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Abstract We consider a system of two separate finite-buffer M/M/1 queues served
by a single server, where the switching mechanism between the queues is threshold-
based, determined by the queue which is not being served. Applications may be found
in data centers, smart traffic-light control and human behavior. Specifically, whenever
the server attends queue i (Qi ) and the number of customers in the other queue, Q j

(i, j = 1, 2; j �= i), reaches its threshold level, the server immediately switches
to Q j whenever Qi is below its threshold. When a served Qi becomes empty we
consider two scenarios: (i) non-work-conserving; and (ii)work-conserving.Wepresent
occasions where the non-work-conserving policy is more economical than the work-
conserving policy when high switching costs are involved. An intrinsic feature of
the process is an oscillation phenomenon: when the occupancy of Qi decreases the
occupancy of the other queue increases. This fact is illustrated and discussed. By
formulating the system as a three-dimensional continuous-time Markov chain we
provide a probabilistic analysis of the system and investigate the effects of buffer sizes
and arrival rates, as well as service rates, on the system’s performance. Numerical
examples are presented and extreme cases are investigated.
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1 Introduction

We study a two-queue finite-buffer polling-type systemwith a threshold-based switch-
ing policy (see Fig. 1). However, in contrast to other models, switching instants from
one queue to another are determined by the state of the queue which is not being
served. That is, when the server attends queue i (Qi ), i = 1, 2, it serves the customers
there until the first moment thereafter when the number of customers in Q j ( j = 1, 2,
j �= i) reaches its threshold level. At that instant the server immediately switches to
Q j (preemptive policy), unless the number of customers in Qi is greater or equal to
the threshold level there. In the latter case the server remains in Qi until the number
of customers there is reduced below the threshold level, and only then it switches
to Q j . The server will remain in Q j following the same switching policy, and so
on. When a served Qi becomes empty we consider two switching scenarios: (i) non-
work-conserving: the server remains in Qi until Q j reaches its threshold level, and (ii)
work-conserving: the server immediately switches to Q j if it is not empty. Although
the work-conserving scenario seems more efficient, we present cases where it is less
economical when high switching costs are involved. For each queue i , i = 1, 2, we
assume that the queue capacity is Ci < ∞, so that a customer arriving at Qi and
finds Ci customers there, leaves the system never to return. Customers arrive at Qi

according to a Poisson process with rate λi and the service time there is exponentially
distributed with mean 1/μi . The processes are independent. The threshold levels are
K1 ≤ C1 for Q1, and K2 ≤ C2 for Q2. To keep the presentation more tractable, we
provide analysis for the case where the threshold level in each queue equals the full
capacity of the queue, namely, K1 = C1 and K2 = C2. The analysis when K1 < C1
and/or K2 < C2 can be performed in a similar manner, although the details become
more cumbersome. Moreover, our numerical results show that for sufficiently large
values of the thresholds and buffer capacities, the values of the buffer capacities have
very little effect on the system performance. The cases when C1 or/and C2 are infinite
are currently under investigation by the authors.

One application of such amodel arises in data centers, where a rack of discs requires
a special attentionwhen the amount of recorded data exceeds a certain limit (threshold),
causing an inefficient operation that calls for a clean up action. Another motivation for
such systems is an automated traffic-light control that regulates the traffic of vehicles
crossing an intersection. The traffic-light alternates right-of-way priority between two
directions as follows: when one direction has the right-of way and the accumulating
number of cars in the other direction reaches a threshold, the right-of-way is transferred
to the latter direction, and vice versa. In fact, human beings behave in a similarmanner:
while working on a given task they let the load of other tasks pile up. Only when the
amount of work of another task exceeds a threshold, they switch their attention to that
task.
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Fig. 1 Two-queue polling system with threshold-based switching policy

Polling systems have been studied extensively in the queueing literature mostly
for unbounded-buffer systems (Boon et al. 2011; Takagi 1986; Yechiali 1993; and
references there). Threshold-based polling systems with unbounded buffers were also
treated in the past (Lee and Sengupta 1993; Haverkort et al. 1994; Boxma et al.
1995a, b; Lee 1996; Avram and Gómez-Corral 2006). Lee (1996) considered a single-
server two-queue model, where a high-priority queue is served exhaustively and a
low-priority queue follows a k-limited service policy. Lee and Sengupta (1993) ana-
lyzed a system where customers of each queue are served alternately unless the queue
length of the high-priority queue exceeds a certain threshold. Then, only the high-
priority customers are served until the queue length there reduces back to the threshold
level. A variant of the latter model was studied by Haverkort et al. (1994): once the
threshold is exceeded, the server serves the high-priority queue exhaustively. Boxma
et al. (1995a, b) studied a similar model in which queues are being served exhaus-
tively unless a certain threshold level is reached. In those studies service times are
assumed to be exponentially distributed. In Boxma et al. (1995a) the service process
at queue 2 is preemptively interrupted whenever the threshold at queue 1 is reached,
while in Boxma et al. (1995b) it is nonpreemptively interrupted. The latter case was
extended by Boxma and Down (1997) to the case where service times are generally
distributed, and was further examined by Avram and Gómez-Corral (2006) where the
main objective is to investigate the solution of a dynamic programming optimality
equation.

In the current work, our aim is to determine the joint distribution function of the
queue size process. To this end we formulate the system as a three-dimensional
continuous-time Markov chain and study its steady-state behavior by applying two
solution methods: (i) probability generating functions (PGFs), and (ii) matrix ana-
lytic approach. We present a full analysis of the non-work-conserving scenario, and
discuss briefly the details of the work-conserving scenario. The two scenarios are

123



K. Avrachenkov et al.

compared numerically. Moreover, such a model exhibits oscillations, whose nature
depends on the relative values of the various parameters: when the occupancy of Qi

decreases the occupancy of the other queue increases. Vivid examples of oscillations
between two queues are presented in Coffman et al. (1995) (C.P.R) and in Arazi et al.
(2005). However, there is an important difference between the work of C.P.R and the
present model. In the former heavy load regime is needed for appearance of oscil-
lations, whereas in this work, the oscillations manifest themselves when the values
of the thresholds are sufficiently large irrespectively of the system load. Investigating
these oscillations led to an observation that the dynamics of the system converges to
a periodic behavior when the threshold values, K1 for Q1 and K2 for Q2, are large.
We leave the probabilistic analysis of this convergence for future research. A recent
work, still in progress, by Jonckheere, Nazarathy and Rojas-Nandayapa may provide
a good base for the fluid analysis of the considered system.

The structure of the paper is as follows: in Sect. 2 we consider the non-work-
conserving scenario. In Sect. 2.1, we define the system as a three-dimensional
Markovian process and develop the system’s balance equations. Consequently, in
Sect. 2.3 we construct the corresponding marginal PGFs. The solution of the PGFs
is obtained by solving two finite linear systems of the form A(z) �G(z) = �P(z) and
B(w) �F(w) = ��(w), where �G(z) and �F(w) are vector functions of the sought-for
PGFs; A(z) and B(w) are finite square matrices with entries constructed from the
parameters of the system; and �P(z) and ��(w) are finite-dimensional vectors consist-
ing of unknown boundary probabilities (Litvak and Yechiali 2003; Perel and Yechiali
2008, 2013a, b). We show how to calculate the boundary probabilities determining the
PGFs by deriving explicit closed-form combinatorial expressions for the determinants
of A(z) and B(w).We are not aware of any previous relevant studies that obtained such
explicit expressions. In Sect. 2.4, we use a matrix analytic approach to solve the two
sets of balance equations constructed in Sect. 2.1. It follows that the generator matrix
defining the process differs from the classical quasi birth-and-death (QBD) processes
generators. Although the three-dimensional finite set of balance equations can be
solved numerically, we present an algorithmic-type method to compute the steady-
state probabilities. We use this approach since traditional matrix geometric methods
(Neuts 1981; Latouche and Ramaswami 1999) usually address infinite-dimensional
systems, while truncationmethods for infinite-dimensional systems (Bright andTaylor
1995), are not relevant here. Our analysis leads to the calculation of certain matri-
ces defined by combinatorial expressions resembling the combinatorial expressions
derived for the determinants of A(z) and B(w) associated with the PGFs. Further-
more, we are able to reduce the Kolmogorov set of 2(K1 + 1) × (K2 + 1) linear
equations to a set of K1 + K2 + 2 linear equations in the K1 + K2 + 1 unknown
boundary probabilities, by which all other probabilities are calculated. In Sect. 3, we
discuss the second switching scenario, while in Sect. 4 we present numerical results.
Section 5 deals with extreme cases. The oscillation phenomenon is presented and dis-
cussed in Sect. 6, where the two scenarios are also compared. Section 7 concludes the
paper.
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Fig. 2 Transition rate diagram of (L1, L2, I ) for Scenario 1

2 Scenario 1: non-work-conserving policy

2.1 Balance equations

Let Li (t) denote the number of customers present in Qi at time t , i = 1, 2, and
Li = limt→∞ Li (t). Let I (t) = 1 if the server attends Q1 at time t , and I (t) = 2
if the server attends Q2 (I = limt→∞ I (t)). The triple (L1(t), L2(t), I (t)) defines
a non-reducible continuous-time finite Markov chain, with transition-rate diagram
depicted in Fig. 2 (the numbers 1 or 2 appearing next to each node indicate whether
I = 1, or I = 2, respectively. Each box (k, n) depicts both the state where I (t) = 1
and the state where I (t) = 2). Let Pkn(i) = P(L1 = k, L2 = n, I = i), where
0 ≤ k ≤ K1, 0 ≤ n ≤ K2, i = 1, 2, denote the steady-state probabilities of the
system state. Then, the sets of balance equations, for I = 1 are given bellow. For
I = 2 the equations are symmetrical.
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I = 1.

k = 0 :
n = 0 : (λ1 + λ2)P00(1) = μ1P10(1)

1 ≤ n ≤ K2 − 1 : (λ1 + λ2)P0n(1) = λ2P0,n−1(1) + μ1P1n(1) (2.1)

1 ≤ k ≤ K1 − 1 :
n = 0 : (λ1 + λ2 + μ1)Pk0(1) = λ1Pk−1,0(1) + μ1Pk+1,0(1)

1 ≤ n ≤ K2 − 1 : (λ1 + λ2 + μ1)Pkn(1) = λ1Pk−1,n(1) + λ2Pk,n−1(1)

+ μ1Pk+1,n(1) (2.2)

k = K1 :
n = 0 : (λ2 + μ1)PK10(1) = λ1PK1−1,0(1) + λ1PK1−1,0(2)

1 ≤ n ≤ K2 − 2 : (λ2 + μ1)PK1n(1) = λ1PK1−1,n(1) + λ1PK1−1,n(2)

+ λ2PK1,n−1(1)

n = K2 − 1 : (λ2 + μ1)PK1,K2−1(1) = λ1PK1−1,K2−1(1) + λ1PK1−1,K2−1(2)

+ λ2PK1,K2−2(1) + μ2PK1K2(2)

n = K2 : μ1PK1K2(1) = λ2PK1,K2−1(1) (2.3)

Define the following marginal probabilities

P(L1 = k, I = i) ≡ Pk•(i) =
∑

n

Pkn(i), for 0 ≤ k ≤ K1, i = 1, 2,

P(L2 = n, I = i) ≡ P•n(i) =
∑

k

Pkn(i), for 0 ≤ n ≤ K2, i = 1, 2,

Summing Eqs. (2.1)–(2.3), we arrive at

μ1PK1K2(1) + λ2
(
P•K2−1(1) − PK1,K2−1(1)

)

= μ2PK1K2(2) + λ1
(
PK1−1•(2) − PK1−1,K2(2)

)
. (2.4)

Indeed, Eq. (2.4) states that the average switching rate from state I = 1 to state I = 2
[left hand side of (2.4)] is equal to the average switching rate from state I = 2 to state
I = 1 [right hand side of (2.4)].

2.2 Idleness and carried loads

Summing over n each equation for k in the set (2.1)–(2.3) for I = 1, together with the
corresponding set for I = 2, we get, after rearranging terms,

λ1P (L1 = k) = μ1Pk+1•(1), 0 ≤ k ≤ K1 − 1 (2.5)
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Similarly, for every n, 0 ≤ n ≤ K2 − 1, we have

λ2P (L2 = n) = μ2P•n+1(2), 0 ≤ n ≤ K2 − 1 (2.6)

Now, summing (2.5) over all k, 0 ≤ k ≤ K1 − 1, and rearranging terms we obtain

P0•(1) = P (I = 1) − λ
e f f
1

μ1
= P (I = 1) − ρ

e f f
1 . (2.7)

Similarly,

P•0(2) = P (I = 2) − λ
e f f
2

μ2
= P (I = 2) − ρ

e f f
2 , (2.8)

where for every i = 1, 2, λ
e f f
i = λi (1 − P (Li = Ki )) = λi (1 − P (arriving

customer is lost in Qi )) and ρ
e f f
i = λ

e f f
i
μi

. Notice that ρe f f
i is exactly the mean carried

load at Qi , i = 1, 2.
Summing (2.7) and (2.8) we obtain

P0•(1) + P•0(2) = 1 −
(
ρ
e f f
1 + ρ

e f f
2

)
. (2.9)

Equation (2.9) states that the proportion of time the server is idle, i.e., resides in an
empty queue [LHS of (2.9)] equals one minus the proportion of time the server is busy
[RHS of (2.9)].

2.3 Generating functions

Define, for each 0 ≤ k ≤ K1, and 0 ≤ n ≤ K2, the probability generating func-
tions (PGFs) for states I = 1 and I = 2, respectively: Gk(z) = ∑K2

n=0 Pkn(1)z
n ,

Fn(w) = ∑K1
k=0 Pkn(2)w

k . Multiplying by zn each equation for n in the sets (2.1)–
(2.3), summing over n, and rearranging terms we get

k = 0 :
(λ1 + λ2(1 − z))G0(z) = μ1G1(z) − λ2P0,K2−1(1)z

K2 (2.10)

1 ≤ k ≤ K1 − 2 :
(λ1 + μ1 + λ2(1 − z))Gk(z) = λ1Gk−1(z) + μ1Gk+1(z) − λ2Pk,K2−1(1)z

K2

(2.11)

k = K1 − 1 :
(λ1+μ1+λ2(1−z))GK1−1(z) = λ1GK1−2(z) + μ1GK1(z) − λ2PK1−1,K2−1(1)z

K2

− μ1PK1K2(1)z
K2 (2.12)

k = K1 :
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(μ1 + λ2(1 − z))GK1(z) = λ1GK1−1(z) + λ1

K2−1∑

n=0

PK1−1,n(2)z
n

+ λ2PK1K2(1)(1 − z)zK2 + μ2PK1K2(2)z
K2−1

(2.13)

The sets (2.10)–(2.13), and the corresponding set for Fn(w), 0 ≤ n ≤ K2, comprise
two systems of linear equations of the form

A(z) �G(z) = �P(z) , B(w) �F(w) = ��(w),

where the column vectors �G(z), �P(z), �F(w) and ��(w), and the matrices A(z) and
B(w) are defined as follows:

�G(z) = (
G0(z),G1(z), . . . ,GK1(z)

)t
, �P(z) = (

P0(z), P1(z), . . . , PK1(z)
)t

,

�F(w) = (
F0(w), F1(w), . . . , FK2(w)

)t
, ��(w)=(

�0(w),�1(w), . . . ,�K2(w)
)t

,

with

Pk(z) =
⎧
⎨

⎩

−λ2Pk,K2−1(1)zK2 , 0 ≤ k ≤ K1 − 2
−λ2PK1−1,K2−1(1)zK2 − μ1PK1K2 (1)z

K2 , k = K1 − 1
λ1

∑K2−1
n=0 PK1−1,n(2)zn + λ2PK1K2 (1)(1 − z)zK2 + μ2PK1K2 (2)z

K2−1, k = K1

�n(w) =
⎧
⎨

⎩

−λ1PK1−1,n(2)wK1 , 0 ≤ n ≤ K2 − 2
−λ1PK1−1,K2−1(2)wK1 − μ2PK1K2 (2)w

K1 , n = K2 − 1
λ2

∑K1−1
k=0 Pk,K2−1(1)wk + λ1PK1K2 (2)(1 − w)wK1 + μ1PK1K2 (1)w

K1−1, n = K2

A(z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0(z) −μ1 0 · · · · · · 0
−λ1 α(z) −μ1 0 · · · 0

0 −λ1 α(z) −μ1 0
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −λ1 α(z) −μ1
0 · · · · · · 0 −λ1 αK1(z)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

whereα0(z) = λ1+λ2(1−z); α(z) = λ1+μ1+λ2(1−z); αK1(z) = μ1+λ2(1−z).

B(w) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0(w) −μ2 0 · · · · · · 0
−λ2 β(w) −μ2 0 · · · 0

0 −λ2 β(w) −μ2 0
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −λ2 β(w) −μ2
0 · · · · · · 0 −λ2 βK2(w)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where β0(w) = λ2 + λ1(1 − w);β(w) = λ2 + μ2 + λ1(1 − w);βK2(w) = μ2 +
λ1(1 − w).

To obtain Gk(z) and Fn(w) we use Cramer’s rule, i.e., for every 0 ≤ k ≤ K1,
Gk(z) = |Ak (z)||A(z)| , where |A| is the determinant of the matrix A and Ak(z) is the matrix

obtained from A(z) by replacing its kth column by �P(z). Similarly, Fn(w) = |Bn(w)|
|B(w)| ,

for every 0 ≤ n ≤ K2. Thus, each PGF Gk(z) and Fn(w) is expressed in terms of the
K1 + K2 + 2 unknown probabilities, P0,K2−1(1); P1,K2−1(1), . . . , PK1−1,K2−1(1),
PK1K2(1); PK1−1,0(2), PK1−1,1(2), . . . , PK1−1,K2−1(2) and PK1K2(2) appearing in
�P(z) and ��(w). In order to find �P(z) and ��(w) we need to find K1 + K2 + 2
equations relating those K1 + K2 + 2 unknowns. We do that in the next subsection by
characterizing and using the roots of |A(z)| and |B(w)|. Since Gk(z) and Fn(w) are
probability generating functions, defined in our finite state space model for all reals z
and w, each root of |A(z)| (respectively of |B(w)|) is a root of |Ak(z)| (respectively
of |Bn(w)|), for every 0 ≤ k ≤ K1 (respectively for every 0 ≤ n ≤ K2).

Remark 2.1 It should be noted that, in our specific model, the matrix A(z) can be
presented as A(z) = A − λA I , where λA = λ2z and A is a tridiagonal Jacobi matrix
[see e.g., Da Fonseca (2006)] with a constant element along the upper diagonal and
another constant along the lower diagonal. A is given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1+λ2 −μ1 0 · · · · · · 0
−λ1 λ1+μ1+λ2 −μ1 0 · · · 0

0 −λ1 λ1 + μ1 + λ2 −μ1 0
...

...
. . .

. . .
. . .

. . .
...

0
. . .

. . . −λ1 λ1 + μ1 + λ2 −μ1
0 · · · · · · 0 −λ1 μ1 + λ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly, the roots of the equation |A(z)| = 0 coincide with the roots of |A−λA I | = 0.
Thus, the various eigenvalues of the matrix A (divided by λ2) are the roots of the
polynomial |A(z)| = 0. The same holds for the matrix B(w). Note that this relation to
eigenvalues does not occur in other studies where roots of the polynomial |A(z)| = 0
are sought [see e.g., Litvak and Yechiali (2003); Perel and Yechiali (2008, 2013a)].

Derivation of the boundary probabilities

Theorem 2.1 For any λ1 > 0, μ1 > 0, λ2 > 0 and K1 ≥ 1, |A(z)| is a polynomial
of degree K1 + 1 possessing a single root z∗ = 1 and K1 distinct roots in the open
interval (1,∞).

Proof Let q0(z) = 1. Define the minors of the diagonal of A(z), starting from the
higher left side corner, as follows [see also Usmani (1994)]:

q1(z) = α0(z), q2(z) =
∣∣∣∣
α0(z) −μ1
−λ1 α(z)

∣∣∣∣ , . . . , qK1+1(z) = |A(z)| . (2.14)
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The polynomials qk(z), 1 ≤ k ≤ K1 + 1, satisfy the following recursions:

q1(z) = α0(z)q0(z),

qk(z) = α(z)qk−1(z) − λ1μ1qk−2(z), for 2 ≤ k ≤ K1,

qK1+1(z) = αK (z)qK1(z) − λ1μ1qK1−1(z). (2.15)

From (2.14) and (2.15) we conclude that

1. By definition, q0(z) = 1 and therefore has no roots.
2. qk(z) and qk+1(z) have no joint roots in (0,∞). Otherwise, suppose they have

a joint root, then it would also be a root for qk−1(z), qk−2(z), . . . , q0(z) which
contradicts the above conclusion.

3. Sign(qk(∞)) = (−1)k , for all k.
4. qk(1) = λk1 > 0, for all 0 ≤ k ≤ K1.
5. qK1+1(1) = 0.
6. Given z̃ a root of qk(z), then sign(qk−1(z̃)qk+1(z̃)) = −1.
7. qk(z) is a polynomial of degree k for all 0 ≤ k ≤ K1 + 1.

From the above we conclude that q1(z) has only one root, z1,1 = 1 + λ1
λ2

> 1.

q2(1) = λ21 > 0, q2(z1,1) < 0, q2(∞) > 0. Therefore, the 2 roots of q2(z) satisfy:
z2,1 ∈ (1, z1,1), z2,2 ∈ (z1,1,∞). Similarly, q3(z) is of degree 3 and therefore can
have no more than 3 distinct roots. Also q3(1) = λ31 > 0, q3(z2,1) < 0, q3(z2,2) > 0,
q3(∞) < 0. This implies that q3(z) has exactly 3 distinct roots satisfying: z3,1 ∈
(1, z2,1), z3,2 ∈ (z2,1, z2,2), z3,3 ∈ (z2,2,∞).

In general, for 2 ≤ k ≤ K1, given k − 1 distinct roots of qk−1(z), the roots of qk(z)
satisfy: zk,1 ∈ (1, zk−1,1), zk,2 ∈ (zk−1,1, zk−1,2), . . . , zk,k ∈ (zk−1,k−1,∞).

qK1+1(z) has K1 + 1 roots, where zK1+1,1 = z∗ = 1 is one of them.
From the above we have another K1 distinct roots in the open interval (1,∞),
satisfying zK1+1,2 ∈ (zK1,1, zK1,2), zK1+1,3 ∈ (zK1,2, zK1,3), . . . , zK1+1,K1 ∈
(zK1,K1−1, zK1,K1), zK1+1,K1+1 ∈ (zK1,K1 ,∞).

This completes the proof of Theorem 2.1. ��
Theorem 2.2 For any λ2 > 0, μ2 > 0, λ1 > 0 and K2 ≥ 1, |B(w)| is a polynomial
of degree K2 + 1 possessing a single root w∗ = 1 and K2 distinct roots in the open
interval (1,∞).

Proof The proof is identical to the proof of Theorem 2.1. ��
To find the K1 + K2 + 2 unknown probabilities appearing in �P(z) and ��(w), we use
the K1 distinct roots in the open interval (1,∞) of the polynomial |A(z)| and the K2
distinct roots in the open interval (1,∞) of the polynomial |B(w)|, which provide us
with K1 + K2 equations for those probabilities. Another equation is (2.4), and the last
one is provided by using the fact that

∑K1
k=0 Gk(1)+∑K2

n=0 Fn(1) = 1. Thus, we have
a set of K1 + K2 + 2 linearly independent equations in the K1 + K2 + 2 unknown
probabilities [see e.g., Litvak and Yechiali (2003); Perel and Yechiali (2008, 2013a);
Perel and Yechiali (2013b)]. Once the above K1 +K2 +2 probabilities are calculated,
the PGFs are completely determined.
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Remark 2.2 We note that the polynomials qk(z), 1 ≤ k ≤ K1 + 1, are usually used
to show that the roots of the determinant of the matrix A(z) exist, and are inside or
outside the (0, 1) interval. We are not aware of a case where the polynomials were
explicitly calculated. In our case we are able to derive explicit closed-form expressions
for these polynomials.

Theorem 2.3 For every 1 ≤ k ≤ K1, qk(z) is of the form

qk(z) =

 k
2 �∑

l=0

(−λ1μ1)
l
((

k − l − 1

l

)
αk−2l−1(z)α0(z) +

(
k − l − 1

l − 1

)
αk−2l(z)

)
,

(2.16)
where for all k ≥ 0,

(k
l

) = 0 for every l < 0, and l > k.

Proof The proof is given in the Appendix. ��
Corollary 2.1 The polynomial qK1+1(z) = |A(z)| is given by

|A(z)| =

 K1+1

2 �∑

l=0

(−λ1μ1)
l
((

K1 − l

l

)
αK1−2l (z)α0(z) +

(
K1 − l

l − 1

)
αK1+1−2l (z)

)

− λ1


 K1
2 �∑

l=0

(−λ1μ1)
l
((

K1 − l − 1

l

)
αK1−2l−1(z)α0(z) +

(
K1 − 1 − l − 1

l − 1

)
αK1−2l (z)

)
.

(2.17)

Proof By substituting Eqs. (2.16) in (2.15) once for k = K1, and then for k = K1−1.
��

By symmetry we have the following:

Corollary 2.2

|B(w)| =

 K2+1

2 �∑

l=0

(−λ2μ2)
l
((

K2 − l

l

)
βK2−2l (w)β0(w) +

(
K2 − l

l − 1

)
βK2+1−2l (w)

)

− λ2


 K2
2 �∑

l=0

(−λ2μ2)
l
((

K2 − l − 1

l

)
βK2−2l−1(w)β0(w)

+
(
K2 − l − 1

l − 1

)
βK2−2l (w)

)
. (2.18)

The mean total number of customers in Qi , i = 1, 2 is obtained by

E[L1] =
K1∑

k=0

kPk•(1) +
K1∑

k=0

kPk•(2) =
K1∑

k=0

kGk(1) +
K2∑

n=0

F ′
n(1), (2.19)

E[L2] =
K2∑

n=0

nFn(1) +
K1∑

k=0

G ′
k(1). (2.20)
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Clearly, by Little’s Law, E[Wi ] = E[Li ]/λe f fi , where

λ
e f f
i = λi (1 − P (Li = Ki )) = λi (1 − P (arriving customer is lost in Qi )) .

P(I = 1) and P(I = 2) are obtained by

P(I = 1) =
K1∑

k=0

Gk(1), (2.21)

P(I = 2) =
K2∑

n=0

Fn(1). (2.22)

The above performance measures, E[Li ], E[Wi ], P (arriving customer is lost in Qi ),
and P(I = i), i = 1, 2, are calculated numerically in Sect. 4.

2.4 Matrix analysis

We define a non-reducible Markov chain (I (t), L1(t), L2(t)) with a finite state
space S = {(i, k, n)| i = 1, 2; 0 ≤ k ≤ K1; 0 ≤ n ≤ K2} under the order
S = {(1, 0, 0), (1, 0, 1), . . . , (1, 0, K2−1); . . . ; (1, K1−1, 0), . . . , (1, K1−1, K2−
1); (1, K1, 0), . . . , (1, K1, K2 − 1), (1, K1, K2); (2, 0, 0), (2, 1, 0), . . . , (2, K1 −
1, 0); . . . ; (2, 0, K2 − 1), . . . , (2, K1 − 1, K2 − 1); (2, 0, K2), . . . , (2, K1 − 1, K2),
(2, K1, K2)} and a generator matrix Q given by

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0
1 A0 0 · · · · · · · · · · · · · · · · · · A0

3
A2 A1 A0 0 · · · · · · · · · · · · · · · A1

3
.
.
.

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

.

.

.

.

. 0 A2 A1 A0 0 · · · · · · · · · AK1−1
3

.

.

.
.
.
. 0 AK1

2 AK1
1 0 · · · · · · · · · AK1

3
.
.
.

. . .
. . . 0 B0

3 B0
1 B0 0 · · · 0

.

.

.
. . .

. . . 0 B1
3 B2 B1 B0 0

.

.

.

.

.

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0 BK2−1
3 0 · · · B2 B1 B0

.

.

.
. . .

. . . 0 BK2
3 0 · · · · · · BK2

2 BK2
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(A 01 �A3

02 �B3 B
)

,

(2.23)
where 0 is a matrix of zeros, and the sub-matrices in Q are the following: A0

1, A0, A2

and A1 are each of size K2 × K2; A
K1
1 is of size (K2 + 1) × (K2 + 1); AK1

2 is of size

(K2 + 1) × K2; A0
3, A

1
3, . . . , A

K1−1
3 are each of size K2 × (K1 + 1); AK1

3 is of size

(K2 + 1) × (K1 + 1); B0
1 , B0, B2 and B1 are each of size K1 × K1; B

K2
1 is of size
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(K1 + 1) × (K1 + 1); BK2
2 is of size (K1 + 1) × K1; B0

3 , B
1
3 , . . . , B

K2−1
3 are each of

size K1 × (K2 + 1) and BK2
3 is of size (K1 + 1) × (K2 + 1). They are given by

A0 = diag(λ1), A2 = diag(μ1),

A0
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β0 λ2 0 · · · 0

0 −β0 λ2 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . −β0 λ2

...
. . .

. . . 0 −β0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1 λ2 0 · · · 0

0 −β1 λ2 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . −β1 λ2

...
. . .

. . . 0 −β1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where β0 = λ1 + λ2, β1 = λ1 + λ2 + μ1 and β2 = λ1 + λ2 + μ2.

AK1
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(μ1 + λ2) λ2 0 · · · 0

0 −(μ1 + λ2) λ2 0
...

...
. . .

. . .
. . .

...
...

. . .
. . . −(μ1 + λ2) λ2

...
. . .

. . . 0 −μ1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

AK1
2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

μ1 0 · · · · · · 0

0 μ1 0 · · · ...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . μ1

0 · · · · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

For all 0 ≤ k ≤ K1 − 1,

(
Ak
3

)

(st),(lm)
=

{
λ2 (st) = (k, K2 − 1), (lm) = (kK2),

0 otherwise
(
AK1
3

)

(st),(lm)
=

{
μ1 (st) = (K1, K2), (lm) = (K1 − 1, K2),

0 otherwise

The matrices B0, B0
1 , B1, B

K2
1 , B2, and BK2

2 are similar to A0, A0
1, A1, A

K1
1 , A2,

and AK1
2 , respectively, where λ2, μ2, β2, and K2 change role with λ1, μ1, β1, and K1,

respectively. Finally, for all 0 ≤ n ≤ K2 − 1,

(
Bn
3

)
(st),(lm)

=
{

λ1 (st) = (K1 − 1, n), (lm) = (K1n),

0 otherwise
(
BK2
3

)

(st),(lm)
=

{
μ2 (st) = (K1, K2), (lm) = (K1, K2 − 1),
0 otherwise
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We emphasize that the structure of the matrix Q is different from the structure of
a classical QBD process generator matrix. Usually the generator matrix of a QBD
process has at most 3 non-zero block-diagonals and all other entries are zero. In this
case, the matrix Q has 3 non-zero block-diagonals (appearing in the matrices A and
B) and in addition two non-zero columns, �A3 and �B3 as in (2.23).

Define the steady-state probability vector �P =
( �P1

0 , �P1
1 , . . . , �P1

K1
, �P2

0 , �P2
1 , . . . ,

�P2
K2

)
, where

�P1
k = (Pk0(1), Pk1(1), . . . , Pk,K2−1(1)), 0 ≤ k ≤ K1 − 1,

�P1
K1

= (PK10(1), . . . , PK1,K2−1(1), PK1K2(1)),

�P2
n = (P0n(2), P1n(2), . . . , PK1−1,n(2)), 0 ≤ n ≤ K2 − 1,

�P2
K2

= (P0K2(2), . . . , PK1−1,K2(2), PK1K2(2)).

Then the steady-state probability vector satisfies �PQ = �0. Specifically, we have

�P1
0 A

0
1 + �P1

1 A2 = �0,
�P1
0 A0 + �P1

1 A1 + �P1
2 A2 = �0,

...

�P1
K1−2A0 + �P1

K1−1A1 + �P1
K1

AK1
2 = �0,

�P1
K1−1A0 + �P1

K1−1A
K1
1 +

K2∑

n=0

�P2
n B

n
3 = �0,

�P2
0 B

0
1 + �P2

1 B2 = �0,
�P2
0 B0 + �P2

1 B1 + �P2
2 B2 = �0,

...

�P2
K2−2B0 + �P2

K2−1B1 + �P2
K2

BK2
2 = �0,

K1∑

k=0

�P1
k A

k
3 + �P2

K2−1B0 + �P2
K2

BK2
1 = �0. (2.24)

Clearly, one can solve directly (numerically) the set (2.24) (including the normal-
ization equation,

∑K1
k=0

�P1
k · �e + ∑K2

n=0
�P2
n · �e = 1, where �e is a vector of 1’s). This

requires some computational effort. We indicate again that in contrast to most ana-
lytic methods in Queueing Theory that treat cases where at least one of the process
dimension is infinite, our case is finite in all its dimensions. Thus traditional matrix
geometric methods are not directly applicable here. In addition, truncation methods
seem unnecessary here. Therefore, we present an alternative algorithmic-type method
to ease the required computational effort. For this aim, we borrow from the ideas pre-
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sented by De Nitto Personè and Grassi (1996) and modify them to our purposes due
to the special structure of the matrix Q. We claim:

Theorem 2.4 The following equation holds:

�P1
k = �P1

0Ck, 1 ≤ k ≤ K1 − 1, (2.25)

where for all 1 ≤ k ≤ K1 − 1, Ck is a matrix of size K2 × K2 satisfying C0 = IK2 ,
C1 = − 1

μ1
A0
1 and for all 2 ≤ k ≤ K1 − 1, Ck = − 1

μ1
(λ1Ck−2 + Ck−1A1).

Proof The proof is given in the Appendix. ��
Theorem 2.5 The following equation holds:

�P2
n = �P2

0 Dn, 1 ≤ n ≤ K2 − 1, (2.26)

where for all 1 ≤ n ≤ K2 − 1, Dn is a matrix of size K1 × K1 satisfying D0 = IK2 ,
D1 = − 1

μ2
B0
1 and for all 2 ≤ n ≤ K2 − 1, Dn = − 1

μ2
(λ2Dn−2 + Dn−1B1).

Proof The proof is identical to the proof of Theorem 2.4.

From Theorem 2.4 we have that �P1
k , 1 ≤ k ≤ K1 − 1, are expressed in terms of

the probability vector �P1
0 , and from Theorem 2.5 we have that �P2

n , 1 ≤ n ≤ K2 − 1,
are expressed in terms of the probability vector �P2

0 . Therefore, the solution of (2.24)
can be calculated by solving only the following reduced linear system:

�P1
0

(
λ1CK1−2 + CK−1A1

) + �P1
K1

AK1
2 = �0,

�P1
0 λ1CK1−1 + �P1

K1
AK1
1 + �P2

0

K2−1∑

n=0

DnB
n
3 + �P2

K2
BK2
3 = �0,

�P2
0

(
λ2DK2−2 + DK2−1B1

) + �P2
K2

BK2
2 = �0,

�P1
0

K1−1∑

k=0

Ck A
k
3 + �P1

K1
AK1
3 + �P2

0 λ2DK2−1 + �P2
K2

BK2
1 = �0. (2.27)

Therefore, instead of solving tediously the set of linear equations (2.24), it is enough
to calculate the matrices Ck , 1 ≤ k ≤ K1 − 1 and Dn , 1 ≤ n ≤ K2 − 1, and solve
the set of linear equations (2.27) with the normalization equation, �P1

0

∑K1−1
k=0 Ck �e +

�P1
K1

�e + �P2
0

∑K2−1
n=0 Dn�e + �P2

K2
�e = 1, which yields the set of sought-for probability

vectors �P1
0 , . . . , �P1

K1−1, �P1
K1
, �P2

0 , . . . , �P2
K2−1, �P2

K2
.

Theorem 2.6 For every 0 ≤ k ≤ K1 − 1, Ck is of the form

Ck =
(−1

μ1

)k 
 k
2 �∑

l=0

(−λ1μ1)
l
((

k−1−l

l

)
A0
1 (A1)

k−2l−1 +
(
k−1−l

l − 1

)
(A1)

k−2l
)

,

(2.28)
where for all k ≥ 0,

(k
l

) = 0 for every l < 0, and l > k.
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Proof The proof is given in the Appendix. ��
Remark 2.3 Notice the similarity in structure of Eqs. (2.16) and (2.28).

Theorem 2.7 For every 0 ≤ n ≤ K2 − 1, Dn is of the form

Dn =
(−1

μ2

)n 
 n
2 �∑

l=0

(−λ2μ2)
l
((

n−1−l

l

)
B0
1 (B1)

n−2l−1 +
(
n−1−l

l − 1

)
(B1)

n−2l
)

.

(2.29)

Proof The proof is similar to the proof of Theorem 2.6 ��

3 Scenario 2: work-conserving policy

We now briefly present the work-conserving switching scenario: if a served Qi

becomes empty, the server immediately switches to Q j if the latter is not empty.
The transition-rate diagram of the triple (L1, L2, I ) for this scenario is depicted in
Fig. 3. The balance equations here are similar to those of Scenario 1, and therefore
the details are omitted from the presentation. Equation (2.4), equating the switching
rates between the queues, becomes

μ1
(
P1•(1) − P10(1) + PK1K2(1)

) + λ2
(
P00(1) + P•K2−1(1) − PK1,K2−1(1)

)

= μ2
(
P•1(2) − P01(2) + PK1K2(2)

) + λ1
(
P00(2) + PK1−1•(2) − PK1−1,K2(2)

)
.

(3.1)

Notice that in this case a switch occurs also when the served queue becomes empty
and the non-served queue is not empty.

Repeating the algebra in Sect. 2.2, we arrive at

P00(1)+P00(2) =
(
P (I = 1) − ρ

e f f
1

)
+

(
P (I = 2) − ρ

e f f
2

)
= 1−

(
ρ
e f f
1 + ρ

e f f
2

)
.

(3.2)

3.1 Matrix analysis for scenario 2

We define a non-reducible Markov chain (L1(t), L2(t), I (t)) with a finite state
space S = {(k, n, i)| 0 ≤ k ≤ K1; 0 ≤ n ≤ K2; i = 1, 2} under a different
order S = {(0, 0, 1),(0, 0, 2),(1, 0, 1), (2, 0, 1), . . . , (K1, 0, 1) ; (0, 1, 2), (1, 1, 1),
(1, 1, 2), . . . , (K1−1, 1, 1), (K1−1, 1, 2), (K1, 1, 1); . . . ; (0, K2−1, 2), . . . , (K1−
1, K2 −1, 1), (K1 −1, K2 −1, 2), (K1, K2 −1, 1); (0, K2, 2), (1, K2, 2), . . . , (K1 −
1, K2, 2), (K1, K2, 1), (K1, K2, 2)}. This lexicographic order leads to a different gen-
erator matrix Q from which all steady-state probability vectors can be calculated
(details are omitted). The two scenarios are compared numerically in the next sec-
tions.
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Fig. 3 Transition rate diagram of (L1, L2, I ) for Scenario 2

4 Numerical examples

Define Ploss(i) = P(arriving customer is lost in Qi ), i = 1, 2, and SR ≡ average
switching rate between the queues. Tables 1, 2, 3 and 4 exhibit numerical results when
K1 = 10 for different values of λ1, λ2, μ1, and μ2. In Tables 1, 2, K2 = 3, while
in Tables 3, 4, K2 = 8. Tables 1 and 3 relate to Scenario 1, while Tables 2 and 4
relate to Scenario 2. Tables 1, 2, 3 and 4 are constructed as follows: the first row gives
a set of basic values of the four parameters λ1 = 1, λ2 = 1, μ1 = 5 and μ2 = 5,
and the calculations of the resulting performance measures. The second, third, fourth,
and fifth rows give, respectively, the values of the measures when in each row only
one of the parameters is changed. Row six gives another set of basic parameters,
λ1 = 4, λ2 = 4, μ1 = 2 and μ2 = 2, and the following rows give the corresponding
results.
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Table 1 Numerical results for K1 = 10 and K2 = 3

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic
parameters 1

4.92 0.5853 0.2678 0.7322 0.0247 0.0289 5.0447 0.6028 0.0573

λ1 = 10 9.2883 2.0230 0.8354 0.1646 0.5824 0.2033 2.2241 2.5393 0.6366

λ2 = 10 8.9856 2.4148 0.1590 0.8410 0.2050 0.5996 11.3025 0.6032 0.6369

μ1 = 10 4.1234 0.5350 0.2307 0.7693 0.0095 0.0252 4.1629 0.5488 0.0206

μ2 = 10 4.8464 0.4200 0.2713 0.7287 0.0234 0.0114 4.9626 0.4248 0.0520

Basic
parameters 2

9.7206 2.7247 0.4995 0.5005 0.7502 0.7508 9.7300 2.7339 0.7654

λ1 = 40 9.9699 2.7952 0.5912 0.4088 0.9704 0.7956 8.4312 3.4192 0.8123

λ2 = 40 9.7952 2.9700 0.4087 0.5913 0.7956 0.9704 11.9820 2.5117 0.8123

μ1 = 20 6.8523 2.4698 0.1776 0.8224 0.2271 0.6001 2.2163 1.5442 0.5168

μ2 = 20 9.5333 1.7123 0.7499 0.2501 0.6251 0.3415 6.3566 0.6501 0.8539

Non-work-conserving

Table 2 Numerical results for K1 = 10 and K2 = 3

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic
parameters 1

0.3495 0.3110 0.5025 0.4975 0.0001 0.0096 0.3495 0.3140 0.4566

λ1 = 10 9.2747 2.0258 0.8407 0.1593 0.5797 0.2036 2.2065 2.5435 0.6383

λ2 = 10 7.3468 2.4167 0.1777 0.8223 0.1136 0.5895 8.2886 0.5887 0.6589

μ1 = 10 0.1795 0.2587 0.4834 0.5266 2.2×10−7 0.0070 0.1795 0.2605 0.4721

μ2 = 10 0.2717 0.1690 0.5197 0.4803 2.3×10−7 0.0021 0.2717 0.1694 0.4756

Basic
parameters 2

9.7161 2.7259 0.5021 0.4979 0.7489 0.7511 9.6749 2.7376 0.7676

λ1 = 40 9.9699 2.7952 0.5913 0.4087 0.9704 0.7956 8.4312 3.4192 0.8123

λ2 = 40 9.7951 2.9700 0.4088 0.5912 0.7956 0.9704 11.9809 2.5117 0.8129

μ1 = 20 6.4101 2.4296 0.1700 0.8300 0.2078 0.5867 2.0230 1.4695 0.6386

μ2 = 20 9.2975 1.8312 0.8692 0.1308 0.5654 0.3460 5.3487 0.7000 1.0043

Work-conserving

Remarks on the numerical results

• In all cases presented, E[W1] and Ploss(1) under Non-Work-Conserving scenario
are each larger than their corresponding values under Work-Conserving scenario.
This is clearly a consequence of the difference between the scenarios

• The above observation is true for E[W2] and Ploss(2), for almost all cases, unless
μ2 becomes relatively large.

In Sect. 6, we will further discuss the above numerical results together with those
presented in the following section that analyzes extreme cases. In addition, in Sect. 6
we exhibit graphically the oscillation phenomenon occurring in this two-dimensional
stochastic process.
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Table 3 Numerical results for K1 = 10 and K2 = 8

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic
parameters 1

3.3738 2.2050 0.4431 0.5569 0.0131 0.0132 3.4186 2.2346 0.0567

λ1 = 10 9.3124 6.9699 0.8279 0.1721 0.5897 0.2106 2.2698 8.8290 0.6361

λ2 = 10 8.9427 7.2870 0.1608 0.8391 0.1998 0.5815 11.1756 1.7412 0.6222

μ1 = 10 2.9203 2.1956 0.4395 0.5605 0.0060 0.0138 2.9380 2.2262 0.0566

μ2 = 10 3.3729 1.8686 0.4457 0.5543 0.0134 0.0060 3.4188 1.8798 0.0570

Basic
parameters 2

9.7225 7.7217 0.4994 0.5006 0.7509 0.7509 9.7580 7.7498 0.7638

λ1 = 40 9.9700 7.7952 0.5912 0.4088 0.9704 0.7956 8.4316 9.5359 0.8123

λ2 = 40 9.7952 7.9700 0.4087 0.5913 0.7956 0.9704 11.9820 6.7399 0.8123

μ1 = 20 6.9507 7.4388 0.1770 0.8230 0.2387 0.6037 2.2826 4.6922 0.5951

μ2 = 20 9.4382 5.2031 0.8076 0.1924 0.5986 0.2364 5.8778 1.7035 0.6185

Non-work-conserving

Table 4 Numerical results for K1 = 10 and K2 = 8

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

Basic
parameters 1

0.3334 0.3332 0.5000 0.5000 1.7×10−6 1.6×10−5 0.3334 0.3332 0.4518

λ1 = 10 9.2822 6.9192 0.8395 0.1605 0.5802 0.1977 2.2113 8.6239 0.6197

λ2 = 10 8.8860 7.2884 0.1608 0.8392 0.1959 0.5804 11.0515 1.7370 0.6168

μ1 = 10 0.1814 0.2664 0.4825 0.5175 3.6×10−7 2.4×10−6 0.1814 0.2664 0.4711

μ2 = 10 0.2665 0.1814 0.5177 0.4825 1.1×10−7 3.2×10−6 0.2665 0.1814 0.4711

Basic
parameters 2

9.7201 7.7201 0.5000 0.5000 0.7500 0.7509 9.7201 7.7201 0.7648

λ1 = 40 9.9699 7.7952 0.5913 0.4087 0.9704 0.7956 8.4312 9.5354 0.8123

λ2 = 40 9.7952 7.9700 0.4087 0.5913 0.7956 0.9704 11.9819 6.7399 0.8123

μ1 = 20 6.9360 7.3484 0.1550 0.8450 0.2258 0.5775 2.2398 4.3482 0.6012

μ2 = 20 9.3398 5.3813 0.8482 0.1518 0.5759 0.2411 5.5057 1.7728 0.6434

Work-conserving

5 Extreme cases

Due to the symmetry between the queues, we investigate only the influence of extreme
values of λ1 and μ1, as they reach 0 or ∞, on the system’s performance measures
E[Li ], E[Wi ], P(I = i), Ploss(i), i = 1, 2, and SR. We first address extreme cases
which lead to identical system structure in the two scenarios, and then we address
extreme cases which lead to different system structures.

Numerical results for the case where K1 = 10 are presented in Tables 5, 6, 9 and
10 (change in λ1), and in Tables 7, 8, 11 and 12 (change in μ1). In Tables 5, 6, 7, and
8 we set K2 = 3, while in Tables 9, 10, 11, and 12, K2 = 8.
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Table 5 The impact of λ1 (when λ2 = 4, μ1 = 7, μ2 = 7, K1 = 10 and K2 = 3)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 0.8559 0 1 0 0.0895 0 0.2350 0

λ1 = 0.1 6.5305 0.8797 0.0149 0.9851 0.0041 0.0937 65.5725 0.2426 0.0239

λ1 = 0.5 6.6867 0.9733 0.0727 0.9273 0.0214 0.1098 13.6666 0.2733 0.1206

λ1 = 5 8.4174 1.8150 0.5011 0.4989 0.3008 0.2849 2.4078 0.6345 1.1267

λ1 = 50 9.8891 2.5030 0.7209 0.2791 0.8991 0.5117 1.9596 1.2816 1.9054

λ1 = 500 9.9897 2.5314 0.7323 0.2677 0.9897 0.5315 1.9488 1.3501 1.8733

λ1 = 5,000,000 10 2.5333 0.7333 0.2667 0.999999 0.5333 1.9480 1.3571 1.8667

Non-work-conserving

Table 6 The impact of λ1 (when λ2 = 4, μ1 = 7, μ2 = 7, K1 = 10 and K2 = 3)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 0.8559 0 1 0 0.08951 0 0.2350 0

λ1 = 0.1 0.0394 0.8644 0.0298 0.9702 0.2.8×10−14 0.0906 0.3937 0.2376 0.1000

λ1 = 0.5 0.2190 0.9027 0.1305 0.8695 0.7.8×10−8 0.0959 0.4380 0.2496 0.4155

λ1 = 5 7.0230 1.7853 0.5745 0.4255 0.2069 0.2669 1.7711 0.6089 1.1676

λ1 = 50 9.8891 2.5030 0.7210 0.2790 0.8991 0.5117 1.9594 1.2816 1.9054

λ1 = 500 9.9897 2.5314 0.7323 0.2677 0.9897 0.5315 1.9488 1.3509 1.8733

λ1 = 5,000,000 10 2.5333 0.7333 0.2667 0.999999 0.5333 1.9480 1.3571 1.8667

Work-conserving

Table 7 The impact of μ1 (when λ1 = 4, λ2 = 4, μ2 = 7, K1 = 10 and K2 = 3)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

μ1 = 0 10 3 1 0 1 1 ∞ ∞ 0

μ1 = 0.1 9.9757 2.9298 0.9700 0.0300 0.99757 0.9532 101.837 15.6572 0.0950

μ1 = 0.5 9.8893 2.7068 0.8750 0.1250 0.8906 0.8048 22.6050 3.4674 0.3952

μ1 = 5 8.7921 1.8486 0.5163 0.4837 0.3551 0.3101 3.4083 0.6699 1.0642

μ1 = 50 4.2667 1.1740 0.2000 0.8000 0.0141 0.1398 1.0820 0.3412 0.1123

μ1 = 500 3.7556 1.1431 0.1830 0.8170 0.0050 0.1346 0.9436 0.3302 0.0093

μ1 = 5,000,000 3.7060 1.1406 0.1816 0.8184 0.0042 0.1342 0.9304 0.3293 9.1×10−7

Non-work-conserving

λ1 → 0
In this case it is clear that, in both scenarios, P(L1 = 0) = 1; Hence, P(I = 1) = 0
and P(I = 2) = 1. Therefore, Q2 operates as an M(λ2)/M(μ2)/1/K2 system for

which Ploss(2) = ρ
K2
2 (1−ρ2)

1−ρ
K2+1
2

, and E[L2] = ρ2
1−ρ2

− (K2+1)ρ
K2+1
2

1−ρ
K2+1
2

, where ρ2 = λ2
μ2
.

μ1 → 0
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Table 8 The impact of μ1 (when λ1 = 4, λ2 = 4, μ2 = 7, K1 = 10 and K2 = 3)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

μ1 = 0 10 3 1 0 1 1 ∞ ∞ 0

μ1 = 0.1 9.9755 2.9348 0.9741 0.0259 0.9756 0.9547 102.409 16.1805 0.0976

μ1 = 0.5 9.8847 2.7254 0.8911 0.1089 0.8886 0.8094 22.1859 3.5745 0.4085

μ1 = 5 7.7191 1.8548 0.5941 0.4059 0.2612 0.2959 2.6119 0.6586 1.1080

μ1 = 50 0.9603 0.8777 0.3536 0.6464 0.0011 0.0924 0.2404 0.2418 1.3796

μ1 = 500 0.7955 0.8566 0.3476 0.6524 0.0006 0.0896 0.1990 0.2352 1.4022

μ1 = 5,000,000 0.7797 0.8559 0.3474 0.6526 0.0006 0.0895 0.1950 0.2350 1.4027

Work-conserving

Table 9 The impact of λ1 (when λ2 = 4, μ1 = 7, μ2 = 7, K1 = 10 and K2 = 8)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 1.2745 0 1 0 0.0049 0 0.3202 0

λ1 = 0.1 4.9287 1.4117 0.0196 0.9704 0.0017 0.0084 49.3692 0.3559 0.0119

λ1 = 0.5 4.9678 1.9274 0.0931 0.9069 0.0084 0.0214 10.0196 0.4924 0.0566

λ1 = 5 8.0553 6.0533 0.5363 0.4637 0.2716 0.2418 2.2117 1.9960 0.9348

λ1 = 50 9.8894 7.5042 0.7203 0.2797 0.8992 0.5124 1.9626 3.8475 1.9058

λ1 = 500 9.9897 7.5314 0.7323 0.2677 0.9897 0.5315 1.9488 4.0192 1.8733

λ1 = 5,000,000 10 7.5333 0.7333 0.2667 0.999999 0.5333 1.9480 4.0357 1.8667

Non-work-conserving

Table 10 The impact of λ1 (when λ2 = 4, μ1 = 7, μ2 = 7, K1 = 10 and K2 = 8)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

λ1 = 0 0 1.2745 0 1 0 0.0049 0 0.3202 0

λ1 = 0.1 0.0565 1.2932 0.0288 0.9712 8.9 × 10−12 0.0050 0.5654 0.3249 0.0934

λ1 = 0.5 0.3109 1.3937 0.1229 0.8771 3.2 × 10−6 0.0059 0.6218 0.3505 0.3672

λ1 = 5 7.5747 5.8061 0.5490 0.4510 0.2343 0.2139 1.9786 1.8465 0.9147

λ1 = 50 9.8891 7.5026 0.7210 0.2790 0.8910 0.5117 1.9595 3.8411 1.9051

λ1 = 500 9.9897 7.5314 0.7323 0.2677 0.9897 0.5315 1.9488 4.0192 1.8733

λ1 = 5,000,000 10 7.5333 0.7333 0.2667 0.999999 0.5333 1.9480 4.0357 1.8667

Work-conserving

This case is also straightforward and identical in both scenarios: P(I = 1) = 1 and
P(I = 2) = 0. Therefore, P(L1 = K1) = 1 and P(L2 = K2) = 1, Ploss(1) = 1, and
Ploss(2) = 1.
λ1 → ∞

In both scenarios, whenever λ1 → ∞, Q1 is always at its maximum capacity,
meaning L1 ≡ K1 and Ploss(1) = 1. In such a case, the server serves the customers of
Q1 until the number of customers in Q2 reaches its maximum value, K2. Then, once
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Table 11 The impact of μ1 (when λ1 = 4, λ2 = 4, μ2 = 7, K1 = 10 and K2 = 8)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

μ1 = 0 10 8 1 0 1 1 ∞ ∞ 0

μ1 = 0.1 9.9757 7.9010 0.9702 0.0298 0.9757 0.9482 102.8220 38.1134 0.0945

μ1 = 0.5 9.8888 7.5920 0.8775 0.1225 0.8904 0.7870 22.5556 8.9111 0.3871

μ1 = 5 8.5254 6.0910 0.5514 0.4486 0.3255 0.2618 3.1599 2.0628 0.8900

μ1 = 50 3.1548 4.0234 0.3785 0.6215 0.0056 0.0768 0.7932 1.0895 0.2568

μ1 = 500 2.8346 3.9967 0.3753 0.6247 0.0007 0.0759 0.7091 1.0812 0.2513

μ1 = 5,000,000 2.8020 3.9945 0.3750 0.6250 0.0002 0.0758 0.7006 1.0805 0.2509

Non-work-conserving

Table 12 The impact of μ1 (when λ1 = 4, λ2 = 4, μ2 = 7, K1 = 10 and K2 = 8)

E[L1] E[L2] P(I = 1) P(I = 2) Ploss(1) Ploss(2) E[W1] E[W2] SR

μ1 = 0 10 8 1 0 1 1 ∞ ∞ 0

μ1 = 0.1 9.9757 7.9019 0.9704 0.0296 0.9757 0.9483 102.7950 38.2017 0.0946

μ1 = 0.5 9.8884 7.5955 0.8785 0.1215 0.8902 0.7873 22.5132 8.9272 0.3875

μ1 = 5 8.1645 5.9921 0.5667 0.4333 0.2926 0.2432 2.8853 1.9794 0.8749

μ1 = 50 1.3769 1.3715 0.3200 0.6800 0.0014 0.0066 0.3447 0.3452 1.2496

μ1 = 500 1.1681 1.2806 0.3129 0.6871 0.0003 0.0050 0.2921 0.3218 1.2912

μ1 = 5,000,000 1.1483 1.2745 0.3125 0.6875 0.0002 0.0049 0.2872 0.3202 1.2933

Work-conserving

the server completes the service of a customer at Q1, it immediately switches to Q2.
Before service completion there, an arrival to Q1 will occur, causing a switch back to
Q1, once service at Q2 ends.Hence, the only possible stateswith non-zero probabilities
are (K1, K2, 1), (K1, K2−1, 1), and (K1, K2, 2). Therefore,P(I = 1) = PK1K2(1)+
PK1,K2−1(1), P(I = 2) = PK1K2(2), and Ploss(2) = PK1K2(1) + PK1K2(2). The sets
of balance equations are reduced to

λ2PK1,K2−1(1) = μ2PK1K2(2)

μ1PK1K2(1) = λ2PK1,K2−1(1)

μ2PK1K2(2) = μ1PK1K2(1). (5.1)

Solving (5.1) we arrive at

PK1,K2−1(1) = μ1μ2

λ2μ2 + μ1λ2 + μ1μ2
, PK1K2(1) = λ2μ2

λ2μ2 + μ1λ2 + μ1μ2
,

PK1K2(2) = μ1λ2

λ2μ2 + μ1λ2 + μ1μ2
.
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Fig. 4 The case μ1 = 50 from Table 11

Hence, P(I = 1) = μ1μ2+λ2μ2
λ2μ2+μ1λ2+μ1μ2

, P(I = 2) = μ1λ2
λ2μ2+μ1λ2+μ1μ2

, E[L2] =
K2 − μ1μ2

λ2μ2+μ1λ2+μ1μ2
, and Ploss(2) = λ2μ2+λ2μ1

λ2μ2+μ1λ2+μ1μ2
. Note that the capacity of Q1,

K1, does not affect the results.
The next extreme case leads to a different system structure in each of the switching

scenarios.
μ1 → ∞

In Scenario 1, ifμ1 → ∞ then,whenever the server is at Q1, it immediately reduces
the number of customers there to 0, and will remain at Q1 until the first moment when
the number of customers in Q2 reaches the threshold K2. The server stays in the latter
queue until the number of customers in Q1 reaches the value K1. Then, when Q2
reduces below its threshold, K2, the server will switch to Q1 and immediately reduce
the occupancy there to 0. Hence, P(I = 1) = P0•(1) = ∑K2−1

n=0 P0n(1).
In Scenario 2, if μ1 → ∞ the server empties Q1 instantaneously and switches to

Q2, given that the latter is not empty. Therefore, P(I = 1) = P00(1). The server stays
in Q2 until Q1 reaches its threshold and Q2 is below the threshold K2. Still, in both
switching scenarios the proportion of time the server resides in Q1 is not 0 (see Tables
7, 8, 11 and 12), and in both scenarios Ploss(1) = PK1K2(2), and Ploss(2) = P•K2(2).
The two-queue process is subject to an oscillation phenomenon: when the occupancy
of Qi decreases, the occupancy of the other queue increases. This feature is illustrated
in Fig. 4, where we simulate a rather typical case presented in Table 11 with μ1 = 50.
The periodicity pattern revealed in Fig. 4 is further discussed in Sect. 6.

6 Oscillations and comparison between the scenarios

6.1 Oscillations

In Figs. 5 and 6, we plot simulation results for the set of parameters of Fig. 4, but
with larger threshold values. It is seen that with increasing threshold levels, the system
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Fig. 5 The case μ1 = 50 from Table 11 with K1 = 100 and K2 = 80
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Fig. 6 The case μ1 = 50 from Table 11 with K1 = 1000 and K2 = 800

exhibits periodicity. We conjecture that the two-queue process converges to a periodic
process as the threshold values increase. There is another important observation in
the case of large thresholds. When the thresholds are large, there is practically no
difference between the cases Ki = Ci and Ki < Ci . Yet, the limiting case Ci → ∞,
resulting in an unbounded two-dimensional process, is further being investigated by
the authors.

6.2 Comparison between the scenarios

Assume that every time unit a customer resides in the system (whether in Q1 or in Q2)
costs CRES units of money, and that every server switch-over from Qi to Q j , i �= j ,
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Fig. 8 E[C] as a function of μ1 for both scenarios

costs CSR units of money. Then, we define the mean cost per unit of time

E[C] ≡ CRES (E[L1] + E[L2]) + CSR · SR. (6.1)

We now exhibit cases where Scenario 1 is economically preferable than Scenario 2.
Figures 7 and 8 depict two graphs presenting the change in E[C] as a function of λ1
and as a function of μ1, respectively, for both scenarios. In Fig. 7 all other parameters
assume the following values: K1 = 4, K2 = 3, CRES = 1, CSR = 5, λ2 = 4, μ1 = 7,
μ2 = 7, while in Fig. 8 all other parameters assume the following values: K1 = 4,
K2 = 3, CRES = 1, CSR = 5, λ1 = 4, λ2 = 4, μ2 = 7. It is seen that, for the above
set of parameters, the non-work-conserving switching policy is more economical than
the work-conserving switching policy.

Discussion

1. In all numerical calculations presented in Sects. 4 and 5, the average switching
rate between the queues (the parameter SR) is always smaller in the non-work-
conserving scenario than in the work-conserving scenario, and when μ1 → ∞
this phenomenon becomes highly significant. See Tables 7 and 11, as opposed to
Tables 8 and 12, respectively.
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2. When λi is larger than μi the performance measures of both scenarios coincide,
independently of all other parameters. See the 6th row in Tables 1, 2, 3, and 4.
This result is also exhibited in Tables 5, 6, 9, and 10, for λ1 ≥ 50.

3. Inmost of the presented calculations the performancemeasures related to thework-
conserving scenario are better than those of the non-work-conserving scenario,
i.e., shorter queue lengths, smaller waiting times, and smaller loss probabilities.
However, when high switching costs are involved (see Figs. 7, 8) the non-work-
conserving scenario is more economical than the work-conserving scenario.

4. When the service rates are sufficiently greater than the input rates, the system tends
to a periodic behavior when the threshold levels are large.

7 Conclusions

In this paper, we studied a two-queue finite-buffer polling-type systemwith a threshold
switching policy. In contrast to other threshold-policy studies, the server determines
its switching instants according to the size of the queue which is not being served.
Employing both PGFs and matrix analytic approach, we derived the joint and mar-
ginal steady-state probabilities of the system’s state. The solution of the PGFs was
obtained by solving two finite sets of linear systems of the form A(z) �G(z) = �P(z)
and B(w) �F(w) = ��(w), respectively, where �G(z) and �F(w) are each a vector whose
entries are the sought-for PGFs. A(z) and B(w) are finite square matrices with entries
constructed from the parameters of the system. �P(z) and ��(w) are finite-dimensional
vectors consisting of unknown boundary probabilities. We constructed a procedure to
calculate the boundary probabilities determining the PGFs by deriving explicit closed-
form combinatorial expressions for the determinants of A(z) and B(w). We are not
aware of any previous relevant study that obtained such explicit expressions. Using the
matrix analytic approach revealed that the generatormatrix defining the process differs
from the classical generators of QBD processes, and therefore the analysis required
the calculation of certain matrices defined by combinatorial expressions resembling
the combinatorial expressions derived for the determinants of A(z) and B(w), appear-
ing in the analysis via PGFs. In addition, we considered two switching scenarios:
work-conserving and non-work-conserving. For each scenario we calculated the mean
number of customers present in each queue and the mean sojourn time; the proportion
of time the server spends in each queue; the proportion of lost customers; and the
server’s average switching rate between the queues. A comparison between the two
scenarios was presented, and it was shown that the non-work-conserving scenario may
be economically better when high switching costs are involved. We also observed that
the dynamics of the system converges to a periodic behavior when the threshold lev-
els are large. A formal justification of this observed phenomenon is possibly a future
research direction. Other future research directions are the limiting cases when the
buffer capacities tend to infinity and the presence of non-zero switching times. It is
expected that non-zero switching times can have similar effect as switching costs and
provide one more raison d’être for the non-work-conserving policy.

Acknowledgments We thank the referees for their constructive comments that improved the presentation
of the paper and enriched the discussion regarding the roots of the polynomials |A(z)| = 0 and |B(w)| = 0.
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Appendix

Proof of Theorem 2.3

Proof By induction over k.
For k = 1,

q1(z) = α0(z) = (−λ1μ1)
0
((

0

0

)
α0(z)α0(z) +

(
0

−1

)
α1(z)

)
.

For k = 2,

q2(z) = α(z)α0(z) − λ1μ1

=
1∑

l=0

(−λ1μ1)
l
((

1 − l

l

)
α1−2l(z)α0(z) +

(
1 − l

l − 1

)
α2−2l(z)

)
.

We now show that the proposition is valid for any k. Suppose k = 2i (the case where
k = 2i + 1 is similar and hence omitted from the presentation), and notice that for all
k ≥ 0,

(k
0

) = (k
k

) = 1, and
(k
l

) = (k−1
l

) + (k−1
l−1

)
, for every 0 ≤ l ≤ k,

qk(z) = α(z)qk−1(z) − λ1μ1qk−2(z)

= α(z)
i−1∑

l=0

(−λ1μ1)
l
((

2i − 1 − l − 1

l

)
α2i−1−2l−1(z)α0(z)

+
(
2i − 1 − l − 1

l − 1

)
α2i−1−2l(z)

)

− λ1μ1

i−1∑

l=0

(−λ1μ1)
l
((

2i − 2 − l − 1

l

)
α2i−2−2l−1(z)α0(z)

+
(
2i − 2 − l − 1

l − 1

)
α2i−2−2l(z)

)

=
i−1∑

l=0

(−λ1μ1)
l
((

2i − 1 − l − 1

l

)
α2i−1−2l(z)α0(z)

+
(
2i − 1 − l − 1

l − 1

)
α2i−2l(z)

)

+
i−1∑

l=0

(−λ1μ1)
l+1

((
2i − 2 − l − 1

l

)
α2i−2−2l−1(z)α0(z)

+
(
2i − 2 − l − 1

l − 1

)
α2i−2−2l(z)

)
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=
i−1∑

l=0

(−λ1μ1)
l
((

2i − 1 − l − 1

l

)
α2i−1−2l(z)α0(z)

+
(
2i − 1 − l − 1

l − 1

)
α2i−2l(z)

)

+
i∑

l=1

(−λ1μ1)
l
((

2i − 2 − l

l − 1

)
α2i−2l−1(z)α0(z) +

(
2i − 2 − l

l − 2

)
α2i−2l(z)

)

= (−λ1μ1)
0
((

2i − 2

0

)
α2i−1(z)α0(z) +

(
2i − 2

−1

)
α2i (z)

)

+
i−1∑

l=1

(−λ1μ1)
l
((

2i − 2 − l

l

)
+

(
2i − 2 − l

l − 1

))
α2i−2l−1(z)α0(z)

+
i−1∑

l=1

(−λ1μ1)
l
((

2i − 2 − l

l − 1

)
+

(
2i − 2 − l

l − 2

))
α2i−2l(z)

+ (−λ1μ1)
i
((

2i − 2 − i

i − 1

)
α2i−2i−1(z)α0(z) +

(
2i − 2 − i

i − 2

)
α2i−2i (z)

)

=
i∑

l=0

(−λ1μ1)
l
((

2i − l − 1

l

)
α2i−2l−1(z)α0(z) +

(
2i − l − 1

l − 1

)
α2i−2l(z)

)

=

 k
2 �∑

l=0

(−λ1μ1)
l
((

k − l − 1

l

)
αk−2l−1(z)α0(z) +

(
k − l − 1

l − 1

)
αk−2l(z)

)
.

This completes the proof. ��

Proof of Theorem 2.4

Proof We will proceed by induction over k. First we note that A2 = diag (μ1), so

that, A−1
2 = diag

(
1
μ1

)
. In addition, A0 = diag (λ1) = λ1 IK2 . Now, from (2.24) we

have

�P1
1 = − 1

μ1

�P1
0 A

0
1 = �P1

0C1.

Suppose that the proposition holds for all values up to some k−1, where 1 ≤ k−1 ≤
K1 − 2. We will show that it holds for k ≤ K1 − 1. From (2.24) we have

�P1
k = −

( �P1
k−2A0 + �P1

k−1A1

)
A−1
2 .
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Using the induction assumption with regard to the values of �P1
k−2 and �P1

k−1 we get

�P1
k = −

( �P1
0Ck−2A0 + �P1

0Ck−1A1

)
A−1
2

= − �P1
0 (Ck−2A0 + Ck−1A1) A

−1
2

= − 1

μ1

�P1
0 (λ1Ck−2 + Ck−1A1) .

Therefore �P1
k = �P1

0Ck , where Ck = − 1
μ1

(λ1Ck−2 + Ck−1A1).
This completes the proof. ��

Proof of Theorem 2.6

Proof Similarly to the proof of Theorem 2.3, we proceed by induction over k.
For k = 1,

C1 = −1

μ1
A0
1 =

(−1

μ1

)1

(−λ1μ1)
0
((

0

0

)
A0
1 (A1)

0 +
(

0

−1

)
(A1)

1
)

.

For k = 2,

C2 = −1

μ1

(
λ1 IK2 +

(−1

μ1

)
A0
1A1

)

=
(−1

μ1

)2 1∑

l=0

(−λ1μ1)
l
((

1 − l

l

)
A0
1 (A1)

1−2l +
(
1 − l

l − 1

)
(A1)

2−2l
)

.

We now prove that the proposition holds for any k. Suppose k = 2i + 1 (the case for
even values, k = 2i , is presented in the proof of Theorem 2.3),

Ck = −1

μ1
(Ck−1A1 + λ1Ck−2)

= −1

μ1

( (−1

μ1

)2i i∑

l=0

(−λ1μ1)
l
((

2i − 1 − l

l

)
A0
1 (A1)

2i−2l−1

+
(
2i − 1 − l

l − 1

)
(A1)

2i−2l
)
A1

+ λ1

(−1

μ1

)2i−1 i−1∑

l=0

(−λ1μ1)
l
((

2i − 1 − 1 − l

l

)
A0
1 (A1)

2i−1−2l−1

+
(
2i − 1 − 1 − l

l − 1

)
(A1)

2i−1−2l
) )

=
(−1

μ1

)2i+1 ( i∑

l=0

(−λ1μ1)
l
((

2i − 1 − l

l

)
A0
1 (A1)

2i−2l
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+
(
2i − 1 − l

l − 1

)
(A1)

2i+1−2l
)

+
i−1∑

l=0

(−λ1μ1)
l+1

((
2i−2−l

l

)
A0
1 (A1)

2i−2−2l +
(
2i−2−l

l − 1

)
(A1)

2i−1−2l
))

=
(−1

μ1

)2i+1 ( k∑

l=0

(−λ1μ1)
l
((

2i − 1 − l

l

)
A0
1 (A1)

2i−2l

+
(
2i − 1 − l

l − 1

)
(A1)

2i+1−2l
)

+
i∑

l=1

(−λ1μ1)
l
((

2i − 1 − l

l − 1

)
A0
1 (A1)

2i−2l +
(
2i − 1 − l

l − 2

)
(A1)

2i+1−2l
))

=
(−1

μ1

)2i+1 (
(−λ1μ1)

0
((

2i − 1

0

)
A0
1 (A1)

2i +
(
2i − 1

−1

)
(A1)

2i+1
)

+
i∑

l=1

(−λ1μ1)
l
((

2i − 1 − l

l

)
+

(
2i − 1 − l

l − 1

))
A0
1 (A1)

2i−2l

+
i∑

l=1

(−λ1μ1)
l
((

2i − 1 − l

l − 1

)
+

(
2i − 1 − l

l − 2

))
(A1)

2i+1−2l
)

=
(−1

μ1

)2i+1 i∑

l=0

(−λ1μ1)
l
((

2i − l

l

)
A0
1 (A1)

2i−2l +
(
2i − l

l − 1

)
(A1)

2i+1−2l
)

=
(−1

μ1

)k 
 k
2 �∑

l=0

(−λ1μ1)
l
((

k−l−1

l

)
A0
1 (A1)

k−2l−1 +
(
k−l−1

l − 1

)
(A1)

k−2l
)

.

This completes the proof. ��
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