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16 Abstract We introduce and study cyclic polling systems in which service times of customers increase
17 after the completion of each cycle due to increased tiredness of the server. To prevent the system from
18 exploding, the server must be deactivated to regain (some or all of) its efficiency while another server
19 takes its place. Performing a ”change of guard” takes some additional random time. This requires the
20 determination of a ”swapping policy” between the two servers. We model such systems under the gated,
21 exhaustive, and globally-gated service regimes. In the case of swapping policies which call for a swap at
22 the end of every fixed number of cycles, we show that, contrary to classical polling systems, the stability
23 condition for the exhaustive regime differs from its counterpart for the gated regime. A single queue case
24 with identical servers is further studied and analyzed. Assuming stability we show that, in the latter case,
25 the maximal number of consecutive cycles a server can serve without resting under the gated regime is
26 approximately double than that under the exhaustive regime. In addition, we construct an algorithm to
27 obtain an optimal swapping policy for the case where two identical servers alternate every fixed number
gg of cycles in a system operating under the exhaustive service regime.
gg Keywords polling systems; cyclic; alternating weary servers; exhaustive; gated; globally-gated; state-
32 dependent arrival rates; stability; mean value analysis.
33
32 1 Introducti
35 ntroduction
36

37 We consider a polling system with N queues. In contrast to most classical polling models where a single
38 server constantly cycles between the queues, we introduce a new model where there are two servers that
39 alternate with each other according to some swapping policy. This ”change of guard” is called for by the
40 fact that service times increase from cycle to cycle due to increasing tiredness of the active server. For the
system to remain stable it is necessary to replace a weary active server with a rested server while the former
43 rests and gradually regains its efficiency. However, each swap between the servers takes time. Our goal is
44 to analyze such systems and study stability-preserving symmetric swapping policies.

45
46 There exists a vast literature on the subject of polling systems and its applications in areas such as
j; manufacturing, transportation, data reading, computer networks, telephone communications, etc. Many

49 Vvariations and extensions of the classic model (e.g. batch-service, fluid models, multiple servers, and differ-
50 ent ”smart customers” behaviors) have also been studied. We refer the reader to the recent comprehensive
51 survey by Boon, van der Mei and Winands [1] and the 185 references there. The question of steady state
52 stability is thoroughly studied by Flicker and Jaibi [9]. As the analysis of polling systems is complex, various
analysis technics have been developed and utilized. Some of those technics are useful only if the service
g5 regimes satisfy a certain ”branching property” (See Resing [12] for an elaborate treatment of polling systems
56 and branching processes). Some earlier important works are Takagi [10] and Yechiali [14], where overviews
57 of the commonly used analytic methods are presented. Pseudo conservation laws were introduced and de-
98  veloped in Boxma and Groenendijk [4]. See also Winands, Adan and van Houtum [13] and its introduction
for a variety of computationally oriented approaches to calculate customers mean waiting times. The bulk
61 of the above manuscripts deal with static server-visit policies. Dynamic server visit-order schemes, which
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are analytically intricate, were originally studied in Browne and Yechiali [6] and [7].

The current work is motivated by the notion of shift scheduling. In section 2 we describe the model
and introduce the notation used in the analysis. In section 3 we state the relevant stability condition as
was introduced in Boxma, Ivanovs, Kosinski and Mandjes [5]. In sections 4 and 5 we define the laws of
motion and construct formulas for calculating the means of the queue sizes at various time instants. We also
indicate similarities between our model and a standard polling model. Section 6 is devoted to the derivation
of the queue joint Probability Generating Functions (PGFs) at arrival and at departure epochs. In section
7 we remark on a method used in Boon, Van Wijk, Adan and Boxma [2] which allows calculation of the
marginal queue PGF's in steady state. However, this method is not practical for our needs. The authors
in [2] implemented a more practical "Mean Value Analysis” (MVA) approach. This MVA approach is men-
tioned in section 8, where we also present our optimality criterion. Section 9 consists of an elaboration on
the relevant stability conditions, stated in section 3, for a single-queue model. In section 10 we utilize some
MVA equations, derived in section 8, in order to analyze a single-queue model with identical servers (the
case of not necessarily identical servers is also referred to). In addition, we present an algorithm to obtain
a restricted optimal swapping policy between the two (identical) servers, for the case of an exhaustively-
served single-queue system with exponential service times. We conclude in section 11 with some illustrative
numerical results and possible extensions for our model.

2 The model

2.1 The basic model

Consider a polling system comprised of N queues @1, @, ..., QN served by a single server. For each queue,
say Q;, type-i customers arrive according to an independent Poisson process with rate A; > 0. There are
two alternating servers in the system, dubbed ”Server 1” and ”Server 2”. During each cycle exactly one of
the servers is active, while the other remains inactive. An active server visits the queues in a cyclic manner,
starting from @)1, and incurring switch-over times when moving from @; to Q;+1. The switching time from
Q; to Q41 is a random variable H; having Laplace-Stieltjes transform (LST) H; (-). Switching times are
independent of the servers’ identity. At the end of a cycle (i.e. while switching from @y back to Q1),
the active server may be replaced by the inactive one. Performing such a ”swap” requires additional Hy
units of time so that the actual switch-over time becomes H), = Hy + Hp. While visiting @Q;, the active
server serves according to a pre-determined regime which can be gated, exhaustive, or globally-gated, while
the inner order of service is FCFS. The basic service duration of a type-i customer is a random variable
depending on the identity of the active server. If server 1 is active, the basic service duration of a type-i
customer is G;, where G; is a positive random variable, drawn from a continuous Probability Distribution
Function (PDF) having LST G; (-). If server 2 is active, the basic service duration of a type-i customer is
K;, where K; is a positive random variable, drawn from a continuous PDF having LST K; (+).

The servers themselves get weary while active and must rest in order to continue operating in an efficient
level. Both servers start at 0 ”tiredness level” (TL). After each cycle in which a server is active, his TL
increases by 1. After each cycle in which a server is not active, his TL decreases by 1 (to a minimum of
0). Let ATL be the TL of a cycle’s active server. Let o > 1 be a ”fatigue parameter”- a constant factor
corresponding to the deterioration of a server’s efficiency. We assume that during each cycle, the effective
service duration of type-i customers is the basic one multiplied by the factor aAT. We refer to the described
model as the ”basic” model. Combining the basic model with a specified swapping policy, results in a
well-defined operating system.

For example, assume that we start the system with server 1 as the active server. During the first cycle
ATL is 0, which means that type-i customers are being served according to the basic service duration G;.
By the cycle’s end, the TL of server 1 increases from 0 to 1. Suppose server 1 continues to be active in the
second and third cycles; the time to serve a type-i customer will become aG; in the second cycle and oG}
in the third. By the end of the third cycle the TL of server 1 becomes 3. Now, suppose a swapping occurs
and server 2 becomes active during the next two cycles. Performing a swap requires additional Hy units
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of time just before Q) is revisited for the fourth time (now by server 2). The result will be ATLs of 0 and
1 so that type-i customers service durations in cycles number four and five are K; and aK;, respectively.
By the end of the fifth cycle the TL of server 2 becomes 2. Swapping back to server 1 (who’s TL has been
reduced from 3 to 1 since the end of the third cycle) will result in an effective service duration of aG; for
the sixth cycle, after incurring an additional Hy units of time at the end of the fifth cycle. When the sixth
cycle in completed, the TL of server 2 has been reduced to 1 and the TL of server 1 (the last active server)
has been increased to 2.

Before moving on, let us indicate a few points: Firstly, the switch-over times H; are unaffected by ATL;
secondly, the choice of the first server to be active does not incur the additional Hy units of time; and lastly,
choosing to never swap the servers will clearly result in the system’s explosion.

2.2 Swapping policies and re-modeling of the system

We are interested in comparing various swapping policies in steady state. To this end, for a given swapping
policy, we combine several sequential cycles into one big meta-cycle (the formers are referred to as sub-cycles,
while the latter is called a cycle). We alter the arrival process in such a way that the resulting model will
be equivalent to the original basic model (mentioned in section 2.1), under the given swapping policy. This
will enable us to technically analyze the model by using recently developed techniques. We refer to the
aforementioned resulting model as the ”new” model.

To clarify the issue, let us consider a simple swapping policy in which we start the system by activating
server 1 and perform a swap at the end of every two sub-cycles. This can be alternatively modeled by a
polling system composed of 4 sub-cycles, for a total of 4N queues @1, Qo, . .., Q4n. Those queues are visited
by a single server with the regular switching times during each sub-cycle and the added Hy swapping time
at the end of every even sub-cycle. The switch-over times corresponding to the 4N queues are the elements

of a new vector of switch-over times, H e, (recall that Hy = Hy + Hy):
{H\,Hs,...,Hy_1,HN,H1,Hs, ..., Hy_1,Hy, H, Ho, ..., Hy 1, HN, H1, Ho, ..., Hy—1, Hy )

In the first and second sub-cycles server 1 is active while the ATLs are 0 and 1, respectively. In the third
and fourth sub-cycles server 2 is active with ATLs 0 and 1. The service times corresponding to individual
customers in the 4N queues are the elements of a new vector of service times, GK e :

{Gl,Gg, e ,GN_l,GN,aGl,aGg, e ,OéGN_l,OzGN,Kl,KQ, - .,KN_l,KN,OzKl,OzKQ, .. .,OzKN_l,OzKN}.

Note that at the end of the forth sub-cycle (the end of the first meta-cycle) the TL of server 1 is reduced
back to 0. The same holds true for server 2 at the end of the second sub-cycle in the middle of the second
(meta-)cycle. This allows us to replace the two tiring servers by a single non-tiring server.

We will only deal with (servers-)activation orders which are fully repetitive (i.e. can be modeled by using
identical cycles), and possess the following two properties:

e Quasi-Fairness: Each cycle is composed of identical number of sub-cycles in which each of the servers
is active.

e No Over-Rest: After his initial activation, every time a server’s TL reaches zero, he is activated
immediately.

In each fully repetitive activation order, during the first cycle, both servers reach their first activation
sub-cycle with TL = 0. We emphasize that the two mentioned properties are satisfied i.f.f. during each
sequential cycle both servers continue to reach their first activation sub-cycle with TL = 0.

In view of the above, we will concentrate on a family of symmetric swapping policies which call for a
swap at the end of every T sub-cycles (T'=1,2,3,...). For example, the "always swap” (1" = 1) swapping
policy means an activation order of 1,2 (without loss of generality, we always set server 1 to be the first active
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server), while the "swap at the end of every T' = 2 sub-cycles” swapping policy means an activation order
of 1,1,2,2. Note that the discussed family is a subset of the superset constructed of all activation orders
which are fully repetitive and possess the ”Quasi-Fairness” and "No Over-Rest” properties. Moreover,
the later superset includes elements which do not belong to the former subset (e.g. the activation order
1,1,1,1,2,2,1,2,2,2).

Although we do not treat other types of activation orders, some of them can be modeled similarly (e.g.
the activation order 1,2,2,1 is identical, in the long run, to the activation order 1,1,2,2 or 2,2,1,1; the acti-
vation order which starts with 1,1,1,2,1,2,2 and then continues with 1,2 indefinitely, is identical, in the long
run, to the activation order 1,2 with basic service durations of aG; for server 1 and aK; for server 2), while
other activation orders may result in the system’s explosion (e.g. the activation orders 2,2,1 and 1,1,2,1).

The new model isn’t yet fully equivalent to the basic model under a given swapping policy because
customers’ arrival rates to the new model have been quadrupled. In order to make the new model equivalent
to the basic one, we incorporate the concept of state-dependent arrival rates, where a ”state” corresponds
to the position (a specific queue being visited or a specific switch-over) of the active server.

The service regime used in the basic model does not affect the service regime used in the new model,
which we will consider to be exhaustive (we will elaborate on this point in remark 2.2). The basic model’s
service regime only affects the structure of the state-dependent arrival rates in the new model.

Let C be the total number of sub-cycles which are used to construct a cycle. Thus, each cycle is composed
of CN queues. Consider now, the three different service regimes.

Gated: When the server reaches Q; (i = 1,...,N) in sub-cycle v (y = 1,...,C) all arriving processes of
type-¢ customers in the cycle are set to zero, save that of (); in sub-cycle v 4+ 1. In this way all and only
type-i customers arriving after closing queue-i’s gate in sub-cycle v will be served in the next sub-cycle.
For example, assume N = 3, under the gated regime and the ”always swap” (swapping) policy (C = 2),
some of the state-dependent arrival rates are illustrated in the following scheme (each star represents the
position of the active server in the polling system directly above it):
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Exhaustive: When the server departs from @); in sub-cycle v all arriving processes of type-i customers
in the cycle are set to zero, save that of ); in sub-cycle v + 1. In this way all and only type-i customers
arriving after moving away from queue-i in sub-cycle v will be served in the next sub-cycle.

Globally-Gated: When the server reaches ()1 in sub-cycle « all arriving processes of all different customer
types in the cycle are set to zero, save those of sub-cycle v + 1. In this way all and only customers arriving
after closing all the queues’ gates in sub-cycle v will be served in the next sub-cycle.

Now, let’s define precisely the server’s position. If the server is visiting (); we state that his position is
Vi. If the server is switching (i.e. moving) from @; to Q;+1 we state that his position is M;. Let P denote
the vector of server’s poison in the new model. Then,

P={Vi,M,Va,Ms,...,VN,Mny,...,Von-1,Mcn—-1,Von, Mcn} -

Define )\Ef’r)(v_l) n as the arrival rate to (); in sub-cycle v while the server’s position is p € P.
If the basic model operates under the gated regime, the arrival rates to all queues in the new model satisfy:
®) X p€ [Visp—an, Misii(y—1)N] 5
At = { 0 else, (2.1)

where, if p1,pa € P, then [p1,p2] is the closed interval of sequential positions starting at p; and ending at
p2. That is, the arrival rate to Q; is A; during the time interval from the moment the server reaches @); in
sub cycle v — 1 until it completes the switching period from Q;_1 to @; in sub-cycle 7.

If the basic model operates under the exhaustive regime, the arrival rates to all queues in the new model
satisfy:

A (»)

Ai PE [Miyv—2ns Vit(v—1)N] >
m_lw:{ [Mitr-2: Virtr-un] (2:2)

0 else.

If the basic model operates under the globally-gated regime, the arrival rates to all queues in the new
model satisfy:

A(P)

+O-DN T ) 0 else.

{ Ai DE [Vl+('y—2)N’ MN+(7—2)N]7 (23)

It is easy to see that in the new model, each of the CN queues receive new customers during exactly one
sub-cycle, which starts at various positions of the server. Actually, each original arrival process is active
only while the server occupies 1/C' of the available positions in a cycle.

To conclude, with the new adjusted arrival rates (in accordance with the chosen regime), new switching
times and new service times for the single server, the new (exhaustively-served) model is equivalent to the
basic model with the aforementioned swapping policy.

To complete the presentation of the new model, we introduce additional notation. For ¢ = 1,2,..., N,
let [ =i+ (y—1)N €{1,2,...,CN} denote the index corresponding to the new C'N queues. Let S; and
it’s LST, S (-), correspond to the I-th element in the new vector of CN switch-over times H e, and let
By and it’s LST, By (+), correspond to the I-th element in the new vector of C'N service times, GK eq. Let

j € {1,2,...,CN}, and note that the sub-cycle number corresponding to the system states V; and M is

_ | i (p) _ @
7= {N-‘ (e-8. AN = )‘j+([%1—1)N)'

Remark 2.1. When calculating expressions related to the globally-gated regime, we sometimes use the
notation ” (I mod N)” or ”(j mod N)”. This notation should always be considered modulo N. For example,
for | =2N, (Il mod N) = N.

W — vl = 1,...,CN, while under the globally-

gated regime /\l(p) =0Vi=1,...,CN and p € [Vi_(; mod N)+15 V1]. In other words, under the gated and

Remark 2.2. In the new model, under the gated regime )\l(
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globally-gated regimes, customers arrival rate to (J; equals zero, from the moment ();’s gate closes until the
end of V. Hence, the type-l customers present at the arrival epoch to @); are exactly the type-I customers
who are supposed to be served during V;. Since there are no new type-I customers arriving during V;, we
can assume that a basic model which operates under any of the three various service regimes, translates to
a new model which operates under the exhaustive service regime with the relevant state-dependent arrival
rates. Note that, in the sequel, when referring to the new model under the gated (exhaustive; globally-
gated) regime, we mean the new model which originated from a basic model operating under the gated
(exhaustive; globally-gated) regime.

Remark 2.3. When discussing a new model which originated from a basic model consisting of a single
queue, we use the notation A =X\, H ~ Hy, G ~ Gy and K ~ Kj.

2.3 The compact model

Under a ”swap at the end of every T' > 2 sub-cycles” policy, each cycle of the resulting new model consists
of 2T sub-cycles. However, assuming that in the basic model both servers are identical, each of the
first consecutive T sub-cycles share the same effective service durations with its counterpart in the last
consecutive T sub-cycles. Since, within a cycle, swapping occurs only at the end of the T-th sub-cycle and
the 27-th sub-cycle, the new model’s cycle can practically be ”cut” in half into two separated identically
structured ”half-cycles”. By setting a ”half-cycle” to be a full cycle in the new model, we create a ” compact”
form of the new model, which is easier to analyze, since it is essentially a new model with half the number
of queues (I,7 =1,..., %; % € Z, where Z denotes the set of integer numbers). We refer to the compact

form of a new model as the ”compact” model.

We now state some points of interest regarding the compact model. Firstly, as long as we discuss a basic
model with identical servers which operate under a "swap at the end of every T' > 2 sub-cycles” policy, we
can always consider a compact model from a new model. Generally speaking, this holds true since in the
new model, under all service regimes, when the server changes his position, the arrival rates to queues whose
next visit period will occur after the following sub-cycle do not change. This prevents overlapping between
different arrival rates in the compact model.

Secondly, we can also consider a compact model in case we discuss a basic model with identical servers
which operate under the "always swap” policy, but we have to be careful. In the new model, under all
service regimes, each queue is empty at a server’s departure epoch from it. However, only in a basic model
operating under the exhaustive regime, does the equivalent queue in the next sub-cycle is also empty at
the same epoch. The lack of this property in a basic model operating under the gated or globally-gated
regime, contradicts the new model’s exhaustive service regime assumption. Therefore, under the ”always
swap” policy, the service regime used in the compact model is the same as the service regime used in the
basic model.

Thirdly, when discussing a basic model with identical servers which operate under an ”always swap”
policy, the compact model does not include state-dependent arrival rates. Moreover, if the basic model
consists of a single queue and operates under the exhaustive regime, the resulting compact model will be an
M/G/1 system with multiple server vacations (see Levy and Yechiali [11]) of length Hj, = Hx + Hy (the
resulting new model will, of course, also be equivalent).

Lastly, consider the new model which originated from a basic model operating under the "swap at the
end of every T sub-cycles” policy and the compact model which originated from the same basic model under
the ”swap at the end of every 27" sub-cycles” policy. Clearly, both models have the same number (27") of
sub-cycles per cycle. Comparing the structure of both models emphasizes the differences between them (e.g.
choosing to swap earlier thus ”paying” the additional Hy units of time in order to avoid increased effective
service durations), and allows for a convenient arguments comparison (i.e. the expected cycle’s times, the
expected visit time in the I-th visited queue etc.). However, one does not gain nor loss any new information
that cannot be extracted from comparing two new models, or better yet, an easier analyzed two compact
models.
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3 Stability

Based on [5], due to the state-dependent arrival rates, the condition for stability in the new model is that
the Perron-Frobenius eigenvalue of the matrix (R — Icn) should be strictly less than 0, where Icn is the
identity matrix of order C'N and

MYEB) e AV BB
R=(N"E®B)) - : : (3.1)
ANE(Bey) - MGV E(Bey)

In other words, let m € R where R denotes the set of real numbers. The above stability condition means
that the maximal 7 root of the equation

det (R - (7T-|—1) * ICN) =0, (32)

should be negative. Note that the (I, j) element of the matrix (R — Icn) corresponds to the expected change
in the number of customers in );, during an average service time of a type-I customer while the server visits

Q. Another point of interest is that at list half out of the values of )\l(vj) are zeroes. More accurately, only
1/C out of the (CN)? elements of R are non-zeroes.

Remark 3.1. Since a compact model is equivalent to a certain new model, they also share the same stability
condition. This can also be seen by directly calculating the stability condition for the compact model (where
,j=1,..., %) Note that the stability condition does not change if the model in question operates under
the gated or globally-gated regime. Thus, even under those regimes and an "always swap” policy, directly
calculating the stability condition for the compact model will result in the classical ”total traffic-intensity
in system must be less than 1”7 stability condition.

4 Laws of motion

Define 6; to be the length of a busy period in a regular M/G/1 queueing system with type-l customers,
Vi) E(By)
1—p

constant )\g arrival rate, and service times B;. Then, F (6;) = where

o= /\l(vl)E(Bl) is the fraction of time the server is visiting Q).
The LST of 6; is the root in (0, 1] of the equation (see e.g. Cohen [8]):

01 (w) = B [w+ 2" (1= (w))] -

Define

_ | 0 exhaustive,
Di= { B; gated or globally-gated, (4.1)

with LST,

Dy (w) = 6,(w) exhaustive, (4.2)
: | Bi(w) gated or globally-gated. ’

Under the exhaustive regime )\Z(Vl) = Ai4(y—1)n- But under both the gated and globally-gated regimes

/\l(vl) =0, implying that 6, = B;, and 6, (w) = B, (w).

Let Al(p )(Q) denote the number of Poisson arrivals to ); during a (random) time interval of length
(with LST @(w)) while the server’s position is p throughout that time interval. Define X l] as the number
of customers in Q; (j = 1,...,CN) at the moment the server polls @, and define Ylj as the number of
customers in @); at the moment the server departs from ;. Moreover, let D;i, Djo, Dj3, ... be a sequence
of i.i.d. random variables all distributed like D;. Noting that under the gated and globally-gated regimes

= 0, and under the exhaustive regime )\I(M’ = 0, the evolution of the process is as follows:

. j (V) =X} .
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. X! .
I+1 0 | — j. .

5 First moments

From the aforementioned laws of motion (4.3) and (4.4), it is easy to observe that:

: v .
E(Y]) = E(X]) + )\§ VE(X})E(D) 14, (5.1)
0 l=7,
: E(XD + A\ E (X)) E(D) + XM E(S) 147,
Recursive substitution in equation (5.1) yields,
-1
B(xf)= Y BB D) +2A"E(S,) (5.3)
r=j+1

Note that equation (5.3) holds for all three regimes. Now, let us consider the case where | = j for the various
regimes:
For the gated regime,
(X)) = Aty X B E(B) + E (S0 (5.4
r=j—N
Note that A;_(,_1)nv is simply an alternative way to represent the original queue’s constant A;. Thus,

E <X j ) is actually the number of customers arriving to the original queue, Q;_(,—1)n, counting from the
beginning of the last time the server visited ();_(y_1)y until it’s return. This is similar to classical polling
systems operating under the gated regime in which F (X;) = N\ E(C), were C stands for the cycle duration.
Also note that F (Xf) will always be zero unless {[j + 1,1 — 1] N [j — N,j — 1]} # 0, where () denotes the
empty set. This can be interpreted as having less than N switch-over periods while cycling from @); to @,
in the new model. From a combinatorial point of view, having a choice of CN places for ”{”, and N places
for 757, means that, similarly to the case of the matrix R in section 3 (see equation (3.1) and its following
explanation), only 1/C out of the (CN)? values of E <X / ) are Non-zeroes.

For the exhaustive regime,

7—1
E(X?)Z%—(w—l)N ESi-n)+ Y., [EX)E@G)+E(S)]]. (5.5)
r=j—N+1

E (X j] ) is actually the number of customers arriving to the original queue, Q;_(y_1)n, counting from the last

time the server departed from @);_(,_1)n until it’s return epoch to Q;_(,_1)y. Denote by SC the elapsed
time period between the last time the server polled Q;_(,—_1)y until it’s return epoch to Q;_(y_1)n. Then,

E (XJJ) is actually the number of customers arriving to Q;_(y—1)n, during [1 —Aji—(v—1)NE (Bj_N)} E(SC).
Note that
E(X)) = \j—(5-1)n [E(SC) — E(V;_N)]
= Nji—(v-)~ [E(SC) = \j_(y_1)nE(B;-N)E(SC)]
= Nji—(y=)N[1 = Aj_ ()N E(B;j-N)]E(SC).
This is similar to classical polling systems operating under the exhaustive regime in which F (Xf) = N[l —

XN E(B;)|E(C). For similar reasons to those stated regarding the gated regime, only 1/C out of the (CN)?

values of F <X l] ) are non-zeroes.
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Finally, for the globally-gated regime,

j—(j mod N)

>

r=j—(j mod N)+1-N

E(X]) = A\iouw [E(X])E (B,) + E(S,)]. (5.6)

E (X ]J ) is actually the number of customers arriving to the original queue, Q;_(,_1)n, during the sub-cycle

which is followed by sub-cycle v = [%—‘ This is similar to classical polling systems operating under the

globally-gated regime in which F (X;) = \E(C). Again, for similar reasons to those stated regarding the
gated regime, only 1/C out of the (CN)? values of E (le ) are NoON-zeroes.

Remark 5.1. One can utilize equation (5.3) in order to derive expressions for E(le )s for [ # j, some of
which can than be used to show additional similarities between our model and classical polling systems.
However, explicitly expressing the results requires arguments which do not have equivalent representations
in classical polling systems (as is the case of the E(Xj])s which are expressed by the expected length of
certain sub-cycles which start at various epochs, e.g. SC). Generally speaking, this holds true since the
underling system operates under varying conditions (i.e. the tiredness effects and swapping policy dictates
different parameters for each ”basic model cycle”). We will not elaborate further on this subject.

6 PGFs of Joint queue length at state change epochs

. CN
For each service regime, define the joint PGF of {X lj +1} - as,
J:
R CN i
X1 (21,22, ..,2¢N) = B z;
j=1
CN ON  xjpa (N p )+A(.Ml)(5)
X/ i k=1 ik 1
=ex B[]z "% | =BxE| [[ 5 ( ’ X,
J=1 j=
j#1
_ - Xll
CN , CN (v) CN ()
X7 AV (D) AWM (g))
= FEy, H z;' x| E H z;’ : x E H z;’ : (6.1)
J= J= J=1
j A1 j A1 _ j#1
Note that,
CN A(}J)(Q) CN P)
E szl =Q ZA]- (1—z)
j=1 J=1
Then, using equation (6.1),
X1 (21,22, ., 20N)
- - Xll -
CN i _ CN W) B CN (M)
= EXl H zj Lok Dl Z )\j ! (1 — Zj) * Sl Z Aj ! (1 — Zj) (62)
j=1 j= i=1
J#1 B | R
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We conclude, from equation (6.2) that,

X1 (21,22, ., 20N)
CN CN
o ~ Vi S M,
:Xl 21,22,...,2171,Dl Z )\§ l)(l—Zj) y Rl4+1y- -3 RCN *Sl Z )\g l)(l—Zj)
j=1 j=
| JF# | R |
(6.3)
In a similar manner we obtain the PGF 172 (21,22,...,20N):
~ ON v =N » CN v
}/2(217227‘~-aZCN)5E szl :Xl 217227"'7ZZ—I)DZ Z )\5 l)(l_zj) y Rl+1y -+ 2CN
j=1 =
j =
| 771 ]
(6.4)
Thus, equation (6.3) can be rewritten as
CN
o > S M,
Xl+1 (21,22,...,201\7) :}/1(21,2:2,...,20]\7)*51 Z )\§ l)(l—Zj) . (65)
J=1
| JF#

Namely, the number of customers at the various queues at an instant of server’s visit to Q;y1 is the sum
of the number of customers at server’s departure from @); plus the number of arrivals to ;41 during the
switch-over time S;. We now distinguish between the three different regimes.

The gated regime B B
According to equation (4.2), for the gated regime, D; (-) = B;(-). Let us consider arguments from equation

(6.3), starting with the expression B ZC]].V: 1 A;Vl) (I —%;)|. In accordance with the calculations of

J#1
E (X j] ) in section 5, the only queues whose arrival rates are positive for a given p = V; are the N queues
which will be visited right after the current @);. Moreover, those arrival rates are precisely the constant ones

of the original queues. Hence, the mentioned expression can be rewritten as B Zég\ﬁrl Aj—(y—1)n (1= zj)].

-1 7Y
J#

expression can be rewritten as S [ ?;]lvﬂ Nj—(y—1)n(1 = zj)}.

The same holds true regarding S ZCJJ.V_ )\(-Ml)(l —zj)|, since )\sz) = )\g-Ml) VI, j. Therefore, the last

Equation (6.4) thus becomes

I+N
Y (21, 22,...,20n) = Xi | 21,22, ..., 21-1, By Z Ni—(y—1)n L= 2z) | 21415+ 2N | (6.6)
j=l+1

10
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and equation (6.5) becomes

I+N
Xl+1 (Zl,ZQ,...,ZCN) :YE(Zl,Zg,...,ZCN) *Sl Z )‘j—('y—l)N (1—Zj) . (67)
Jj=Il+1

The exhaustive regime N N
According to equation (4.2), for the exhaustive regime, D;(-) = 6;(-). Let us consider arguments from

equation (6.3), starting with the expression 6 ZCJN 1 )\;Vl) (1 —z;)|. Inaccordance with the calculations
J#1

of B (X JJ ) in section 5, the only queues whose arrival rates are positive for a given p = V; are the current Q;

and the following N — 1 queues. As before, those arrival rates are precisely the constant ones of the original

queues. Hence, the mentioned expression can be rewritten as 9~l [Z;ﬁl\;l Nj—(y—1)n (1 = zj)]. Regarding

S ZCJJ.V: 1 Ang)(l — zj) |, the only queues whose arrival rates are positive for a given p = M) are the
J#1

next N queues to be visited (again with the original queues’ arrival rates). Therefore, the last expression
. a I+N

can be rewritten as S Z;;Hl Aj—(y—1)n (1 = zj)}.

Equation (6.4) thus becomes

I+N-1

Yi(z1, 22, 2on) = X1 | 2,220z 00 | DL Mmoo (L= %) | L2141, 20w | (6.8)
j=l+1
and equation (6.5) becomes
[
X1 (21,22, 2on) = Yi (21,22, 208) % S | Y Nmirenyw (L= 25) | - (6.9)
J=I+1

The globally-gated regime

For the globally-gated regime, D, () = B, (+). Consider the expression B ZCJJ.V 1 )\§Vz) (1—2;)| from
i

equation (6.3). In accordance with the calculations of F (X]J) in section 5, the only queues whose arrival

rates are positive for a given p = V} are the N queues composing the previous sub-cycle (which is followed by

sub-cycle [%1 ). Moreover, those arrival rates are the precisely constant ones of the original queues. Hence,

the mentioned expression can be rewritten as B [Zé;(ll_’goiﬂ) NN Nj—(y—1)n (1 = zj)] The same holds

true regarding S ZCJI.V_ 1 Ag-Ml)(l —zj)|, since )\g.vl) = )\g-Ml) Vi, j. Therefore, the latter expression can

j#1
. = I— (I mod
be rewritten as S; [ZJ':(IZ—(I mo]Z)N)+1—N Aj—(y—1)n(1 = Zj):|.

Equation (6.4) thus becomes

I1—(l mod N)

Yi(z1, 20, 208) = X | 21,20, -1, By > Aj—(-nn (L = 2j) | s 2141, -, 20N |
j=l—( mod N)+1—-N
(6.10)

11
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and equation (6.5) becomes

I—(l mod N)

Xi1 (21,22, 2on) = Vi (21, 22, 20N) % Sy > Aj—(r—nn (L= z) | - (6.11)
j=l—( mod N)+1-N

7 Marginal queue PGF in steady state

As stated in [2], although the steady state marginal queue length distributions at customer’s arrival and
departure epochs are the same, they differ from the distribution of the steady state marginal queue length at
an arbitrary moment. In other words, the PASTA property does not hold. The authors in [2] circumvented
this problem by relaying on the arrival rate’s ”fixation” during a given position for the server.

Specifically, define Ej (2) as the PGF of @; length at an arbitrary moment, and Lj|p( z) as the PGF of Q;
length during an arbitrary moment under the condition that the server resides in positions p. Weighting
over the relative expected time the server occupies the different positions during a steady state cycle, yields
the following relation:

Meon CN
Li(z) = E (%) = Z (()) Lip (2) = Z[wijlpzw (2) + %((J‘él))iﬂpzm (2)]. (7.1)
p=V1 =1

Note that p (i.e. V; and M;) serves, according to the context, either as an indicator of the system state, or
as a random variable measuring the time length of the system state.

In order to compute equation (7.1), one needs to find Eﬂp (), E(V;) and E(C) (obviously, E (M;) =
E(S;) Vi). E(V;) and E(C) can be calculated using equations (8.1) — (8.4) which will be presented in
section 8. For the sake of brevity, we refer the reader to [2] for an elaboration on the calculation of Eﬂp (2),
which can be implemented in our model using equations (2.1) — (2.3). However, we note that the calculation
of Lj‘p (2) in [2] requires the use of explicit expressions for the PGFs (6.6) — (6.11). Using recursive substitu-

tions, the latter can be expressed as a function of X (+) (or any other X, (-)) and the known LSTs B (-) and
Sy (). However, there is no known simple explicit expression for X (). Based on [12], Boxma [3] expressed
X1 () as an infinite product of arguments from the framework of ”Multiple Branching Processes with Im-
migration”. Nevertheless, this presentation still results in technically intractable mathematical model. We
remark that this problem does not necessarily prevents one from using the resulting intractable expressions
for some general proofs (e.g. for convergence).

Remark 7.1. In [2], the authors also addressed the issue of finding the LSTs of the waiting time distribu-
tions. The state-dependent arrival rates imply that the distributional form of Little’s Law does not hold. As
a result, the authors in [2] developed a generalization of the distributional form which can be applied. As
in the case of the marginal queue PGF's in steady state, this method leads to expressions which include an
infinite product. Moreover, the use of this method is accompanied by a considerable increase in complexity,
due to the need to add additional queues in models with zero arrival rates (as is in our case).

8 Mean Value Analysis

As noted in section 7, finding the marginal queues’ lengths PGF in steady state is intractable. As explained
in [2], one can use a "Mean Value Analysis” (MVA) approach in order to calculate the expected waiting
time of type-l customers in steady state (and the corresponding expected queues lengths). The use of the
MVA approach relays, among other thing, on deriving explicit expressions for F (V) and F (C). We now
show how to compute them.

Each of the type-l customers present at the arrival epoch to @) initiates a (possibly degenerate) regular
M/G/1 busy period. The number of the mentioned type-l customers is determined by the state-dependent

12
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arrival rate, accumulated from the last epoch at which the server departs (the empty) @;. This yields:

I+CN-1

E Bl M, Vi M
E (W)= <vl§ NPT (NE W)+ A E(S)))
1—X x E (By) =11
Under the gated regime this means
-1
B(V) =N_(un *E(B)+ S (E(V;)+E(S)). (8.1)
r=l—N
Under the exhaustive regime,
N—(v—1)N * E (By) —
E((V) = x |E(S_n) + E(V.)+E(S,))] . 8.2
) = o et [EE-D T Y (0D E(s) (52)
Under the globally-gated regime,
I—(l mod N)
EWV) =M o+ EBY) xS (B(V)+E(S). (8.3)

r=l—(l mod N)+1-N
Obviously, under each service regimes,

CN

E(C) =) (E(V)+ E(). (8.4)

=1

The idea behind the MVA approach is to express F (Lq;) (the expected number of type-l customers
in the system, excluding a potential type-l customer in service), and E(Wgq;) (the expected time a type-I
customer waits from his arrival epoch until his service starts), using a set of equations (linear in the method’s
arguments) and, by implementing Little’s Law, derive explicit expressions for them. In section 10 we will
use the MVA approach in order to analyze some basic cases derived from our model. In the current section
we mostly present the equations which will be used in that analysis. For a complete presentation of the
MVA approach, for exhaustively served polling systems which include state-dependent arrival rates, we refer
the reader to [2]. We note that the MVA approach, in conjunction with equations (2.1) — (2.3), can be used
to (numerically) study intricate cases derived from our model.

8.1 Some MVA equations

This would require some explanations and notation, which we will present simultaneously.

Let p,p1,p2 € P be system states. The fraction of time the system spends in a given state p within a cycle
is (recall that p serves both as an indicator of the server’s position, or as the duration that the server stays
in that position)

w_ E®
=By

The mean arrival rate of type-l customers to the system is

Men

=3 pP AP = (72[ A 4 B (S)) # A,(Mj)]

p=Vi =1

Under the gated regime this means

o W « S B+ B(S)]. (8.5)



O©CoO~NOOOITA~AWNPE

Under the exhaustive regime,

_ N
:%* E(Sn)+ Y [EWV)+E(S)+E (V) (8.6)
j=l—N+1
Under the globally-gated regime,
A l—(l mod N)
N=SEEE Y B HES) 57)

E(C) .
j=Il—( mod N)+1-N

Note that under all regimes (either in a new or compact model form), adding together the \;s representing

all ”duplications” of an original basic model queue, will sum up to the latter’s original A. That is,

c
- Al—(y=1)N
Z)\H(rﬂ)N = % * E(C) =XN_(,-1)N-
r=1
By little’s law, B
E(Lg)=NE(Wgq). (8.8)

Define E (R,) as the expected residual duration of time the system spends in state p, assuming it is
currently at a random epoch within p. The expected residual time until the end of the service of the
currently served type-I customer is,

E(B/)
2E(By)

E(RBz> =

In addition,
E(S7?)
E(Rs)=E(Ry) = .
( Sz) ( Ml) 2E(Sl)
The rest of the MVA equations are presented under the assumption that the basic model consists of a

single queue. F (qu(p )) is the expected number of type-I customers in the system excluding a potential

type-l customer in service, assuming the system is currently at a random epoch within p. For p # V} it can
be calculated by building up the number of type-I customers, counting from the last departure epoch from
@; until the current random point in state p.

Assuming (globally) gated regime,

E (Lqf"™ ") = A (B (Vi) + E (Rs,,)) (8.9)

and .
E (Lqf") = AE (Ry;.,) . (8.10)

while E (qu(m) — 0 for p# Vi1, M;_1, Vi

Assuming exhaustive regime,

E (qu(Ml*I)) = \E (Rs_,), (8.11)

while E (qu(p)) — 0 for p £ M1,V

Now, assuming (globally) gated regime, F (va) consists of the expected residual serving time of
the type-l customer currently being served and the sum of all expected service times of the other type-I
customers in ;. We thus write

E(Ry) = E (Rp) + E (L") B (B). (8.12)

For all service regimes, we have

Mc
E(Lg)=Y_ p¥E (qu(p)) -
p=V

14
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For the (globally) gated regime this means (recall that (qu(p)) =0 for p # Vi1, M;_1,V}),

E(Lg) = pVVE (qu(vl—l)) +pM-DE (qu(M’—l)) +pWE <qu(vl)> . (8.13)

For the exhaustive regime this means (recall that £ (qu(p)> =0 for p # M;_1,V)),

E(Lg) = pM-VE (Lgf" ) + oV E (Lg"V). (8.14)
For all service regimes, the fraction of type-l cust iving during p is ol 20— /N7
or all service regimes, the fraction of type-l customers arriving during p is Zﬁicvl A T on-
ditioning on the system state in which a type-I customer arrives to the a system yields,
e arrival occurs arrival occurs
E(Wa) = Z Prob ( during p ) * B (qu during p )
p="
Assuming (globally) gated regime we get,
(Vlfl) * )\
EWgq) = % * {E (Rviy) + E(Si-1) + E <LQ§VH)) * B (Bz)}
l
(M;-1) * A\
+ Pxi x [E (Rs, )+ E (ngMl—l)) «E (B,)] . (8.15)
l
Assuming exhaustive regime results in,
(Vi) ) (My—1) 4 )
EWa) ===+ [E(Re) + B (La") B(B)] + T2 [E (Rs,) + B (La™ ) < B (B)].
! l
(8.16)

For example, under the exhaustive regime, a customer arriving during V; will enter service after waiting the
residual time until the currently served type-l customer departs the system, plus all the service times of the
type-l customers present at his arrival epoch. Hence, under the exhaustive regime,

arrival occurs

E <qu during V,

> =E(Rp)+E <qu(Vl)> E(By).

8.2 Optimality criterion

Generally speaking (and under all three regimes), type-i customers from the basic model can only ar-

rive to queues Q;, Qi+N, ..., Qip(c—1)n in the new model. The fraction of type-i customers present in
Q € {Qi, Qi+N;s -5 Qipc—1D)N } is %, where F (L;) is the expected total number of type-I
r=0 i+rN

customers in the system. The expected sojourn time of an arbitrary type-¢ customer in the basic system is,

S E (Lisen) * (B (Waippn) + E(Bisen))]

E(W;) = — Vi=1,...,N.
S0 B (Liven)
By little’s law E (L;) = A\ * [E (Wq;) + E(B;)], so we can write
1~ 2
Yo [)‘HTN* (E(Wgiyrn) + E(Biyrn)) }
E(W;) = Vi=1,...,N.

PPy Nt * (B (W) + E(Bitrn))]

Define E(W**") = E (Wq;) + E(B)) to be the expected sojourn time of an arbitrary type-l customer in the
new model. We conclude that

S i * B2 (W)
27?;01 [Nirw = B (W]S5)]

In section 10 we will discuss basic models which consist of a single queue. In those cases, E (W) will
measure the system performances.

EW;) =

=1,...,N. (8.17)

15



O©CoO~NOOOITA~AWNPE

9 Stability for a single queue case

In section 3 we stated the following stability condition: The maximal 7 root of equation (3.2) should be
negative. We now examine the general structure of this stability condition for a new model which originated
from a basic model consisting of a single exhaustively-served queue under "swap at the end of every T’
sub-cycles” (T = 1,2,3,...) policy. Recall that E(G) (E (K)) is the expected basic service duration of
server 1 (server 2). We have:

det (R — (m+1) xIcn) =

A E(G) - (7+1) 0 0 0 _ 0

0 :

0 A oT7LE(G) — (741) 0

0 A a"E(K) — (74+1) 0

0

0 0 0 0 XNaTl'E(K) - (7+1)
So,
T—1
det (R — (m+1) #Ien) = 0 = [] (A" E(G) = (7+1)) * (Aa” E (K) — (7+1))] = 0.

r=0

Hence, the collection of all 7 solutions is given by

T-1
U {m=Xo” E(G) =1} U{r=)a" E (K) - 1}}.
r=0

Set E™**(B) = max [E (G),E (K)] .

Then,
T—1

max | 7|7 € L:JO {r=Xa" E(G) -1} U{r=Xa" E(K) —1}}| <O,

yields the stability condition for the exhaustive regime:

o INE™®(B) < 1. (9.1)

Failure to meet this condition means that the server would eventually get ”stuck” in some Q;, 1 =1,2,...,C.

We define ”zero TL stability” as the stability condition of a new model under the ”always swap” policy,
namely, T'= 1 = AE™**(B) < 1. Given "zero TL stability”, in a stable system « € (1,UB), where

00 T=1,
UB =

— 1 Tc[2,0),
[)\Emaz(B)]ﬁ

and T the maximal T for which the corresponding swapping policy still produces a stable system, is

In (7)@ @ ) In (71 )
max (B) A\Emazx (B)
Tmar TIT 7 = | — -
Tér T < In (o) In (o)

We now examine the general structure of the discussed stability condition for a new model, which origi-
nated from a basic model consisting of a single gatedly-served queue under "swap at the end of every T’
sub-cycles” (T'=1,2,3,...) policy.

16
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Remark 9.1. For a basic model consisting of a single queue, the gated regime and the globally-gated regime
converge. In such cases we will refer to the service regime as ”(globally) gated”.

We have:

det (R — (7T+1) * ICN) =

— (m+1)
A o E(G)

0

o

This means,

So,

Then,

0 0 0 0 0
—(m+1)
A a?E(G)
— (m+1)
AaT71E(G)  —(m+1)
Al E (K)
— (m+1)
A aT2E(K) — (m+1)
0 0 0 0 A aT 1 E(K)

T
det (R — (m+1) #Ien) = (r+1)*" = [ [N " 'E(G) x Aa” ' E (K]
=1

= (@117 - [WE@EE)| "V,

det (R — (+1) # Tow) = 0 = (r41)" = o5 \E@ E(E)|
— r=a 2 A\WE(G)E(K) - 1.

max {77|7r:a(T2_1))\\/E(G)E(K)—1 < O} ,

yields the stability condition for the (globally) gated regime:

" TANE (G E(K) < 1.

0
0
—(m+1)

(9.2)

Given "zero TL stability” (i.e. T=1= A\\/E (G) E(K) < 1), in a stable system « € (1,UB), where

and

%) T=1,
UB =

L — T e[20)),
\2E(G)E(K)] T-T

In <,\2E(G1)E(K))
In ()

In{—-=—-4%—-
Tmaa: = max T’ T < <A2E(G)E(K)) —
TEZ In (o)

The stability condition for the exhaustive regime (equation (9.1)), states that the highest traffic-intensity
produced by a queue would not exceed 1. In the case of the (globally) gated regime (equation (9.2)), we need
only demand that the (unweighed) geometric mean of all traffic-intensities produced by the queues would

not exceed 1. For a given «, this generally translates to a higher

Tm(le

under the gated regime than

under the exhaustive regime (note that the stability condition of the exhaustive regime is a sufficient
condition for the stability of the gated regime). One way to look at it is to observe that, under the (globally)
gated regime, no matter how slow the tired server is, he never gets "stuck” in a queue. After a cycle in
which a server operates at his highest incurred TL, he is always replaced by a ”fresh” server, with TL = 0.

17
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We now compare the two stability conditions for the case of identical servers (B ~ G ~ K).
For the exhaustive regime, E™*(B) = E (B) leads to

oITINE™(B) <1 = o I\E(B) < 1.
For the (globally) gated regime, E (G) E (K) = E? (B) implies

(r-1) (T—1)
a2z WEG)E(K)<l=a 2z MAE(B)<1.

Both regimes’ "zero TL stability” conditions converge to

AE (B) < 1.

We conclude that, given ”zero TL stability”, in a stable system « € (1,UB), where

o0 T=1,
1 T S [27 OO)
UB = [)\E(B)}ﬁ exhaustive,

1\ Tef2,)
[/\E(B)]ﬁ (globally) gated,

and

- (e (a1
T =maxrez | T|T < n<1?11(20(41)9)> ] - |Vn<AE(B)> -‘ exhaustive,

Tmes — (9.3)

In(a) In(a)

In({ —& In( —L1_—
TEY = maxpeg | TT < (“MBHQ)] = {2 * (AE(B))“ (globally) gated.

We can write,

2Tma3: O < Tmaa: . ln(ﬁ@) < 0‘5

E - F In(a) ’
Tar = (9.4)

1

2Tmaz — 1 0.5 < Tmar — W <1
We now interpret the results for the case of identical servers. In classical polling systems consisting
of a single queue (with service durations B), the stability condition is identical under the exhaustive and
(globally) gated regimes. Namely, it is the same as the ”"zero TL stability” condition, AE (B) < 1. This
holds true since \E (B) is the expected number of customers arriving to the queue during an expected
service time of a single customer (which takes place during a certain visit period V). Under the exhaustive
regime, those arriving customers are served during the same visit period in which they arrived (V'). This
requires an average of F (B) units of time per customer, so AE (B) > 1 means that the server will eventually
get "stuck” in the queue. Under the (globally) gated regime, those arriving customers are served during
the next visit period to their arrival (V' + 1). This requires an average of F (B) units of time per customer
during which the number of new arrivals will be (AE(B))?, and so on. Thus, AE (B) > 1 means that the
number of customers served each visit period will tends to infinity in the long run (in a kind of ”snow ball
affect”). In our model the ergodic behavior of the system, under the exhaustive regime, follows the same
logic. If during any visit period AE (B;) > 1 (which occurs i.f.f T “IAE (B) > 1), the system will explode
in the long run due to the fact that each arriving customer is served during an average of F (B;) units of
time. However, for the (globally) gated regime, the logic differs. This results from the fact that, during the
visit period V' + 1, the effective service duration isn’t the same as in the service period V’. Each arriving
customer in V’ is served during an average of F (Bjy1) units of time. Since the server never gets ”stuck” in

18
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a queue, after a cycle in which he operates at his highest incurred TL, he is always "refreshed” (TL = 0).
Thus, TZ > T,

Note that under an "always swap” policy, the average amount of service time per customer is identical
in both queues comprising the new model (E (By) = E(Bz) = E(B)). Indeed, for T = 1, the stability
conditions for the exhaustive regime and (globally) gated regime are identical (and equal to the "zero TL
stability” condition AE (B) < 1).

We remind that, as stated in remark 3.1, the stability condition for a compact model is the same as in
the equivalent new model.

10 Analysis of a single queue case

10.1 The exhaustive regime, N=1

Consider a system composed of a single exhaustively-served queue and two identical servers which operates
under the ”"swap every T sub-cycles” (T" = 1,2,...) policy. Furthermore, assume "zero TL stability”.
. : maxr __ 1n<ﬁ(B>>

Consider the compact models, under a given 7' < T7 = ) |-

Our initial goal is to find an explicit expression for the optimality criterion, E (W), which depends only
on the initial parameters H, Hy, B, «a, A and T.
From equation (8.17), using (8.6),

S AEA (W) S (B (Sro1) + B (V) B2 (W)

r=1

E) = 5 = : 10.1
T SN B T S (B (S + B (Vo) B(Ve) (10

From equation (8.2),
AE (B)) E(S;-1)
1-\E(B)
H I<T
H+Hy |=T"

E(V) = (10.2)

Note that since B; = o!~'B and S; = { equation (10.2) means E (V3) < E(V3) < --- <

E (Vp) VT.
Substitution of equation (10.2) into equation (10.1) yield,

Sy kA (B (Wa,) + B (B))

E (W) = : (10.3)
S S (B (Wa,) + B (B,)
Combining equations (8.8), (8.11), (8.14) and (8.16) yields,
E (S1-1%) AE (B/?)
EWa) =55 S +3 A 2EB)) E(Rs,_,) +E (WQM(/\)/G(Bl)/l) - (10.4)

Equation (10.4) reflects a decomposition property which exists due to the absence of correlation between
the different visit periods and the properties of the Poisson arrival rates. Equation (10.4) and the above
explanation also holds for the case of not necessarily identical servers. Note that we can view the current
model (with identical servers) as an M/G/1 system with multiple vacations of duration H, where the server’s
TL increases after each vacation. From this viewing point, each T-th vacation is a special extended vacation
(lasting an additional Hy units of time) from which the server returns at full strength (i.e. TL = 0).

H l<T
g 11 _ . ) .
Substitution of B; = o/~"B and 5] = { H4Hy [=T into equation (10.4) yields,
B(H?)+E(Ho?)+2E(H)E(Ho) AE(B?) .
2(E(H)+E(Ho)) 21—AE(B)) '~ &
E(Wq)) = 2 . (105)
e - 25 [>1.

2B(H) T 2(1-Xa!"1E(B))
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Note that E (Wgq,) is unaffected by a. Also note that for 7' =1,

E (H?) + E (Ho?) + 2E (H) E (Ho) \E (B?)
2(E (H)+ E (Ho)) 2(1-\E(B))

EWy) =EW")=EWq)+E(B)= +E(B).
In accordance with section 2.3, the last equation is equivalent to the mean sojourn time in an M/G/1 system

with multiple server vacations of duration H + Hj.
Substitution of equations (10.4) and (10.5) into equation (10.3) yields,

E(H)+E(Hy) E(H?)+E(Ho?)+2E(H)E(Ho) )\E(BQ) B
1-\E(B) * 2(E(H)+E(Ho)) + s E®B E( )
T E(H E(H? Aa2(r—1) B (B2 or-
+ 2= 17)\a7"(—1)E(B) * [QJE(C(HQ + 2(17)\017"—12(3; 'E(B
E(W) = E(H)+E(Ho) E(H?)+E(Ho?)+2E(H)E(Ho) \E(B?) (10.6)
BB 2E(H)+E(Ho)) + 3B +E(B)]
T E(H) B(H?) | a207VB(B) g
+2 =2 ToarTE®) ¥ |:2E(H) +sioaemy @ E(B)
For the sake of completeness, we note that equation (8.4) leads to
~_ E(H) E (Ho)
E(C) = 0 10.
(€) kz_:l—/\ak—lj}?(B)—i_1—)\E(B)7 (10.7)
and equation (8.6) leads to
A (E(H)+E(H0)> 1=1
E(C) \ 1-)E(B) =5
A\ = (10.8)
A E(H)
B(C) (1—>\al*1E(B)) 1<i<T
Remark 10.1. The above results can be extended for the more general case of not necessarily identical
In W
servers in a strait forward way (assuming AE™*(B) < 1, and T < T = W ). This is done

by simply recalling that the aforementioned case is composed of two ”compact model cycles”, whose only

- <1<
difference lies in B; = { fgil i T é7_<1; <orT
i=l-T Sis

The results are:

E(W;) = > [%[E(qu) +E(B,)]” + ﬁ[ (Warir) + (B’*T)ﬂ
S [R5 (B (War) + B (B0)] + 558520 (B (Warer) + B (Byar)]
1 r—1 2
g = [E(Wa,) +a 7 E(G) ]
dor=1 ) [ +m[ (Wq,y7) + o 'E (K)]
1 -1 ’
= [E(Wa,) + o E(G)]
Yo E(Sr-1) +#1E(K) [E (WQH-T) +a" 1E(K)]
where
E(S) = E(Siyr) = { §E§§ B i:gi T,
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and
E(H?)+E(Ho®)+2E(H)E(Ho) AE(G?)

2(BE(H)+E(Ho)) saecy =L
E(H?) A2V B(G?)
2E(H) 2(17)\al_1E(G)) 1<l< T,
E(Wq) =
B(H)+B(Ho?) 2E(H)E(Ho) | AB(K?) ) _ g
2(E(H)+E(Ho)) SA-NE(K)) ‘= )
E(H2) )\(X2(17T71>E(K2)
L 2E(H) 2(1_)\al7T71E(K)) T + 1< [ S 2T.
In addition,
P(©) =B ()Y <1 T MIE(KQ B (H) + (1 st 1AE(K)> ,
and
A (E H)+E HD))
E(C) \ T I-XE(G)
,\ E(H)
A=
A (BEH HO)
E(C) ( ) ) I=T+1,
A
E(C) (1 az 1E(K ) T+1<1<2T.

We now concentrate our efforts on finding an efficient algorithm to obtain an optimal swapping policy
for the case of identical servers. Define,

BUH)YB(HY) . _

o By ] 0
"T1-)E(B,) .
#‘JE(B) r> 1.

So, we can rephrase equation (10.3) as
o1& x B2 (W)
Yrer b x E(Wpew)

The following observation is crucial: Since E (W¥) = E (Wgq,) + o'~ E (B), equation (10.5) implies that
E(W?e%) is positive and unaffected by 7' Vr = 1,2,...,T. Clearly, the same holds for & Vr=1,2,...,T.
Let Ep (W1) be E(W1) under a given T' = 1,2, ..., T and let

T = {T|Ep (W1) < B (Wy) VI =1,2,..., Tg*}.

E (W) =

In the following, we will make use of the integer numbers T and T2, which we assume satisfy 1 < T! <
T2 < Tgmm'
If Epe (W) > Ep (W7) we can write
2 1
Yror o x B2 (W) S5 & x B2 (W)
2 - 1
Yii & x B (Wpew) T ST & x B (Wpew)
T2 &k x E (W) T2 &k x B (W)

— Z ) > )
k=T1+41 | * (Zle &Ex E(WE)E (W”ew)) k=T1+41 | * (ZTT:1 &x E(WPew) B (W;lew)>
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Note that the only difference between the two sides of the last inequality lies in £ (W*") versus E (W *").
Now, a > 1 means E (W) < E (Wfﬁf{“") Vi=2,3,..., T§* — 1. That is,

E(H?)  XX-VE(B?) E (H?) A’ E (B?)

HlE (B 'E(B).
B 20— m@) ¢ PP <spm Tra—aammy TOFP
In other words, E (W) < E(W3) < --- < E <W%lz?gz> So E (W) < E ( }‘f&) means E (W) <

E(Wpew) ¥l =T' +2,T' +3,..., T Moreover:
[ ] E (W{lew) < E (ngew) > E]_ (W]_) < El (Wl) VZ = 2’ 3’ Tma:v _— Topt {1}
o E(WeW)=E(W3) = E1 (W) = E;(W1) < By (Wy) VI=3,4,... T = TPt = {1,2}.

E(Wge) < E (W) = Ey (Wh) > By (Wh) = {1} ¢ T,

(Wrew)) < E(Wpew) < E (W) for some T = 3,2,....,Tme"
= Ep (Wh) < Epopn (Wh) VI=T' —1,T',..., TP — 1
= {T',T' +1,..., TR} ¢ TPt

e And

This means

E (Wpew) < B (WPew) for TR = 2 = Tt = {2},
E(Wpew) < E(WPew) < E (Wnew) for Tpa® > 3 = TPt = {2},
E (Wrw) < E(Wpew) < E (W2ev) for some T' = 4,5,...., TR
= {Lu{T", T+ 1,... Tgew}} ¢ T,
E(Wpew) > E (Wit ) — {1} ¢ T

Remark 10.2. (WZ5¥) < E (W) means that E; (W) < Ey (W) V1 =2 3,...,T’. So (W) <
E(Wew) < E (W) for some T = 3,4,...., TR means E; (Wy) < By (W) V1=2,3,...,7 — 1.

If Epe (W) < Ep1 (W7) we can write

i G EE) g i G EE)
(XL 6w BWren) B(wpew)) | = « (LI &+ B (Wpew) B (Wrew))

k=T1+1 k=T1+1

Remark 10.3. Observe that a necessary (but not sufficient) condition for Ep2 (W) < Ep (W7), is
E( %lf%) < E(W{"). Note that, assuming E( :’ﬁgw) E(Wpew) any T! and T? satisfy this nec-
essary condition.

Assume Ep (W1) < Epr—1 (W), this implies that

T'-1 T'-1

3 & BV EOVE®) < 3 60x B OVR) B (W), (10.9)

Consider Eqv_1 (W) < Ep/_o (W1) where 7" — 2 > 1. This holds true i.f.f.,

T'—-2 T'-2
DG EW)E (W) < Y & * B (W) B (W),

Since E (W) > E (W), we can deduce from equation (10.9) that

T'—-2 T'-2 T'—

S 6w B (W) B (W) < 37 &5 B (W) B (W) Z&*E Wrew) B (W),
r=1 r=1
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where the rightmost and leftmost elements imply that Ep_y (W) < Epr_o (W7). So Ep (Wh) < Epr_y (W) =
Eri_y (Wl) < Epi_g (Wl) VT = 3,4,..., ngaz' This means that Ep» (Wl) < Epr_y (Wl) leads to Eqr_4 (Wl) <
Ep_o(Wy) <o+ < Ey(Wh) < Ey (Wh).

To conclude, assuming ”zero TL stability”, the system has the following general form:

{ Ey (Wl) > Fy (Wl) > e > ET/_2 (Wl) > ET’—I (Wl) > ET’ (Wl) ,
Er (Wl) < By (Wl) <o < ETgLaw (Wl) < ETgmx (W1) .

Where E (W9") < E (W) < E (W) for some [ > T + 1, and

Topt _ { {I' - 1,1t Er—1 (W1) = Ep (Wh),
{1} Er—y (Wh) > Ep (Wh).

Remark 10.4. While moving from | = 1 to | = TF'**, E; (W;) decreases down to Epopt (W) and then
increases. By using equation (10.6) to check whether an E; (W7) is in the increasing part or in the decreasing
part, one can use a binary search method in order to find T°" (which is non-empty and contains at most
two consecutive elements). Knowing where to locate E (W**") on the E (W**") axis would narrow down
the search.

Now, for 1 <T < TP, the inequality £ (W) < E (W7°") means

B (H?) + B (Ho®) + 2E (H) E(Ho) =~ \E(B?) A2 TVE (B?)

( ) T—-1
5(E (H) 1 E (H)) saem) PP SEm T (17)\04T Emy ¢ PP
2E (B) (« +A(Var (B (B)
E (H?) - B (Ho) Vet — B (H)| § { % [a2(T- 1()(1/\Ez ))(( )\aT 1E(B)))] }
- E (H) + E (Ho) = (1- T 1E(B)) (1 AE (B))
Assume B~exp (-). This means Var (B) = E? (B), so the last inequality simplifies to
Var(H)
E (Ho®) — E (Ho) [ E() E(H)} - 2E_(B) (aT71 —1) ' (10.10)
E(H)+ E (Hy) (1—XaT-1E(B))(1 — \E(B))

For any given Brexp (-), A and o, E (Ho2) — E (Ho) [Vaz"}{)) - E(H)} <0= ’5;5’}0)) < Verdh) — B (H)
would mean that E (W*%) < E (W3€¥). So this is a sufficient (but not necessary) condition for 79" = 1

(note that this sufficient condition never holds if H~exp (-)).

2
In case EE((II{IOO)) > ngg;’) — E(H), isolating T" from equation (10.10) leads to

2E(B)(E(H)—i—E(Ho))+>\E(B)(1—>\E(B))[E(H(F)—E(HO)(V‘”(H) E(H))]

{a[ 2B(B)(E(H)+E(Ho))+(1-\E(B)) | B(Ho?)~ E(Ho) (Yard — B(H))
E(H)
T >

] } =TBOUND.

In (o)

Note that since A\E (B) <1 and o > 1, TBOUND > 1. Also note that 7BOU N D monotonically decreases
ina>1.

Clearly, we are interested in [TBOUND} We claim: [TBOUND]| < T7% +1.

Proof: We first show that TBOUND < (Aij)), for otherwise

o [ 2Em @ e 0 am ) [B(H0?) - B (Y - Ben)
2E(B)(E(H)+E(Ho))+AE(B)(1-\E(B)) |[E(Ho®)~E (H)(VEL,S? E(H))] . ln(AE%B))

In ()
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\E (B)2E (B) (E (H) + E (Hy)) 2B (B) (E (H) + B (
N +AE(B) (1 - \E(B)) > +AE(B)(1 - \E(B
« (B (Ho?) - B (Ho) (Ve - E(H))) « (B (Ho?) - E (Ho) (Y5 -

= \E(B) > 1.
This defies the "zero TL stability” condition.

Next, recall that T7'* = maxreyz, (a)

In( —-&
T|T < (AE(B))] (see equation (9.3)). Now,

o If W € Z then [TBOUND] < hl(ljf:if)) and T = hl(ljli;’”) ~1

so [TBOUND] < Tgo 1.
In In( —&— In( —&—
o If <ljff>) ¢ Z then [TBOUND] < {(ljfj)) w and Tev = Mgﬁ) w —1

so, again, [TBOUND| < T + 1.

This completes the proof.

Hy))
E(H)))

)

2
To summarize, assuming ”zero TL stability”, B~exp (-) and E(fo?) - Var(H) —E(H):

E(Hy) — E(H)

2 < [TBOUND] < Tmew 41,

[TBOUND] < The* <= E (le@;gOUNm_J < E(Wrew)< E (W{L;EEOUNDW) :

[TBOUND] =T +1 <= E (Wigh. ) < E (W),
To conclude, assuming B~exp (+), an o(log (T™%%)) algorithm for finding T is:
Setpl: IF \E (B) > 1 THEN T°" = ( ELSE
Setp2: IF T =1 THEN T°P" = {1} ELSE

PUIY) < VerdD) _ g () THEN T = {1} ELSE

Setp3: IE Ty < "o

Setp4: IF TBOUND = 2 THEN T°! = {1,2} ELSE
Setp5: IF [TBOUND] = 2 THEN T°"! = {1} ELSE
Setp6: IF [TBOUND] = 3 THEN T°"! = {2} ELSE

Setp7: Use a binary search method in order to find all elements of
TP = argmin{ Er (W1)|T = 2,3,...,[TBOUND] — 1} (cf. remark 10.4).

Remark 10.5. Steps 4-6 follow the same logic as step 7. They deal with simpler cases which do not require

farther calculations.

10.2 The (globally) gated regime with identical servers, N=1

Consider a system composed of a single queue, operating under the (globally) gated regime, with two

identical servers switching according to the "swap at the end of every T sub-cycles” (T = 1,2, ..

.) policy.

Furthermore, assume ”zero TL stability”. Consider the compact models, under a given 2 <T' < T3 =

In( —L—
{2 * ww (we will later relax the T' # 1 assumption).
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We begin by finding expressions for F (V}). Equation (8.1) states that
EWV)=XE(B)[E(Vi-1)+ E(S-1)]Vl=1,...,T. (10.11)

Recursive substitution in equation (10.11) yields,

St B (Sp) AE (B1) [T j,11 \E (B)
1- 12, \E (B,) '

E(H)+E(Hy) =T
E (H) 1<i<T"’

E(W) = (10.12)

Since B; = o!~'B and E (S) = { equation (10.12) can be rewritten as

B(H)S [ (AE(B)" o™ 5 4 B (Hy) \E(B)
- OB (B) o
For the same reason, equation (10.11) also implies

EWV)=X!"'EB)[E(Vi_1)+E(H)] Vi=2,3,...,T.

E(VW) =

Recursive substitution in the last expression yields

(I—k+1)(1+k—2)

s
=

!

E
MN

(\E(B) ™o 2 + E(V1)(\E(B))"” =23,...,T.  (10.13)

k=2
Substitution of E (V1), from equation (10.12), into equation (10.13) yields
!
E(V)= E(H)Y (AE(B) "o
k=2
E(H) Y (\E (B))T“*’“aT(T‘”W‘”‘W‘” E (Ho) \E (B))a'7"
+ T(T—1) Vl:2,3,,T
~(AEB) a2
(10.14)

Remark 10.6. To avoid confusion regarding the use of "modulo 77 marks in the context of recursive
substitution, we have found an expression for E (V) (which is the only case where the modulo context
differs from the non-modulo context) and then used it to express all other E (V})s. This created a de-facto
distinction between cases which are not essentially different (I = 1 versus [ = 2,3,...,T). This is made
evident by setting | = 1 in equation (10.13), which yields the identity F (V1) = E (V). This is also true
regarding the five cases which are used to express F (W¢;) in the following paragraph.

We now find expressions for E (Wg¢;). Tediously combining equations (8.8), (8.9), (8.10), (8.12), (8.13)
and (8.15) yields the following five cases:

1. Forl=1and T = 2,

E(H) + E (Ho)
E(Va) + E (H) + E (Ho)

E(H?)+E(Ho?)+2E(H)E(Hy)
E(H)+E(Ho))

(1+ AE (B)) + AE (B) E (V3)
E (Vo) E(B)
E(R) + E(H)+E(Hy) | 2E(B)
(AE(B)a)2(1+)\E( B))
(E (V) + E (H) + E (Ho)) (1 - (\E (B))'a2)

| B w) (5 + 55 ) + 24
E

(H
| Ew) (B +EB(H) + 5
BB <E(

EWgq) =

*

+

(1+AE(B))+ E(H) + E (Hp)

+

B(B?)a
SEB)

2

H2)+E(Ho?)+2E(H )E(H0)>
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2. Forl =1 and T > 3 we have

E(Wgq) =

EH2 EH 2E(H)E(H,
E(H)+ E (Hy) + °+§(H§))) (Ho)

E (V) + E (H) + E (Ho) *(1+/\E )) + AE (B) E (Vr)
?)a’

E (Vp) E(
1+ ME(B E(H)+ E(H
T EVN+EM®E +EH) | 2E(B) ( +AE(B)) + E (H) + E(Ho)
< ))2CT=F)( 1+>\E(B)) 2T(T—1)—k(k—1)
T—l E(Vr)+E(H)+E(Ho)
E(B?)ak—1 E(H?
[E )+ 2t >+ . )]
E(B JaT—1
FE(H)+ E(H
L QBB BB (VT)( (H) + E (Ho) + =555 >
E(Vr)+E(H)+E(Ho) N (E(H2)+E(HO 2B (H)E(Ho)
_l’_

— (A\E (B))*ToT(1-1)

OAE(B) T+ D (14 AE(B))aT (T-D—k(k-3)-2
( E(Vr)+E(H)+E(Ho)

T
" kz—z * [ E (Vi—1) (E (H) + E(QBE2‘()gI;2> + E(gp) }

3. For | = 2 we have

E(Wqy) =

FE(H E (H?
(V1) (+ 27 (H) 2E((H§ (1+AE(B) )+ AE(B) aE (V1)
(V1) E (B?)
+ v+ E@ " |28 B (1+AE(B)a)+ E(H)
AE(B)* T D (14 AE(B)a)aT (T~ —k(k—1)
ZTA E(V1)+E(H)
k=1 E(B2)ak—1 E(H?
* B (Vi) (E(H) + (2E()B) ) + (2 )}
E(BQ)QT—I
E (V; E(H FE (H ik Sl
L QE(B)24AE(B)a) (Vr) ( (H) + E (Ho) + =555 )
E(V1)+E(H) N (E(H2)+E(Ho2)+2E(H)E(HO)>
2
+

— (A\E (B))* aT(T-1)
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4. For | =3 <T we have

E (Way) = B(H)

E (H?)

(L+ AE(B)a?) + \E (B) *E (V3)

E(V2)+ E(H)
E (W)

E(H)

E(Va)+ E(H)

(AE (B)a)® (1 + \E (B) o?

E(B?) «
2

(L+AE(B)a?) + E(H)

E(B)

E(Va)+E(H)

+

Lo [ ) (mm + 55)) + 26

()\E(B))2(T_k+2) (H_/\E(B)QQ)QT(T—1)—k(k—1)+2

(AE(B))*(1+AE(B)a?

E(Va)+E(H)

\ [E (Vi) <E (H) + 2 ) 4 B2UE)

B(B?)ar
+ —sEmE

E (V) (E (H) + E (Hy)

2
)a?

E(Va)+E(H)

+ \

<E<H2)+E(H02)+2E(H)E(HO)
+ 2

B(r) ]

)

5. For [ =4,5,...,T we have

E(Way) = E(H)

E (H?)

~ (AE (B))TaT (-1

(1+AE(B) '™ ") + AE(B) o/ E (Vi_1)

EViO+EH)

EVi_1)

2E (H)
E (B?) a2

EVi) L EH)

2E (B)

(1+AE(B)a'™") + E(H)

x [ E(Vi_1) (E (H) +

(AE(B))Q(l—k) (1+)\E(B)al—l)al(l—S)—k(k—B)
=l E(Vi )+ E(H)

)+ 20

()\E(B))2(T—k+l—1)(1+)\E(B)al—1)aT(T—1)—k(k—1)+(1—1)(1—2)

Dy <

(AE(B))2(Z D (14AE(B)a!~

E(Vi—)+E(H) >
* {E(Vk) (E (H)+

E(B?

(QEggil) n E(fz)}

E(Vr)

) (1—1)(1—2) E (H) +FE (HO) +

E(Vi—1)+E(H)

*

E(B );) 1)

N <E(H2)+E(Ho +2E(H)E(Ho) )

+

Substitution of E(V;) and E (V}) VI =2,3

the above five cases, results in expressions for F (Wg¢q;) VI = 1,2,...

— (B (B))TaT ™=V

., T, from equations (10.12) and (10.14)

parameters H, Hy, B, a, X and T. For example, in case T' = 2 we have

EW) =

E(H)AE (B) (1+ AE (B) ) +

(H) \E (B)

— (\E(B))’a

E(H)AE (B) (1 + A\E (B)) o+ E (Hp) (\E (B))*«

E(V2)

~(AE(B))’a
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(E(H) + E (Ho)) (1~ (\E (B))*a)

E(Wq,) = E(H)(1+ ME(B)a)+ E (Hy)

_|_

+

E(H)ME (B) (1+ AE (B)) a+ E (Hp) (AE (B))*«

E(H?)+E(Ho?)+2E(H)E(Ho)

2(E(H)+E(Ho))

(1+AE(B))

E(B?) a

E(H)(1+\E(B)a) + E (Ho)

(AE( )a)? (1+\E(B))

+
(E(H) (14 A\E (B) o) + E (Hy)) (

(E(H),\E(B) 1+>\E(B)o¢)+(Ho)>\E(B)>

1—-(\E(B))?

* E(H)(/\E(B))(1+/\E(B))w-irl‘i’(Ho)(/\E(B))2

+(\E (B))za)

1-(AE(B))*«a

+ E(H?)+E(Ho

°F (B)

>(

+2E >

(H) +

2)+2E(H)E(Ho)

2

(1+XE(B))+ E(H)+ E (Ho)

E(H)()\E(B))2(1+)\E(B))a+E(Ho)()\E(B))3a)
1—-(AE(B))?a

Recall that we assumed T # 1 at the beginning of section 10.2. We now relax this assumption (note
that, as mentioned in section 2.3, since the discussed model does not include state-dependent arrival rates,
it can also be treated as a classical polling system). For the case of T'=1 (i.e. the ”always swap” policy),
we can simply use the expressions obtained for T" = 2 after setting o = 1 and replacing any H which didn’t

originated from Sp—o with H + Hy. This would result in E (V7) =

E (V) and E (Wgq,) = E (Wgq,) which

represent the respective E (V) and E (Wq,) for the T'= 1 case. The resulting expressions are

(E(H) + E(Ho))/\E (B)

E(W) =
B E (V1) E(B?)
EWa) = E (W) +E(Hl) + E (Hy) * |2k (B)(

E(H) + E(Ho)

- (AE(B))

1+ A\E(B)) + E (H) + E (Hp)

E(H?)+E(Ho?)+2E(H)E(Ho

(1+ \E (B))
. .

Y EV) + E(H) 1 E (H) *[

Yo (AE(B))"
+

2(E(H)+E(Ho))

EW)|(E(H)+ E(Hy) +

E(H?)+E(Ho?)+2E(H)E(Ho)

2

E(B?)
2E(B)

+

(E(Vi) + E (H) + E (Hp)) (1 -

Equation (10.16) means that, for the case of T' =1,

EWi) = E(Wi") = E(Waq)) + E(B)

1 - (A\E(B))"

_ (1 Dy IY <B>>’f> W E
+(1—-)ME(B)) [

(\E

B(B?%)

2E(B)

(B)")

+ E(H) + E (Hop)

E(H?)+E(Ho?)+2E(H)E(Ho)

(10.15)

)(1 4 \E(B) + \E(B) E (V1) |

(10.16)

2(E(H)+E(Ho))

] +E(B). (10.17)

We can thus calculate E (W7), for any 1 < T < T@&**, using equation (8.17). Namely, using

X MBS 1 (B (Vi) + E(S1) (B

E (WI) _ = T — r=1

(Wq,) + E (B,))*

S A E(Wpewy ST (B (Veoy) + E (S,

S0y [(B (Vi) + B (H)) (E(Wa,) + ™ E (B

))(

2

—

(Wa1) + E(Br))

—|—E H(]

E(Waq) + E(B))?

ST (B (Vi) + E(H)) (E(Wg,) +a™1E(B m + B (Ho) (E

For the sake of complete presentation, note that

28
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Mﬂ

T
E(Sk-1) + E(Vk1)) = Y E (Vi) + TE (H) + E (Ho), (10.18)
k=1 k=1
and

ME(Vr)+E(H)+E(Ho)) =1
E(C) -

A= (10.19)
ME(Vi—1)+E(H))
’EE—C) [>1.
Remark 10.7. The above results can be extended for the more general case of not necessarily identical
servers using the same approach which was described in remark 10.1 (assuming \\/E (G) E (K) < 1 and

In(a)

mn(——%
T <Tmer = [WW-‘ ). The T'=1 case does not require a special treatment.

The current (globally) gated regime case is much more complicated than the exhaustive regime case
studied in section 10.1. This is mainly due to the fact that, unlike in section 10.1, here the lengths of the
different visit periods are (positively) correlated with each other. Such correlations allays exist, except in
the case of a single queue exhaustive regime.

For the rest of the current section, we assume that E(H) > 0. This is done for the sake of a clear
presentation. The general case of E(H) > 0 will be addressed in remarks 10.8 and 10.9.
We conclude this section with some observations regarding the expected visit periods. From equations
(10.12) and (10.15):

(E(H)+ E(Ho) \E(B)(Lt AE(B)) T
1-(AE(B))? ’
EW) = (10.20)
B ST, 0BE) e L p AR (B) T—93  Tma
—OEB) o T e

Let Er (V) be E(V;) under a given T' = 1,2,...,T7*. Assuming T2 > 2 (i.e. az\E (B) < 1),
E; (V1) < E (V1) means

2(2—1)—k(k—1)

(£ (H)+ E(Ho)) E(B)(1+ME(B)) E(H) Yot AE(B)* a0 + E (Ho) \E (B)
— (AE(B))? 1— (A\E(B)%a"7"
— B (Hy) (1 — (\E(B))%a — \E (B) (a — 1)) < E(H)(a—1)(1+ \E(B)). (10.21)

It follows that, if 1 < AE(B) < ﬁ, equation (10.21) is always true. So, for TH** = 2 (which implies
O[)\E(B) > 1), FE (Vl) < FEy (Vi)

For T'=2,3,..., T8 — 1, Er (V1) < Er41 (V1) means

EH)Y . (\E (B))T~H+2 TEUTFEO=D
B Tt QB@) 1 LB (H) (AE (B))T~(T+D+2, 1o ens

) +E (Ho) \E (B)

~(\E(B) T

] [ EH) YT (AE(B) o™ 0 TAE (B)

<

[E(Hmfl (\E (B)) +E (H) \E (B)
+E (Hy) AE (B) +E (Ho) AE (B)
= T T(T-1) < T T(T-1)
1— (\E (B)) —(AE(B) a7 xaT\E (B)

(10.22)

In this presentation it is readily observed that o’ \E (B) > 1 = Er (V1) < Ery1 (V1).
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From equation (10.14),

Er (V)

For T =2,3,...,

l
H)Y (B (B) e
k=2

E(H) Y4y (\E (B))

. T(T—1)+I(1—1)—k(k—1)
T+l ka 5

VE (Ho) (A\E (B)) a7

T=2,3,..., T3 and

+ — ()\E (B))Ta@ v [=2,3,...,T. (10.23)
TE* —land 1 =2,3,...,T, Br (V}) < Eri1 (V) means
E(H) 22:2 (\E (B))l_kﬂaw
E(H) Ele (AE (B))T+l—kaT(T_1>+1(12_1)_k(k_1)
+FE (Hp) ()\E (B))lal(lgl)
1—()\E(B))Ta@
E(H) 22:2 (\E (B))l_kﬂaw
E (H) Zg—l ()\E (B))T+l_k+1a(T+1>T+l(l;1)—k‘(k~—1)
< +E (H) (/\_E (B))T‘H—(TH)Ha (T+1>T+l<lg1)*(T+1)T
+E (Ho) ()\E (B))lal(lgl)
\ 1—(>\E(B))T+1aw
- E (H) Zg:l (AE (B))T+l*kaT<T*1)+l(l271),k<k71)
+E (HU) ()\E (B))lal(lgl)
— :
—(\E(B) o T
) Zh O E) (o IE e
(l 1)
E(H) (A E( )) WQ '
T (10.24)

—(AE(B)) a5 xaTAE(B)

In this presentation it is readily observed that a’ AE (B) > 1 = Er (V}) < Ery1 (V).
From equations (10.21), (10.22) and (10.24) we conclude that a” A\E (B) > 1 = Er (V) < Er,1 (V}) VT =

1,2,..., Tmas —

landl=1,2,...,T.

In(a)

. l 1
Define 7 = minrez { T| o’ AE (B) > 1} = ’VMAE()—‘ Note that 7™ > 1.Intriguingly, 77 = Tmae,

So equation (9.4) also describes the relation between T37%* and 7™ (hence the "mid” superscript).
According to the last conclusion, we can write that, for E(H) # 0 (see remark 10.8),

ETmid (W) < ETmzd+1 (‘/l) <0 < ETénaz (‘/l) vl == 1,2, . o ,T.

Remark 10.8. As stated above, the last conclusion was obtained under the assumption that E(H) # 0.
For the case of E(H) = 0 and o’ A\E (B) > 1 the conclusion is still valid. However, for the case of E(H) = 0
and o’ \E (B) = 1 we obtain

ETm'Ld (‘/l) == ETmzd+1 (W) < ETmzd+2 (W) e < ET&”G‘T (W) Vl — 1, 2, e ,T.
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For T'=2,3,..., T8, Er (V1) < Er (V2) means
B (H) Sy 08 (B) o
+FE (Ho) A\E (B)

T(T—1)—k(k—1) ]
2

1 - (\E(B) a5
E(H)(ME (B))**™a

E(H) Y4y (\E (B))

(2—2+1)(242-2)
2

L T(T-1)+202-1)—k(k—1)
T+2 kOé 5
(2-1)

< _
VE (Ho) (\E (B)%a” 7~
+ o T(T-1)
1-A\EB)Ta™ 2
E(H) YL, (AE (B))T o™ 2
+E (Hy) \E (B)
=

1—- (B (B) a5

E (H)a\E (B)

B (H) Sl (B (B) a5
+E (Ho) \E (B)

1-(AE(B)Ta

T(T—1)
-l

x aAFE (B)

(10.25)

In this presentation it is readily observed that aAE (B) > 1 = Er (Vi) < Er (V2). So, for TEH = 2

(which implies 77 = 1), Er (V}) < Er (V3).

For T'=3,4,..., T3 and 1 =2,3,...,T — 1, E7 (V}) < Er (Vi41) means

E(H) Y4y (\E (B))

E(H)Yj—o (AE(B))"a

+E (Hy) (AE (B))'a 2

(I—k+1)(1+k—2)
2

. T(T—1)+1(1—-1)—k(k—1)
T+ ka >

1(1—1)

|

|

+ —
1-(B(B) a7
- (U=k+2)(1+k=1)
E(H)Y iy (\E (B))' k+i?{<l+l>+2il+l+lil)
+E (H) (\E (B))=HD+2, 2
< E(H) zgzl (\E (B))TH_kHaT<T(l:>;azl)l7k(k’”
+ +E (Ho) AE(B))a >
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r E(H) 22:2 ()\E (B))likJrlozw
— E(H) ST (AE (B))TH ko e
VE (Hy) \E (B))'a' 7"
M 7 I(T-D)
1-QEB) a2
7
E(H) Shey (VB (B)) ™10 =55 waAB (B)
+E (H) o'\E (B)
) E(H) ST, (AE (B))TH-kq "= == ] (10.26)
1(1-1)
+F HO M (B lOé 5
+ ( )( ( T *Oél)\E(B)
1-AEB) a2

In this presentation it is readily observed that o/AE (B) > 1 = Er (V}) < Er (Vi41).

From equations (10.25) and (10.26) we conclude that for 7' = 7™ 4 1 7™mid 2 TH and | =
Trad pmid 4T — 1, Ep (Vi) < Er (Vi41). According to the last conclusion we can write that, for
E(H) # 0 (cf. remark 10.9),

Ep (Vimia) < Br (Vpmiayy) < -+ < Bp (Vpgee) VT =T™ 4+ 1, T™ 42, TE*.

Remark 10.9. According to equation (8.1), V;’s length is composed of (i) the service times of all type-I
customers arriving during V;_1, and (ii) the service times of all type-I customers arriving during M;_;. This
means that, for [ = 2,3,..., T2,

E(V) = AE(Vi_1) + E(H))a' E(B).

Generally speaking, (ii) keeps increasing while moving from [ = 1 to [ = TZ*. We can nullify this
parameter-dependent affect by assuming E(H) = 0. The expected amount of time spent per served customer
in E(V}) is o/'E(B). The arrival rate of this workload to the system during E(V;_;) is Aa!"'E(B).
Recall the equality between 7™ and 7% which is embodied in the fact that Aa!"'E(B) > 1 for | =
Tmid 41,7 2, T, Hence, without relevance to E(H), the single server spends more (expected)
time in V; than in V;_y for [ = 7mid+2 pmid+3  Tmaz Note that, similarly to remark 10.8,

E(VTnLid) S E(VTmld+1),

where y
E(Vipmia) = E(Vipmiay,) <= {{H — 0} N AT EB) = 1}} .

Remark 10.10. For a general E(H) > 0, T°" may be bigger than 7™, To see this, recall that 7
and 77" are not affected by Hp. In a system which is stable under ”zero TL stability”, continuously
increasing F(Hy) will eventually results in T = T7%* since swapping the servers becomes more “costly”
(both directly, by some prolonged switch-over periods, and indirectly, by prolonged visit periods).

11 Concluding remarks

In this paper we introduced a new polling system comprised of two alternating weary servers, which operates
under either the gated, exhaustive, or globally-gated regime. The tradeoff between the tiredness effects on
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the servers and the "swapping cost” (Hp units of time) can be illustrated by observing some numerical
results. Consider the following basic model consisting of a single queue and identical servers, where we take
a > 1 as a variable:

A = 1;H~exp(l); Hy~exp(0.5) ; B~exp(4) .

—— ~~ ~~

arrival rate swich—over time swapping time service time

Using standard polling techniques (see e.g. [14]), we have accurately calculated E (W) for this model under
the ”always swap” policy. This results in £ (W7) = 3% for the (globally) gated regime and in E (W7) = 2%
for the exhaustive regime. Next, for each of the "swap at the end of every T sub-cycles” policies where
T = 2,3,4, we used the MVA approach to numerically calculate the value of o, for which the resulting
system’s E (WW;) obtains the same value as under the ”always swap” policy. The results are
summarized in the following table:

T | Exhaustive: E(W;) =22 | (Globally) Gated: E (W;) = 32

2 a=25 a = 2.335
3 a=1.63 a = 1.692
4 a=14 a =1.451

As was expected, under both regimes, a smaller « allows swapping the servers less often and still gain the
same (or better) expected sojourn time as in the ”always swap” policy. Clearly, in each case, increasing
(decreasing) « will result in a worse (better) expected sojourn time than in the ”always swap” policy.

Although we have only uncovered the “tip of the iceberg”, one can consider various ways in which to
extend the presented new polling system. Aside from the inclusion of additional regimes (e.g. mixed), one
can (i) change the way the fatigue parameter and tiredness levels affect the service time distributions; (i7)
differ between the tiredness effects on each server; (iii) develop a broader scope of criterions for comparison
between the different swapping policies, etc. Another extension can be to include tiredness effects on switch-
over times. Note that doing so does not affect the stability condition under the three discussed regimes (nor
under the mixed regime for that matter).
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