∣∣∣∣∣∣ α(z) −µ1

−λ1 α(z)

∣∣∣∣∣∣ , ..., qK(z) = |A(z)| . (A.1)
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The polynomials qk(z), 1 ≤ k ≤ K, satisfy the following recursions:

q1(z) = α(z)q0(z),

qk(z) = α(z)qk−1(z)− λ1µ1qk−2(z) , for 2 ≤ k ≤ K − 1,

qK(z) = αK(z)qK−1(z). (A.2)

From (A.1) and (A.2) we conclude that

1. By definition, q0(z) = 1 and therefore has no roots.

2. For every 1 ≤ k ≤ K−1, qk(z) and qk−1(z) have no joint roots in (0,∞). Otherwise, suppose

they have a joint root, then it would also be a root for qk−2(z), qk−3(z), ..., q0(z), which

contradicts the above conclusion.

3. Sign(qk(∞)) = (−1)k, for all k.

4. qk(1) =
∑k

i=0 λ
i
1µ

k−i
1 > 0, for all 0 ≤ i ≤ K.

5. qK(1) = µ1
∑K−1

i=0 λi1µ
K−1−i
1 > 0.

6. Given z̃, a root of qk(z), then sign(qk−1(z̃)qk+1(z̃)) = −1, for every 1 ≤ k ≤ K − 2.

7. qk(z) is a polynomial of degree k for all 0 ≤ k ≤ K.

From the above conclusions it follows that q1(z) has only one root, z1,1 = 1 + λ1+µ1
λ2

> 1. q2(1) =∑2
i=0 λ

i
1µ

2−i
1 > 0, q2(z1,1) < 0, q2(∞) > 0. Therefore, the 2 roots of q2(z) satisfy: z2,1 ∈ (1, z1,1),

z2,2 ∈ (z1,1,∞). Similarly, q3(z) is of degree 3 and therefore can have no more than 3 distinct roots.

Also q3(1) =
∑3

i=0 λ
i
1µ

3−i
1 > 0, q3(z2,1) < 0, q3(z2,2) > 0, q3(∞) < 0. This implies that q3(z) has

exactly 3 distinct roots satisfying: z3,1 ∈ (1, z2,1), z3,2 ∈ (z2,1, z2,2), z3,3 ∈ (z2,2,∞).

In general, for 2 ≤ k ≤ K − 1, given k − 1 distinct roots of qk−1(z), the roots of qk(z) satisfy:

zk,1 ∈ (1, zk−1,1), zk,2 ∈ (zk−1,1, zk−1,2), ..., zk,k ∈ (zk−1,k−1,∞).

qK(z) = αK(z)qK−1(z) has K roots, where K − 1 of them are the K − 1 distinct roots of qK−1(z)

and another root (which appears in the matrix R whose structure is discussed in Subsection 3.3) is

zK = 1 +
µ1
λ2
. (A.3)

This completes the proof of Theorem 3.1.
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