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distributed switch-over time to queue j, unless the number of customers in queue i is
equal to or above queue i’s threshold. However, if during a switch-over period from queue

i(leg/evrvg;iisﬁg server i to queue j the former reaches its threshold, the switch-over is aborted, and the server
Non-zero switch-over times immediately returns to queue i and continues to serve the customers there. We analyze
Opposite-queue threshold policy the system mainly via Matrix Geometric (MG) methods while deriving explicitly the rate
Derivation of the rate matrix R matrix R, and thus eliminating the need for successive substitutions. We further reveal

connections between the entries of R and the roots of polynomials related to the Probability
Generating Functions (PGFs) of the system states. Expressions for the system’s performance
measures are obtained (e.g. mean queue size and mean sojourn time in queue 1, PGF and
mean of the queue size in queue 2, as well as the Laplace Stieltjes transform and mean of
the sojourn time in queue 2). Numerical results are presented and the effects of the various
parameters, as well as the switch-over times, on the performance measures are examined.
Seemingly counter-intuitive phenomena are discussed. Finally, various extreme cases are
investigated.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

N-queue polling systems with a single server and switch-over times have been studied extensively in the queueing
literature (see e.g. Takagi [ 1], Boxma and Groenendijk [2], Boxma, Levy and Yechiali [3], Browne and Yechiali [4], Yechiali [5],
Resing [6] and many others). A recent survey (Boon, Van der Mei and Winands [7]) discussed a vast list of polling systems
applications. Several papers focused on two-queue alternating-server system with zero switch-over times (see e.g. Takacs [8],
Boxma and Down [9] and Boxma, Schlegel and Yechiali [ 10]). Threshold-based systems, mostly depending on the queue level
of the attended queue, were also investigated (see e.g. Lee [11], Lee and Sengupta [12], Haverkort, Idzenga and Kim [13],
Boxma, Koole and Mitrani [14,15], Avram and Gémez-Corral [ 16] and many others).

Usually, the switching instants in the non-zero switch-over papers are determined by the occupancy level of the queue
being attended by the server. Recently, in deviation, Avrachenkov, Perel and Yechiali [ 17] and Perel and Yechiali [ 18] studied
two-queue polling systems with threshold-based switching policy determined mainly by the number of customers in the
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unattended queue, but with zero switch-over times. In this work we generalize the model studied in [ 18] by including non-
zero switch-over times. This expansion makes the model more realistic but also raises significantly the complexity of the
probabilistic analysis: it requires doubling of the state space, which leads to expanded and non-symmetric steady-state
equations, and yields some counter-intuitive results. In addition, we assume that if during a switch-over period from queue
itoqueuej(i,j = 1,2 ;i # j)the former reaches its threshold, the switch-over is aborted, and the server immediately
continues to serve queue i. This assumption is made in order to avoid additional analytical complication.

A notable example for such a system is a traffic light in an intersection that alternates right-of-way priority (see Meilijson
and Yechiali [19]) according to the number of cars waiting in red. The duration of a yellow color is equivalent to a switch-
over time that may be cut short. This involved switching procedure may also be considered as a non-cyclic polling system
with state-dependent polling table. For determining efficient visit-order tables in polling systems see Boxma, Levy and
Weststrate [20], and Wal v.d. and Yechiali [21]. Another example is the occupancy control of disks in data centers. When the
amount of data on a given disk becomes large, causing an inefficient operation, the disk requires a clean-up action. Thirdly,
this policy is suitable for queues with customers deadlines. A large unattended queue signals that many waiting customers
there may miss their deadlines. Such a situation calls for the server’s attention.

Our contribution is 3-fold: (i) We derive the joint probability distribution function of the queue sizes. (ii) When employing
Matrix Geometric (MG) analysis, we obtain explicitly all the entries of the rate matrix R (which is the corner-stone of the
MG analysis), thus eliminating the need to obtain R via successive substitutions. (iii) We reveal the connection between the
entries of R and the roots of two matrices associated with the model related Probability Generating Functions (PGFs) defined
in Section 3.1.

The structure of the paper is as follows: In Section 2 the model is described in detail. In Section 3 the system is defined
as a three-dimensional QBD process and a Matrix Geometric approach is employed to derive the system’s steady-state
probabilities. It turns out that the elements of R are closely related to the roots of |B(z)| and |C(z)|, where B(z) and C(z) are
two matrices that stem from the above mentioned PGF approach. Notably, in Section 4 we express explicitly all the entries
of the rate matrix R, thus allowing efficient calculation of the system’s steady-state probabilities. In Section 5 we present
numerical results and reveal a counter-intuitive behavior of the system’s performance measures. In Section 6 we analyze
extreme cases and discuss their implications, while Section 7 concludes the paper.

2. Model description

We study a two-queue Markovian system with a single alternating server, where the decisions on when to switch from
an attended queue to its counterpart are determined by the queue size of the latter, and is based on a threshold policy.
Furthermore, we consider the case where switch-over times are non-zero. Specifically, whenever the server attends queue i
(i =1, 2), it serves the customers there until the queue size in the opposite queue reaches its threshold level. At that instant
the server starts a non-zero switch-over period to queue j (j # i), unless the number of customers in queue i is greater than
or equal to its own threshold level. In the latter case the server remains in queue i until the number of customers there is
reduced below its threshold level, and only then it starts switching to queue j. When a served queue is emptied while the
other queue is not, the server immediately starts a switch-over period. If during the switch-over time from queue i to queue
j the former reaches its threshold, the switch-over is aborted, and the server immediately switches back to queue i and
continues to serve the customers there. Customers arrive to queue i (i = 1, 2) according to a Poisson process with rate A;,
and the service time for each individual customer is exponentially distributed with mean 1/u;. Switch-over times in either
direction are exponentially distributed with parameter «. All the above processes are mutually independent. The threshold
levels are K for queue 1, and N for queue 2. Queue 2 is an M/M/1 system with an unlimited buffer, whereas Queue 1 is
a limited buffer M/M/1/C; system with finite buffer C; > K. We treat the case K = C;, where new arrivals to queue 1
are blocked and lost when the queue size is K. The case where K < C; < oo is similar but involves more equations and
therefore will not be presented. Specifically, the matrices appearing in the generator matrix Q (to be defined shortly) will
be of larger size. For example, the square matrices Ag, A1 and A; will be of order (2C; + 2), rather than of order (2K + 2). We
note that the assumption that C; is finite is imposed for tractability purpose. Let L; denote the number of customers present
in queuei (i = 1, 2) in steady-state (it will be shown that the system’s stability condition is A, < u). LetI = 1 if the server
attends queue 1; I = 2 if the server attends queue 2; I = S1 if the server is in a switch-over move from queue 1 to queue
2, while I = S2 if the server is in a switch-over move from queue 2 to queue 1. The triple (L1, L,, I) defines a non reducible
continuous-time Markov chain. The transition-rate diagram of the system’s states is depicted in Fig. 2.1. Each box (k, n)
there represents the four possible states (k,n,I)for] = 1,1 = 2,1 = S1orl = S2. Let Py,(i) = P(Ly = k, L, = n,I = i),
where0 <k <K;0<n;i=1,2,51,S2.

3. Matrix geometric

In this section we use Matrix Geometric methodology to derive the probability distribution function of the system’s state,
{Pin(i)}o<k<k, 0<n, i=1.2.51,52- We construct a quasi birth-and-death (QBD) process (Neuts [22], Latouche and Ramaswami [23])
with an infinite state space S under the order:

s ={(0,0,1),(0,0,2),(1,0,1),(1,0,52),(2,0,1),(2,0,52),...,(K,0,1),(K, 0, S2);
(0,1,2),(0,1,81),(1,1,1),(1,1,2),(1,1,51),(1,1,82), ..., (K—1,1,1), (K — 1,1, 2),(K — 1,1,51), (K — 1, 1, 52),
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Fig. 2.1. Transition rate diagram of (L, L,, I). The indicators 1, 2,51 or S2 appearing in each cell indicate whether I = 1,I = 2,1 = S1orl = S2, respectively.
The arrow colors Red, Green, Blue or Brown indicate the transition’s target state: I = 1,1 = 2,1 = S1orI = S2, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

(K,1,1), (K, 1,52); ...;

(0,N—1,2),(0,N—1,51),(1,N—1,1),(1,N—=1,2),(1,N—1,51),(1,N = 1,52), ...,
(K—1,N—1,1),(K—1,N—1,2),(K—1,N—1,51),(K — 1,N — 1,52), (K, N — 1, 1), (K, N — 1, S2);
(0,N,2),(0,N,S1),(1,N,2),(1,N,S1),...,(K—1,N,2),(K —1,N,S1),(K,N, 1), (K, N, 2);
(0,N+1,2),(0,N+1,51),(1,N+1,2),(1,N+1,51),...,(K—1,N+1,2),(K—1,N+1,51), (K, N+1, 1), (K, N+1, 2); ...}.
The generator matrix Q is given by

0 0
BY By o0
B Bi B O

0 B, B, By ©

0o AY A A O
0 A A A O
0 A A A O




where 0 is a matrix of zeros, and
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the matrices on the upper diagonal are: Bg is of size (2K + 2) x 4K, By is of size 4K x 4K,

Bg’l is of size 4K x (2K + 2) and Ay is of size (2K + 2) x (2K + 2). The matrices on the main diagonal are: B? is of size
(2K +2) x (2K + 2), By is of size 4K x 4K and A; is of size (2K + 2) x (2K + 2). The matrices on the lower diagonal are: B; is
of size 4K x (2K + 2), B, is of size 4K x 4I<,A’2" is of size (2K + 2) x 4K, and A, is of size (2K + 2) x (2K + 2). The matrices
Ao, A1 and A, are detailed below while the rest of the matrices are detailed in Appendix.

Ag = diag(22),

-8 0 A 0 0
o —ﬂz 0 )\.1 0 0
0 0 —Bs 0 i 0O - 0
0 0 a« —B 0 A& 0 - 0
0 0 0 0 —Bs 0 A 0 0
0 0 0 0 o -8 0 A 0 0
A= ,
0 —ﬂ5 0 0 A
0 a =B M 0
0 wir —B3 0
0 0 —Bs
where 8, = A1 + Ay + o) B3 = Ay + p1; Bs = A1+ Ay + uo; and B = Ay + w.
2 O 0
0 0 0
0 0 uw O
0 0 0 0 0
=0 0 0 0 wm o
0
0 M2 0
0 :
0 0
0 M2
LetA = Ao + A] + Az. Then,
—A1 0 M 0 0
o —()\,1 +O{) 0 )\1 0
0 0 —A 0 A 0
0 0 o —(M + o) 0 A
0 0 0 0 -2 0 A 0
A=
0
0
0 —A 0 0 A
0 o —()\1 +O{) )\1 0
0 1 —u1 0
0 .0

The matrix A represents the infinitesimal generator of a specific continuous time Markov-chain with absorbing state at point

2K + 1.Indeed, let 7 = (7o, 71, ..., Tax4+1) be the stationary probability vector of the matrix A, i.e. 7A = 0 and 7é = 1,
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where 0 is a vector of 0’s and & is a vector of 1’s. From 77A = 0 we have that 7 = (0,0,...,0, mykyq). From 7é = 1 we have
— e’
R .o 2Kj1 ti_rpes
that mox4+1 = 1, namely, ¥ = (0, 0, ..., 0, 1). Hence, the stability condition 7Ape < 7wA,e (see [22]) becomes:
——
2K+1 times
Ax < Ha. (3.1)

Define the steady-state probability vectors:

o = (Poo(1), Poo(2), P10(1), P10(S2), ..., Pxo(1), Pxo(S2)),

ol

P, = (Pon(2), Pon(S1), P15(1), P15(2), P15(S1), P15(S2), . .., Px—1,a(1),
Pl(fl,n(z) Py _ 1n(51) Py_ 1n(52) Pn(1), Pxa( 52)) 1<n<N-1,
Py = (Pon(2), Pon(S1), ..., Pk—1,n(2), Px—1,n(S1), Pin(1), Pn(2)), n>N.
Then,
Py =PyR™™N, n>N, (32)

where R is the minimal non-negative solution of the matrix quadratic equation [22,23]
Ao+ RA; +R*A; = 0. (3.3)

In most cases of Matrix Geometric analysis, the matrix R is obtained via successive substitutions. However, in this study we
are able to derive explicitly all the entries of R, thus reducing considerably the computational efforts. The expressions for the
entries of R are given in Section 4.
The vectors Py, Py, ..., Py, are the solution of the following linear system of equations:

ﬁoB? + 1313; = 6

PoBY + P1B; + P,B, = 0

Pu_1Bo + PuBi + PyyiB; =0, 2 <n <N -2

Py_2Bo + Py_1B1 + T’NA? =0

131\1713317] + PyA; + Pyy1A, = 0

N—-1
Zﬁné +Py[ZT—R" =1
n=0

where 7 is the identity matrix.

E[L;], the mean total number of customers in queue i (Q;),i = 1, 2, is given by
N—-1 o] N—-1
E[Li] = PoZi + Y PuZy + Zﬁnil =PoZi+ Y PuZy + BylZ —RI7'Zy (34)
n=1 n=N n=1
[eS] N— [eS]
Ello] =) nPié =Y nPé+ Y nPyR" e
n=1 n=1 n=N
N—1
=) "nP.é + NPy[Z — R|"'& + PyR[Z — R] % (3.5)

n=1

where, Z; = (0,0,1,1,2,2,...,K—1,K—=1,K,K)" and?z =(0,0,1,1,1,1,2,2,2,2,...,K=1,K—1,K—1,K—1,K, K)".
Define Px, = Pko(1) 4 Pio(2) 4 Pxo(S2). Pk, is the probability of having K customers in Q1, and is the loss probability of
type 1 customers, Pjs;s.

Then, by Little’s law, the mean sojourn time of a customer in Q;, E[W;],i = 1, 2 is
E[L]
E[W;] = (3.6)
)‘1
E[L
EW,] =22, (3.7)

A2
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where,

N—-1 00
2 =201 = Poss) = 1 (1 = > (Pial1) + Pn($2)) = Y _(Pn( 1) + Pxn(z)))
n=0 n=N
N-1 R
=1 (1 — > (Pial(1) + Pia(S2)) — PyZ — R]“B)

n=0

withv =(0,0,...,0,1, 1),

N e’

Let Ry, foer 1“'“%5 Il <2K+2and1 < m < 2K + 2, denote the elements of the matrix R. Due to the structure of the
matrices Ag, A; and A,, the matrix R is almost an upper triangular matrix, with only K + 2 non-zero elements beneath the
main diagonal, Ryk 2r—1, for all 1 < k < K, Rok1,2¢—1 and Rak1.2¢. Therefore, by solving Eq. (3.3) we derive closed form
expressions for the elements of R. It will be shown in the sequel that the entries of R are related to the roots of |B(z)| and
|C(z)|, where B(z) and C(z) are defined in the following sub-section.

Remark 3.1. Consider P,, n > 0, as defined in Section 3, let P(L, = n) = f:O(Z,-P,m(i)) = ﬁné (with some Py,(i) = 0, see
Fig. 2.1). Applying the argument leading to the distributional form of Little’s law, namely that the customers left behind a
departing customer are those that arrived during the latter’s sojourn time, W5, we get the Laplace Stieltjes transform (LST)
of W5, denoted W(+), in terms of the PGF of L,:

. 00 o R 00 00 Ao _
L(z) = ElZ?] = Y P(L, = )" = (Pne) =3y (/ e_kzt(:lf)fwz(t)dt> 2" = Wy (ha(1—2)).
n=0

n=0 n=0 t=0
Now,
N-1 9] N-1 00
L(z) =) (P + Y (Pd)z" = > (P)" + Y (PyR"M)ez"
n=0 =N n=0 n=N
N-1 o] N-1
= Z(I;né)z” + Pyz" Z(ZR)”_NE = Z(I;,,E)z” + PyzN[I — zR]) " 'é.
n=0 n=N n=0
3.1. Probability generating functions
We define four sets of PGFs:
Forl =1,
N—-1
D Pu(1)2", 1<k<K-1, z| < oo
Gk(z) = "0
> Pw(1)e", k=K, z| < 1.
n=0
Forl = 2 and forall |z]| < 1,
o0
> Pu(2)", k=0
n=0
(o]
F(z) =1 Pu(2)", 1<k<k-1
n=1
o0
> Pw(2)2". k=K.
n=N
In the same manner, for [ = S1,
o0
H(z) =) Pu(S1)Z", 0<k<K-1, Iz| < 1.
n=1

Finally, for I = S2,

N-1
Te(z) =) Pa(S2)". 1<k=K, 2] < co.
n=0
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By writing the Balance Equations, multiplying each equation by z", summing over n and rearranging the terms, we obtain
four sets of linear equations where the unknowns are the sought for PGFs:
For I = 1, we construct a set of linear equations of the form

A2)G(z) = P(2), (38)
where the K-dimensional column vectors a(z) and 13(2) = (P1(2), Py(2), ..., Px(2))", and the matrix A(z)x«k are defined as
follows:

G(2) = (Gi(2), Go(2), ... ., Gk(2))',

aTa(z) — hazPy n—1(1)2" 1 + A1Poo(1), k=1
aTy(z) — ApzPin—1(1)2V 7, 2<k<K-2
Pi(z) = N1
aTyg_1(z) — AazPr—1n—1(1D)Z" " + py ZPKn(l)Zn’ k=K-1
n=0
aTy(z) + AHk-1(2), k=K
and
a(z) —uq 0 0
—A1 a(Z) — 1 0 0
0 —A o a(z) —u 0
A(z) = ,
At afz) —pur O
0 LA w2) 0
0 0 —A a(2)
where,

a(z) = A+ pq +22(1 —2),
ag(z) = pn1 + Aa(1 —2).
Similarly, for I = 2,
B(2)F(z) = Q(2). (3.9)

where the (K + 1)-dimensional column vectors F(z) and é(z) = (Qo(2), Q1(2), . .., Qx(2))", and the matrix B(z)(k+1)x(k+1)
are defined as follows:

F(z) = (Fo(z), Fi(z), . . ., F(2))",

1
aHo(z) + p2(1 — ;)Poo(z), k=0

1
—[2 EPll(Z)Z — MPoo(2) + aHy(z) + APin-1(S2)2Y, k=1

Q(z) = 1 N
—M2 ;Pld(z)z +aHi(z) + AoPin-1(S2)z7, 2<k=<K-1
N-1 ;
—A Z Pe_1n(2)2" — p2 ;PKN(Z)ZN + daPen-1(S2)2N, k=K
n=1
and
B(z) 0 0 e e 0
M Bz 0 0 . 0
0 —x B O 0 :
Bz)=1 . .
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where,
1
B(z) = A1+ A2(1 —2) + pa(1 — ;),
1
Bi(z) = Aa(1 —z) + pa(1 — ;)~
In the same manner, for I = S1, we get
C(2)H(z) = R(z), (3.10)
where the K-dimensional column vectors H (z)and ﬁ(z), and the matrix C(z)k« are the following:

H(z) = (Ho(2), Hi(2), - .., Hk1(2))",

w1F1(z) — pP1o(1) + AzPoo(1)z, k=0
AaPen—1(1)2N, 1<k<K-2
Rk(z) = N—1
w1Fg(z) — pq Z Pen(1)2" + ApPg_1n—1(1)2", k=K —1
n=0
and
—A y(2) 0 0 cee 0
0 —x y 0 0 :
Ca)=1| . . . . ,
0 K - —h oy O
0 cee 0 —i y(@)
where,
y(@) =2+ (1 —2) +a.
Finally, for I = S2, we have
D(2)T(z) = V(2), (3.11)

where the column vectors T"(z) and \7(2), and the matrix D(z)i xx are the following:

T(z) = (Ti(z), Ta(2), . .., Tk(2))',

—h2zPyn-1(52)2V 1 + A 1Poo(2) + 2P (2), k=1
—h2zPen—1(52)2" 1 + paPi(2), 2<k<K-1
Vk(z) = N—1
—hazPy N-1(S2)2N T + a4 ZPI(—l,n(z)zn + 2P n(2)28, k=K
n=1
and
8(z) O 0 el 0

- 8(z) O 0 0

0 .. = 8z) O
0 0 A1 8k(2)
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where,
dz2)=r1+2(1-2)+a,
(SK(Z) = )\.2(1 — Z) + .

We first discuss the roots of each of the polynomials |A(z)| and |B(z)|.

Theorem 3.1. Given Aq, A2, w1 > 0, for K > 1 the polynomial |A(z)| is of degree K and possesses K distinct roots in (1, co). One
of whichiszx =1+ %

Theorem 3.2. Given A1, Ay, 2 > 0, for K > 1 the polynomial |B(z)| is of degree 2(K + 1). It has a root at z* = 1, a root of

inlici - 2 aigip o Ot —dians
multiplicity K, z = “ZH22 (Azz,\?z“]) ¥212 i (0, 1), another root of multiplicity K, z, = “2121% (Azzguﬁm =

in (1, co), and a single root, z3 = % in (0, 1)iff Az > ua.

The proof of Theorem 3.1, based on an interlacing argument regarding the roots of |A(z)|, and the proof of Theorem 3.2
are similar to proofs given in [ 18], and henceforth omitted.

Note that the root z; in Theorem 3.2 is the Laplace Stieltjes transform of the busy period of an M/M /1 queue with arrival
rate A, and service rate u,, evaluated at ;. It also expresses the probability that the duration of a busy period in a regular
M(A2)/M(12)/1 queue will fall short of the inter-arrival time at Q;.

We now investigate the roots of |C(z)|.

Theorem 3.3. Forany A1 > 0,1, > 0, > 0and K > 1, |C(z)| is a polynomial of degree K, possessing a root of multiplicity K,
Z4, in the open interval (1, co).

Proof. The matrix C(z) possesses non-zero elements on the main diagonal and on the lower main diagonal. All other entries
are 0. Therefore,

IC2)l = (y(2), (3.12)

AM+Ayta
A2

The polynomial y(z) has only one root: z; = > 1. Therefore, z4 is a root of |C(z)|, of multiplicity K, in the open

interval (1, 00). O
Finally, we consider |D(z)|.

Theorem 3.4. Forany A1 > 0, A; > 0, > Oand K > 1, |D(z)| is a polynomial of degree K, possessing a root of multiplicity

K—124= “*;7;“‘ > 1, in the open interval (1, oo), and another root zs = Azg“ > 1, also in the open interval (1, co).

Proof. The matrix D(z) possesses non-zero elements on the main diagonal and on the lower main diagonal. All other entries
are 0. Therefore,

ID(2)] = (8(2))" 8k (2), (3.13)

W > 1. Therefore, z4 is a root of |D(z)|, of multiplicity K — 1, in the open

A ta
A2

The polynomial §(z) has only one root: z, =

interval (1, oo). The polynomial §k(z) has also only one root zs = > 1. Therefore, zs is a root of |D(z)|, in the open

interval (1, c0). O

4. Explicit expressions for the entries of the rate matrix R

Below we present the outcome when solving Eq. (3.3) (with Z?:l(-) £0):

Rok—1,2k—1 = 242 = l for1 <k <K,

’ At pa i+ V0o F 2+ A —dhop, 2
Rok,2k = # = l forl<k<K-1,

M+ +ao Z4
Rok 2k = A,
’ BaB3 — A1

Rox+1,2k+1 = Kziﬂz’

' B2Bs — A

A 1

Roki2,242 = — = —,
M2 23
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k—
AMR12k—3 + p2 Zizlz R12i1R1,2(k—i)-1
Bs —2u2/z;

Rok—12(k+j)-1 =Rijt1, 2 <k <K; 1 <j<K -k,

k—1 k—1
A 1 A
Ryok = R22<*1> = () <1> ,for2 <k<K-1,
B2 Zy4 A2Z4

OIRZZ

Rik—1 = ,for2 <k <K,

Ry = f’
Bs — 12 (5 + 5)
ARy 2k—3 + Ry 2k + 12 <R21 (R1,2k71 + RZ,ZI() + 21:12 (R2,21+1R1,2(k7i)71 + R2.2(i+1)R2,2(k7i)71))
Ryok—1 = ,
Bs — 2 (% + i)

for2<k<K-1,

Rokj=Rajok—1), 2<k<K—-1;2k—1<j<2(K-1),

X K—k X A K—k
Rok2x = R2K,2K<*1> = <27ﬂ3> (71) ,fori<k<K-1,
B2 BaBs — A1) \A2zg

o\ R rafs h R
Rok2k+1 = Rak+1,2k+1 (*) =\ | — ,for1 <k<K-—1,

B2 B2B3 — A1 ) \ A2zs
R _ Mg _ Adz _ MR
2k, 2k+1 = —Rox ok = ————— = —Rok11,26+1,
B3 BBz — A1 B2
1 H1A2 23!
Roky12k = —Roks12k41 = —————— = —Rax 2k,
" By T BBy —aapn B

Ry 2k (Bs — ta(Rak+1.2x+1 + Rak—1.2-1)) + ettaRak 2k-+1Rak 41,2k

Bs — 2 (R21<.21< + %)) <,35 — U2 <R2K+1,2K+1 + %)) — 3Rk 2k 1Rok 1,21

)

Rok 2x-1 = (

aRok11,2¢ + M2Rok 1,2k Rok 261
1
Bs — 12 (R21<+14,21<+1 + 5)

Rok—12-1 = Ria—ty—1, for2 <k <K —1,

Roky1,26-1 =

)

K—k—1
ARy 1+ aRok ok + 2 (R21R1,2(K7k)+1 + > i1 RaiRoktiok—1+ RakakRok 2k—1 + R2k4,2K+1R2K+1,2K—1)

ﬁz—Mz(%ﬁ-i)

Rok k-1 =

for2 <k <K -2,

ARok—1,2-1 + K2 Zf:lk Rok—1,2(k+i)— 1R2(k4-i)— 1,2k +2
Bs — 12 (% + %)

(M + maRok—1.2¢42) (RzK,zK—l (,86 %) (R2K+1,2K+l + %)) + M2R21<,21<+1R2K+1,21<—1)

_ 1 _ 1 _ 2
4 Z ) V4 B 5
(ﬂﬁ 7% (RZK 2K+ 5 )) (ﬂe j7%) <R2K+1 ak+1 7+ 5 )) m5Rax 2 +1RaK 41,2

Rok—12k42 = , for1 <k <K,

Rok 2k42 =

)

MRak 1,21 + 12 (Rax+1.2¢—1Rok—1.2642 + Rak1,2¢Rax 2x4+2)

Bs — 12 (R2K+1,2K+1 + %)

Rok 41,2642 =

)

K—k+2
AMRak a1 + u2 (RZk,2I<—]R2k—1,2K+2 +3 5 R2I<,2k+iR2k+i,2K+2)
1,1
Bs — 12 <a + g)

The other elements of R are equal to zero.

,fori1<k<K -1,

Rok2k42 =
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Table 5.1

Performance measures as functions of Aq, when A, = 3, uy =3, up =4and o = 5.
Values of A, Ploss 2T E[L;] E[L] E[W;] E[W,]
0.01 1.6 x 1078 0.01 0.048 3.0362 47980 1.0121
0.1 0.0004 0.0999 0.6055 3.3292 6.0575 1.1097
0.5 0.1986 0.4007 5.4876 4.4380 13.694 1.4793
1 0.5344 0.4655 8.5837 5.2767 18.438 1.7590
2 0.7620 0.4759 9.5894 5.9541 20.148 1.9847
4 0.8741 0.5036 9.8400 6.6118 19.537 2.2039
10 0.9431 0.5686 9.9389 7.9745 17.481 2.6582
100 0.9924 0.7586 9.9924 25.907 13.173 8.6356
1000 0.9983 1.7325 9.9983 203.88 5.7709 67.961
10000 0.9997 2.7703 9.9997 2001.7 3.6096 667.23
100000 0.9999 2.9750 9.9999 20001 3.3613 6667.1
1000000 0.99999 2.9975 10 200001 3.3361 66667

Table 5.2

Performance measures as functions of A, when A; =2, u; =3, u =4and o = 5.
Values of A, Pioss PS4 E[L] E(L] E[W;] E[Ws]
0.01 0.0059 1.9881 1.8891 0.0224 0.9502 2.2407
0.1 0.0074 1.9851 2.0625 0.2113 1.0390 2.1136
0.5 0.0352 1.9297 3.2757 0.8230 1.6975 1.6459
1 0.1357 1.7286 5.4280 1.5370 3.1400 1.5370
2 0.4727 1.0546 8.5720 3.2026 8.1286 1.6013
2.5 0.6267 0.7467 9.2212 4.2734 12.350 1.7094
3 0.7620 0.4760 9.5894 5.9541 20.148 1.9847
3.5 0.8848 0.2305 9.8260 10.256 42,635 2.9302
3.75 0.9411 0.1178 9.9155 17.890 84.186 47707

Note that 2K (out of 2K + 2) elements on the main diagonal of R are equal to the inverse of the roots of |B(z)| and |C(z)| in
the open interval (1, c0), as described in Theorems 3.2 and 3.3, while the other elements depend both on those roots and on
other parameters of the system. By obtaining explicit expressions for all elements of the rate matrix R, we can by-pass the
sequential substitution method commonly used to calculate numerically R, and efficiently study problems with large values
of K and N.

5. Numerical results

In this section we present numerical calculations of P,ss = Py, A‘iff = M(1 — Pyss), E[L;] (Egs. (3.4) and (3.5)) and E[W;]
(Egs. (3.6)and (3.7)),i = 1, 2, as follows:

Tables 5.1-5.5 exhibit results for the performance measures when K = 10 and N = 3, for different values of A1, Ao, 11,
i2 and «. In each table one of the parameters changes while all other parameters remain fixed. The basic values are A1 = 2,
Ay =3, u1 = 3, 2 = 4and @ = 5, respectively.

Investigating Table 5.1 it is seen that, when XA; increases, both queue sizes increase, as well as E[W,]. However, E[W/]
first increases monotonically as A increases (A1 < 2) and then monotonically decreases. The explanation for this seemingly
counter-intuitive phenomenon is the following: Since Q;’s buffer is bounded (K = 10), large values of 1; almost do not
affect E[L], nor )Liff. When L; reduces from L = 10to L; = 9, while L, > N, the server starts switching to Q,, but this move
is immediately aborted with a new arrival to Q, thus eliminating potential waiting times in Q; had the server completed
switching to Q. This is in contrast to the results in Perel and Yechiali [18], where E[W;] increases as A; increases, since
switching there is instantaneous and thus allowing the server to remain for a while in Q,. Note also that E[W;] approaches
the value K - 1711 = 3%, as Ay —> 00, since Q; is loaded and almost all customers that join the queue are admitted in the Kth
position.

Table 5.2 exhibits an interesting direction of change of E[W,] when A, increases. It first decreases with increasing values
of A5, and then increases. As E[L,] increases and approaches the threshold N, the server spends more time in Q,, pushing
E[W,] down, despite the increasing A,. However, as E[L,] grows well beyond N, the server stays most of the time in Q,, but
high values of A, cause new customers to wait longer. This phenomenon is depicted in Fig. 5.1.

In Table 5.3, when w1 increases, both E[W;] and E[W,] decrease. This follows since Q; often stays below its threshold,
allowing the server to switch to Q, without being aborted, thus decreasing its size.

Table 5.4 demonstrates that increasing values of 1, decrease the values of all performance measures.

The results of Table 5.5 emphasize the impact of relatively small threshold of Q, (N = 3, compared to K = 10). The server
stays most of the time in Q; and E[L,] is close to K for any value of «. Increasing values of « (rapid switches) decrease the
values of all performance measures, except A‘iff = M1 — Pjygs).
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Fig. 5.1. E[L,] and E[W,] as functions of A,.
Table 5.3
Performance measures as functions of 1, when 11 =2, 4, =3, u; =4and « = 5.
Values of 41 Pioss )»ijf E[Lq1] E[L;] E[W1] E[W;]
0.001 0.9995 0.0010 9.9995 4200.1 10397 1400.0
0.01 0.9964 0.0073 9.9964 421.50 1375.0 140.50
0.1 0.9847 0.0306 9.9847 46.149 326.36 15.383
0.5 0.9449 0.1103 9.9439 12.962 90.189 4.3206
1 0.9005 0.1990 9.8935 8.7647 49.720 2.9216
2 0.8272 0.3455 9.7749 6.6644 28.289 2.2215
4 0.6988 0.6025 9.3026 5.5780 15.440 1.8593
10 0.4267 1.1467 6.9733 46262 6.0813 1.5421
100 0.2230 1.5543 4.3079 3.8023 2.7715 1.2674
1000 0.2084 1.5831 4.0838 3.7323 2.5796 1.2441
10000 0.2070 1.5859 40620 3.7255 2.5613 1.2418
100000 0.2069 1.5861 4.0598 3.7248 2.5595 1.2416
Table 5.4
Performance measures as functions of u,, when 11 =2, 4, =3, 01 =3 and « = 5.
Values of 1, Pioss Kiff E[Lq1] E[L] E[W1] E[W,]
3.25 0.9264 0.1472 9.8830 14.882 67.120 4.9606
35 0.8649 0.2703 9.7796 9.0270 36.186 3.0090
3.75 0.8103 0.3795 9.6819 6.9922 25.512 2.3307
4 0.7620 0.4760 9.5894 5.9541 20.148 1.9847
10 0.3048 1.3903 7.8261 2.5769 5.6290 0.8590
100 0.0922 1.8157 5.2089 1.4877 2.8689 0.4959
1000 0.0797 1.8406 49433 14114 2.6856 0.4705
10000 0.0785 1.8430 49173 1.4041 2.6681 0.4680
Table 5.5
Performance measures as functions of , when Ay = 2, A, =3, uy =3 and u; = 4.
Values of « Pioss )L?T E[L1] E[Lz] E[W1] E[W,]
3.25 0.7950 0.4100 9.6784 6.3537 23.608 2.1179
35 0.7895 0.4211 9.6642 6.2747 22.951 2.0916
3.75 0.7842 0.4316 9.6505 6.2053 22.362 2.0685
4 0.7793 0.4415 9.6373 6.1439 21.831 2.0480
10 0.7120 0.5761 9.4332 5.5400 16.375 1.8467
100 0.6375 0.7249 9.1523 5.1009 12.625 1.7003
1000 0.6279 0.7442 9.1116 5.0520 12.244 1.6840
10000 0.6269 0.7461 9.1074 5.0471 12.206 1.6824
100000 0.6268 0.7463 9.1070 5.0466 12.202 1.6822

Remark 5.1. : when @ — oo, our model converges to the model studied in [ 18] for the work conserving scenario. Comparing
inTable 5.5 the numbers appearing when o > 100 to the corresponding numbers in Table 1 of [ 18] for the case where A; = 2,
the results for E[L;], E[L,], E[W;] and E[W,] are close, as expected.
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Remark 5.2. The above numerical results are for given values of the thresholds and for a given switching policy. One
may consider optimization issues, such as modeling the system as a Markovian Decision process including costs aspects
and directed at determining optimal switching instances and optimal threshold levels. We leave those research directions
for future work. We also note that control and optimization issues of polling systems were dealt in [19,20,5], Gandhi and
Cassandras [24,21,16].

6. Extreme cases

In this section we examine the impact of extreme values of A1, Ao, t1, 2 and « (as they reach 0 or oo) on the system’s
performance measures.

Ay —> 0001 Uy —> 0
As the stability condition is A, < w5, these two cases are not stable.

Al —> 00

This case leads to an unstable system as well. Q; is (almost) always at its maximum capacity. Thatis, L; = K and Pjpss = 1.
In such a case, at the next instant when the server switches from state ] = 1 to state I = S1, the next arrival to Q; occurs
almost always before the switching time is over, causing an immediate switch back to Q;. Therefore, the server will hardly
ever attend Q.

ur—> 0

This case is also unstable. As soon as the server attends Q; and L; = K, L; will not reduce below the threshold level and
the server will never switch back to Q, even when the number of customers in Q, reaches its threshold, N. As a result, L, will
increase to co.

)\1 — 0
In this case P(I = 1) = 0 and P(I = 2) = 1. That is, Q, operates as an M(A,)/M(u,)/1 system. Hence, P(L; = 0) = 1.
When A — 0, E[L,] - -£2- = 3.See Table 5.1 where E[L,] = 3.0362 when A; = 0.01.

Top
A — 0
Here P(I = 1) = 1, and P(I = 2) = 0. Thus, Q; operates as an M(x;)/M(jt1)/1/K system for which Pj,ss — pﬁlgﬂ) =
0.0058, and E[L{] — :7}@ — % = 1.8713, where p; = l% See Table 5.2 where Pj,ss = 0.0059 and E[L;] = 1.8891
when A, = 0.01.
[y = 00

Whenever the server is at Qq, the number of customers there immediately reduces to 0. Then, if Q, is empty, the server
remains at Q; until the first moment thereafter when a customer arrives at Q,. Otherwise, if Q, is not empty, the server
immediately starts a switch-over to Q,. When the server is at Q-, it stays there until Q; reaches its threshold while Q is still
below its own threshold, N. When Q; reaches its threshold and Q- is not below its threshold, the server stays at Q, until the
number of customers there falls short of Q,’s threshold, upon which the server starts a switch-over to Q. Note that in this
case Pioss = Pya(2) + Pio(S2).

Mz — OQ

Once the server arrives at Q,, it immediately empties it. If Q; is empty, the server stays in Q, until a customer arrives at
Q;. Else, the server immediately starts a switch-over to Q;. Whenever the server is at Qj, it stays there until Q, reaches its
threshold and Q is below its own threshold K. If Q, reaches its threshold and Q; is not below its threshold, the server stays
at Qq until the number of customers there decreases below K, upon which the server starts a switch-over to Q,. Note that in
this case Pjoss = Pyo(1) + Pyo(S2).

7. Summary and conclusions

This paper presents a 3-fold contribution to the literature on polling systems, in particular on 2-queue alternating server
models: (i) Switch-over decisions are threshold-based and depend on the queue which is not being served, where in the
majority of polling systems, such as exhaustive, gated or globally-gated regimes, these decisions depend on the queue being
served. (ii) It investigates more deeply the role of the switch-over durations, and (iii) by explicitly determining the entries
of the rate matrix R, it renders a reduced computational effort for the calculations of the system’s performance measures.
We reveal that the entries of the rate matrix R are expressed in terms of the roots of the determinants of two matrices, B(z)
and C(z). Those matrices satisfy B(z)F(z) = Q(z) and C(z)H(z) = R(z) respectively, where F(z) and H(z) are each a vector
whose entries are the sought-for PGFs of the system’s steady-state probabilities. B(z) and C(z) are finite square matrices with
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entries constructed from the parameters of the system. é(z) and 13(2) are finite-dimensional vectors. In deviation from many
cases in which the rate matrix is calculated numerically, we are able to derive closed-form expressions for all the elements
of R.

As for further research, one question is whether or not the model can be extended to multiple queues. Another possible
extension is to analyze a non-work-conserving system. Such a policy may be used when switching costs are high. A further
possible extension is to study the non-preemptive case. Finally, one can study non-exponential switch-over times as follows:
let X; denote the switch-over time from Q; to Q; (i # j) with probability density function fi(t). Then, the probability of
successful switching from Q; to Q; is o = [ e *'fi(t)dt = Xi(%;), i = 1,2.
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°o=lo 0 O O 0 0 x» O ol
0 .0
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—Bs 0 0 M 0 0
« B 0 0 A 0 ... 0
0 wi =B 0 0 0 A 0 0
0 0 0 —Bs 0 0 0 M0 0
0 0 0 o —B 0 0 0 A O 0
0 0 o 0 —B 0 0 0 A O 0

B, — 0 0 1 0 0 0 —-B1 0 0 0 A O 0 ,
0 0 A
0 A 0
0 M
ur 0 0 0 —B5 O
O .

where o = A1+ A, =M +Ar+punfr=r+rr+a;f3=2rr+pu1; fa =Xy +aand s = Ay + Ay + po.
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B=lo o o 0o o o ’
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00 0 0 0 0 0 u O
0 0 w 0 0 0
0 0
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0 0
0 0
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u2 0O 0
0 0
0 0
0 O 0 w2 O
0 O 0 0 0
0

B,=1]0 ,
0 0 0 0 0 0 0 wuy O

0
0 u 0 0 0 O
0 0
0 0
0 0
0 0
Note that all the entries of the last 4 rows in matrices B} and B, are zeros.

0 O o -
0 O 0 w2 O
0 O 0 0 0
0 0 0 0 0 0 0 wuy O

A =
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