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AbstractWe introduce, analyse and optimize the class of Bernoulli random polling systems. Ascommon to many applications, the server moves cyclically among N channels (queues).However, change-over times between stations are composed of two parts: walking timesrequired to `move' from one channel to another and switch-in times that are incurred onlywhen the server actually enters a station to render service. The server uses a Bernoullirandom mechanism to decide whether to serve a queue or not: upon arrival to channel i, itswitches in with probabilitiy pi, or it moves on to the next queue (with probability 1� pi)without serving any customer (e.g. packet) at that station. Such a Cyclic Bernoulli Polling(CBP) scheme is independent of the service regime in any particular station, and may beapplied to any service discipline. In this paper we analyse three di�erent service disciplinesunder the CBP scheme: Gated, Partially Exhaustive and Fully Exhaustive. For each regimewe derive expressions (i) for the generating functions and moments of the number of packetsat the various queues at polling instants, (ii) for the expected number of packets that anarbitrary departing packet leaves behind it, and (iii) for the LST and expectation of thewaiting time of a customer at any given queue. Further, we develop a Pseudo-conservationlaw for amixed system comprised of channels from all three service disciplines, and de�ne a(non-linear) Mathematical Program to �nd the optimal values of the Bernoulli probabilitiesfpigNi=1 so as to minimize the expected amount of un�nished work in the system. Thus any�Supported by a Grant from the France-Israel Scienti�c Cooperation (in Computer Science and Engineering)between the French Ministry of Research and Technology and the Israeli Ministry of Science and Technology,Grant Number 3321190. 1



2CBP scheme for which the optimal pi's are not all equal to one, yields a smaller amountof the expected un�nished work in the system than that in the standard cyclic pollingprocedure with equivalent parameters. We conclude by showing that even in the case of asingle queue, it is not always true that p1 = 1 is the best strategy, and derive conditionsunder which it is optimal to have p1 < 1.Keywords: Random Cyclic Polling, Walking times, Switch-in times, Optimization.1 IntroductionPolling systems are used to model an abundant set of systems, such as computer networks,telecommunications or exible manufacturing systems, repairman applications, and alike. Inpolling systems one is often interested in using acyclic visiting order of the server to the di�erentchannels. This enables exible prioritization of the di�erent queues which is desired either foroptimization purposes, such as minimizing a weighted sum of waiting times in the di�erentqueues, or for obtaining fair service among the various queues. Acyclic visit order have beenobtained by using a polling table (see [3], [6]), by using random polling ([7, 12, 13]), or byfollowing a dynamic procedure derived by optimization consideration [8, 17]. Unfortunately, inmany communication networks, modelled by a polling system (e.g. Local Area Networks basedon a token ring protocol) the visit order has to remain cyclic, and the server can not choose inan arbitrary way which queue to visit next. In such cases one may still prioritize among thequeues by using the following random access mechanism: when the server arrives to queue i itswitches in to render service to packets awaiting there with probability pi, or it moves on tothe next queue (with probability 1� pi) without serving any packets in that queue.In this paper we study such a random cyclic visit mechanism which we call \CyclicBernoulli Polling" (CBP). Whenever the server attends a queue and renders service, either agated regime, or a partially exhaustive scheme, or a fully exhaustive service discipline is assumedto be used. (These service disciplines will be explicitly de�ned in the sequal).We assume that switching times between the queues are composed of two parts: walkingtimes required to `move' from one station to another, and switch-in times that are incurredonly when the server enters a station to render service.It is also possible to prioritize queues by following a simple cyclic visit order whilegiving service in each queue to only a partial number of the packets there, according to some



3parameterized service discipline, e.g. the limited or the Bernoulli service discipline [15, 16, 17].In that case, however, since the server visits each station on every hamiltonian tour, switch-in times are always incurred. In an e�ort to save such waisted times, we propose the abovedescribed CBP mechanism. An interesting feature of the cyclic Bernoulli polling is that it yieldsexplicit expressions for quantities such as the expected waiting times in the di�erent queues,which are not achievable in many mechanisms of partial service such as limited, Bernoulli orthreshold service disciplines [1, 15, 16].The paper is structured as follows: after introducing the model and notation, we presentin Section 2 the evolution equations of the system for the case of Gated service discipline.We then derive implicit expressions for the generating functions of the number of packets inthe di�erent queues at polling instants. This allows us to obtain the �rst moments of thesequantities explicitly, as well as a set of N3 linear equations to calculate their second moments.Based on these moments, we obtain formulae for the expected waiting times of packets in thevarious queues. (The method of \station times", which enables in other models the calculationof the expected waiting times by solving considerably less than N3 linear equations [9], is notapplicable here. This follows from the fact that those station times do not form in our case aMarkov Chain).In Section 3 we analyse the Partially Exhaustive and Fully Exhaustive cases. In Section4 we obtain an explicit expression for the total expected workload in the system under mixedstrategies, and formulate a Mathematical Program to choose the optimal values of the proba-bilities pi; i = 1; :::; N , so as to minimize that workload. Thus any CBP scheme for which theoptimal pi's are not all equal to one, yields a smaller amount of the expected un�nished workin the system than that in the standard cyclic polling procedure with equivalent parameters.We solve the Program explicitly for the case of a single queue, and show, surprisingly, that evenin such a restricted case, it is not always optimal to choose p1 = 1, a phenomenon which weexplain by using an alternative avenue of analysis.Model and NotationConsider a polling system with N independent channels, where channel i (i = 1; 2; :::; N)is modeled as an M=G=1�type queueing station. The packets' arrival stream to station i isPoisson with rate �i, and service times are distributed as Bi, having Laplace-Stieltjes Transform(LST) b�i (s), and �rst and second moments bi and b(2)i , respectively. Bi(n) will represent thetotal service time of n jobs in station i. Denote by �i def= �ibi, and by � def= PNi=1 �i the traÆc



4o�ered to channel i, and to the system at large, respectively. 
i denotes a typical length of astandard M/G/1 queue busy period that starts with one packet in queue i, and !�i (s) denotesthe LST of 
i. It is well known that !i def= E[
i] satis�es !i = bi[1 � �i]�1. Finally, let 
i(n)be the duration of n independent regular M/G/1 busy periods in queue i.The time it takes between the end of service to the ith station and the polling instant atthe next station is called the ith walking time, and is denoted by Di. We assume that walkingtimes are independent, with LST d�i (s), and �rst and second moments di and d(2)i , respectively.Let D = PNi=1Di be the total walking time in a cycle, and denote by d, d(2) and d�(s) theexpectation, second moment and LST of D, respectively.The time it takes from the moment the server arrives at the ith station (i.e. the pollinginstant) till service can be started to jobs in that station is called the ith switch-in time and isdenoted by Ri. We assume that the switch-in times are independent, with LST r�i (s), and �rstand second moments ri and r(2)i , respectively. These times, the walking times, the inter-arrivaltimes and the service durations are mutually independent.In a Cyclic Bernoulli Polling the server moves cyclically between the di�erent queues,switching-in to actually give service in queue i with probability pi, or moving on to the nextchannel with the complementary probability 1� pi. We analyse three service disciplines underthe CBP scheme; (i) a gated regime, by which only packets present in the queue at the momoentof server's arrival will be served. (However, before service starts in that queue, a switch-in timeis required.) (ii) the partially exhaustive regime, where the server, upon �nding n packets,say, at the moment of arrival to a queue, and `deciding' (by the Bernoulli mechanism) to switchin, stays there (after switch-in time is incurred) for the duration of n M/G/1 busy periods.Hence, if service is actually given to a queue, the number of packets left there when the serverleaves is equal to the number of packets that arrived during the switch-in time. (iii) the fullyexhaustive regime, where the server leaves a queue only after it is empty, where upon servingall the packets that were present there before the switch-in time, plus all those that have arrivedduring its sojourn (switch-in and visit) time in that queue.Let ~Xjn denote the number of jobs in station j at the nth time that a queue is polled.Without loss of generality, we shall assume that queue 1 is the �rst to be polled. It is easily seenthat the vector f ~X1n; :::; ~XNn g; n = 1; 2; ::: is a Markov chain. We shall assume that this Markovchain is ergodic and ~Xji+kN ; 1 � i; j � N; k = 0; 1; ::: converges in distribution to a random



5variable Xji , denoting the number of jobs at station j at a polling instant to queue i when thesystem is in steady-state. (It can be seen from the expression for the expectation of Xii givenbelow that � < 1 together with pi > 0, i = 1; ::; N is a necessary condition for ergodicity, andit seems also to be a suÆcient one, see [2]).Let Aj(T ) denote the number of arrivals to station j during a time interval of length T .Hence, Aj(Bi(Xii )), Aj(Di), and Aj(Ri) denote, respectively, the number of arrivals to stationj during the service of Xii packets at, the walking time from, and the switch-in time to, stationi.2 The Gated DisciplineEvolution EquationsLet ai be equal to one if the ith queue is to be served when the server arrives, and zerootherwise. ai; i = 1; 2; :::; N are independent random variables, with E[ai] = pi. Set �ai = 1�ai.Denote by �Di def= Di + aiRi the total switching time related to queue i, and by �D =PNi=1 �Di the total switching times in a typical cycle. Set �di and �d(2)i as the �rst and secondmoments of �Di, and set �d and �d(2) as the �rst and second moments of �D.The evolution of the state of the system (in steady state) is described byXik+1 d= 8>><>>: Xik +Ai �ak[Rk +Bk(Xkk )] +Dk� i 6= kXkk �ak +Ak �ak[Rk +Bk(Xkk )] +Dk� i = k (1)where 1 � i; k � N , and the symbol \ d=" means equality in distribution. (We shall understandN + 1 in the evolution equations above to be equal to 1).Generating FunctionsWe de�ne a set of multi-dimensional joint generating functions, describing the vector-state of the system at a polling instant of queue k.Let Fk(z) def= E �QNi=1 zXiki �. Let ~dk def= d�k(PNi=1 �i(1� zi)) and de�ne similarly ~bk and ~rk. Using



6the evolution equations we obtainFk+1(z) = E8>>>>><>>>>>:z�akXkk+Ak(ak[Rk+Bk(Xkk )]+Dk)k NYi = 1i 6= k zXik+Ai(ak[Rk+Bk(Xkk )]+Dk)i 9>>>>>=>>>>>;= E " NYi=1 zXiki e��i(1�zi)(ak [Rk+Bk(Xkk )]+Dk)z�akXkkk #
= ~dkE(r�k  ak NXi=1 �i(1� zi)! NYi=1 zXiki !E �e�akPNi=1 �i(1�zi)Bk(Xkk )����Xkk ; ak� z�akXkkk )

= ~dkE8><>:r�k  ak NXi=1 �i(1� zi)! NYi=1 zXiki ! b�k  ak NXi=1 �i(1� zi)!Xkk z�akXkkk 9>=>;= ~dkE (r�k  ak NXi=1 �i(1� zi)!Fk  z1; z2; :::; zk�1; b�k  ak NXi=1 �i(1� zi)! z�akk ; zk+1; :::; zN!) :Thus Fk+1(z) = pk ~dk~rkFk �z1; z2; :::; zk�1;~bk; zk+1; :::; zN�+ (1� pk) ~dkFk(z) (2)Moments of number of packets at polling instantsThe �rst and second moment of the number of packets at polling instants are obtainedby di�erentiating the generating functions Fk(z). We calculatefk(i) def= @Fk(z)@zi ����z=f1;:::;1g ; fk(l; i) def= @2Fk(z)@zl@zi �����z=f1;:::;1g :It follows that fk(i) = E[Xik], fk(l; i) = E[X lkXik] if k; l; i are not all equal, and fi(i; i) =E[Xii (Xii � 1)].By di�erentiating (2) we obtain the following set of N+N(N�1) = N2 linear equations:fk+1(k) = �k �dk + [pk�k + (1� pk)]fk(k); k = 1; 2; :::; N (3)fk+1(i) = �i �dk + fk(i) + pk�ibkfk(k); i; k = 1; 2; :::; N; i 6= k (4)



7(where �dk = dk+pkrk). Explicit expressions can now be derived for fk(k) following the methodin [14]. From (4) we obtain for i 6= kfk+1(i) � fk(i) = �i[ �dk + pkbkfk(k)]Summing from k = j to i� 1 we getfi(i)� fj(i) = �i[i�1Xk=j �dk + i�1Xk=j pkbkfk(k)]Substituting j = i+ 1 in the above expression, and using (3) for fi+1(i) we havepi(1� �i)fi(i) = �i 2666664 NXk=1 �dk + NXk = 1k 6= i pkbkfk(k)3777775 (5)
Let �fi(i) def= pi(1� �i)fi(i). Then, from (5)�fi(i) = �i 2666664 NXk=1 �dk + NXk = 1k 6= i bk1� �k �fk(k)3777775 (6)which is the same equation that satis�es fk(k) in the cyclic (nonrandom) exhaustive servicediscipline (see [14]). Hence �fi(i) = �i(1� �i) �d1� � (7)and thus fi(i) = �i �dpi(1� �) (8)That is, the expected number of packets, present at queue i when it is polled, is [pi(1 � �i)]�1times greater than that in a regular cyclic exhaustive regime for which d = �d, and is p�1i timesgreater than that in a regular cyclic gated regime (with d = �d).The second moments are obtained by solving the following set of N3 linear equations:



8
fk+1(i; l) = pkf�i�l[d(2)k + 2dkrk + r(2)k ] + (dk + rk)[�lfk(i) + �ifk(l)] (9)+ fk(k)�i�l[2(dk + rk)bk + b(2)k ] + fk(i; l) + bk�lfk(k; i) + bk�ifk(k; l) + b2k�i�lfk(k; k)g+ (1� pk)f�i�ld(2)k � [�ifk(l) + �lfk(i)]dk + fk(i; l)g k 6= i; i 6= lfk+1(k; l) = pkf�k�l[d(2)k + 2dkrk + r(2)k ] + (dk + rk)�kfk(l)+ fk(k)�k�l[2(dk + rk)bk + b(2)k ] + �kbkfk(k; l) + b2k�k�lfk(k; k)g+ (1� pk)f�k�ld(2)k � [�kfk(l) + �lfk(k)]dk + fk(k; l)g k 6= lfk+1(k; k) = pkf�2k[d(2)k + 2dkrk + r(2)k ] + fk(k)�2k[2(dk + rk)bk + b(2)k ] + b2k�2kfk(k; k)g+ (1� pk)f�2kd(2)k � 2�kdkfk(k) + fk(k; k)gCycle durationIt easily follows from standard balance arguments that the expected cycle duration isgiven by E[C] = �d1� �which immediately leads to equation (8), namely fi(i) = �iE[C]=pi, as the server circles onthe average p�1i times before switching into queue i. An alternative derivation of E[C] can beobtained through E[C] = �d+ NXi=1 pibifi(i)Waiting TimesFollowing Takagi [14], we de�ne the following random variables (in system's steady-state):Li(n) def= number of jobs that the nth departing job from station i (counting from the momentthat the station was last polled) leaves behind it, andLi def= number of jobs that an arbitrary departing job from station i leaves behind it.Also, let Ti be the (random) number of packets served in queue i in a typical cycle.



9We wish to �nd the distribution (i.e., LST) and mean of the waiting time of a packetin queue i. To obtain this we use the moment generating function Qi(z) def= E hzLii. As thedistributions of number of packets in the system at epochs of arrivals and epochs of departuresare identical (see c.f. Kleinrock [11] pp. 232) then, by the well known PASTA (Poisson ArrivalsSee Time Averages) phenomenon, Qi(z) also stands for the moment generating function of thenumber of jobs at station i in steady state regime at an arbitrary point in time. We have, asin Takagi [14] pp. 77-79, 109, and Khamisy et al [10]Qi(z) = E �PTin=1 zLi(n)�E (Ti) = piE �PXiin=1 zLi(n)����ai = 1�piE �Xii � = E �PXiin=1 zLi(n)�E �Xii �With some abuse of notation, denote Fi(z) = Fi(1; 1; :::; 1; z; 1; :::; 1) where z stands in the ithplace. Set �bi def= b�i (�i � �iz). The evaluation of the expression for Qi(z) is almost the same asin [14] p. 109. In our case we have Li(n) = Xii +Ai(Ri)� n+Ai(Bi(n)) (for the case ai = 1),whereas in [14] p. 109. Li(n) = Xii �n+Ai(Bi(n)). Thus the result defers from the one in [14]by an extra term that expresses the number of packets that arrived during the switch-in time.Hence Qi(z) = �biE(Xii )(z � �bi) �E �zXii � �bXiii ��� r�i (�i(1� z)) (10)= pi(1� �)�bi�i �d(z � �bi) �Fi(z)� Fi(�bi)	� r�i (�i(1� z));from which, by di�erentiation, we deriveELi = �i + �E[(Xii )2]�E[Xii ]� (1 + �i)2E[Xii ] + �iri = �i + fi(i; i)(1 + �i)2fi(i) + �iriwhere fi(i; i) is obtained by solving equations (9).The LST and expectation of the waiting time Wi of an arbitrary job at queue i areobtained using the relations W �i (�i � �iz)b�i (�i � �iz) = Qi(z) (11)�iE[Wi] + �ibi = E[Li] (12)



103 The Exhaustive DisciplineWe analyse two versions of the exhaustive regime: (i) the partially exhaustive (PE) regime,where the server, upon switching into queue i (with probability pi) stays there (after switch-intime is incurred) for the duration of Xii busy periods. In terms of number of packets, this isequivalent to serving the Xii packets that were present there before the switch-in time, plus allthose that have arrived during the service in that queue, whereas packets that arrive during theswitch-in time are not served during the current visit; (ii) the fully exhaustive (FE) regime,where the server leaves a queue only after it is empty (where upon serving all the packets thatwere present there before the switch-in time, plus all those that have arrived during its sojourntime in that queue). In this case, packets that arrive during the switch-in time are served duringthe current visit.With the same notation used in the previous section, the evolution of the state of thesystem (in steady state) is given byPE : Xik+1 d= 8><>: Xik +Ai �ak[Rk +
k(Xkk )] +Dk� i 6= kXkk �ak +Ai (akRk +Dk) i = k (13)
FE : Xik+1 d= 8><>: Xik +Ai �ak[Rk +
k(Ak(Rk) +Xkk )] +Dk� i 6= kXkk �ak +Ai (Dk) i = k (14)where 1 � i; k � N .Let Fk(z), ~rk and ~dk be as in the previous section, and de�ne ~!k def= !�k �PNi=1i6=k �i(1� zi)�,and ~rEk def= r�k ��k � �k ~wk +PNi=1i6=k �i(1� zi)� : Using the evolution equations we obtain
PE : Fk+1(z) = E8>>>>><>>>>>:z�akXkk+Ak(akRk+Dk)k NYi = 1i 6= k zXik+Ai(ak[Rk+
k(Xkk )]+Dk)i 9>>>>>=>>>>>;= E 264 NYi=1 zXiki ! e��k(1�zk)(akRk+Dk)0B@ NYi=1i6=k e��i(1�zi)(ak[Rk+
k(Xkk )]+Dk)1CA z�akXkkk 375



11= ~dkE(r�k  ak NXi=1 �i(1� zi)! NYi=1 zXiki !E  e�akPNi=1i6=k �i(1�zi)
k(Xkk )�����Xkk ; ak! z�akXkkk )
= ~dkE8>><>>:r�k  ak NXi=1 �i(1� zi)! NYi=1 zXiki !!�k0B@ak NXi=1i6=k �i(1� zi)1CAXkk z�akXkkk 9>>=>>;= ~dkE8><>:r�k  ak NXi=1 �i(1� zi)!Fk0B@z1; z2; :::; zk�1; !�k0B@ak NXi=1i6=k �i(1� zi)1CA z�akk ; zk+1; :::; zN1CA9>=>;Thus, we have for PE:Fk+1(z) = pk ~dk~rkFk (z1; z2; :::; zk�1; ~!k; zk+1; :::; zN ) + (1� pk) ~dkFk(z) (15)For the FE case we writeFE : Fk+1(z) = E8>>>>><>>>>>:z�akXkk+Ak(Dk)k NYi = 1i 6= k zXik+Ai(ak[Rk+
k(Ak(Rk)+Xkk )]+Dk)i 9>>>>>=>>>>>;= E 264 NYi=1 zXiki ! e��k(1�zk)Dk 0B@ NYi=1i6=k e��i(1�zi)(ak [Rk+
k(Ak(Rk)+Xkk )]+Dk)1CA z�akXkkk 375= ~dkE8><>:exp0B@�Rkak NXi=1i6=k �i(1� zi)1CA NYi=1 zXiki !E  e�akPNi=1i6=k �i(1�zi)
k(Ak(Rk)+Xkk )�����Xkk ; ak! z�akXkkk 9>=>;= ~dkE8>><>>:exp0B@�Rkak NXi=1i6=k �i(1� zi)1CA NYi=1 zXiki !!�k0B@ak NXi=1i6=k �i(1� zi)1CAAk(Rk)+Xkk z�akXkkk 9>>=>>;= ~dkE8><>:exp0B@�Rkak NXi=1i6=k �i(1� zi)�Rk 264�k � �k!�k0B@ak NXi=1i6=k �i(1� zi)1CA3751CA� Fk0B@z1; z2; :::; zk�1; !�k0B@ak NXi=1i6=k �i(1� zi)1CA z�akk ; zk+1; :::; zN1CA9>=>;



12Thus, for FE:Fk+1(z) = pk ~dk~rEk Fk (z1; z2; :::; zk�1; ~!k; zk+1; :::; zN ) + (1� pk) ~dkFk(z) (16)With the same de�nitions of fk(i) and fk(l; i), as in the previous section, we get bydi�erentiating (15) and (16) the following set of N2 linear equations. For PE:fk+1(k) = �k �dk + (1� pk)fk(k); k = 1; :::; N (17)fk+1(i) = �i �dk + fk(i) + pk�i!kfk(k); i; k = 1; :::; N; i 6= k (18)For FE: fk+1(k) = �kdk + (1� pk)fk(k); k = 1; :::; N (19)fk+1(i) = �i �dk + fk(i) + pk�i!k(�krk + fk(k)); i; k = 1; :::; N; i 6= k (20)(where �dk = dk + pkrk). Following the same calculations as in the previous section, we obtainPE : pifi(i) = �i 2666664 NXk=1 �dk + NXk = 1k 6= i pk!kfk(k)3777775 (21)
FE : pi(�iri + fi(i)) = �i 2666664 NXk=1 �dk + NXk = 1k 6= i pk!k(�krk + fk(k))3777775 (22)De�ne �fi(i) def= pifi(i) for PE, and �fi(i) def= pi(�iri + fi(i)) for FE. Equations (21) or (22) yieldagain equation (6), from which, by the same argument as in the previous section, the explicitexpression (7) for �fi(i) results. This leads toPE : fi(i) = �i �d(1� �i)pi(1� �) (23)FE : fi(i) = �i �d(1� �i)pi(1� �) � �iri (24)It is clear from standard balance arguments that E[C] = �d=(1� �) in the two exhaustive casesas well, and thus the interpretation of expressions (23) and (24) is straightforward.



13Conclusion: the expression for fi(i) for PE is exactly p�1i times larger than the one obtainedin the standard exhaustive model, with purly cyclic service (for which d = �d). For FE it isfurther smaller by �iri.The second moments are obtained by solving the following set of N3 linear equations.For PE:fk+1(i; l) = pk(�i�l[d(2)k + 2dkrk + r(2)k ] + (dk + rk)[�lfk(i) + �ifk(l)] (25)+ fk(k)�i�l "2(dk + rk)bk1� �k + b(2)k(1� �k)3 #+ fk(i; l)+ bk1� �k [�lfk(k; i) + �ifk(k; l)] + b2k�i�lfk(k; k)(1� �k)2 )+ (1� pk)n�i�ld(2)k � [�ifk(l) + �lfk(i)]dk + fk(i; l)o k 6= i; i 6= lfk+1(k; l) = pk ��k�l[d(2)k + 2dkrk + r(2)k ] + (dk + rk)�k �fk(l) + fk(k)�lbk1� �k ��+ (1� pk)f�k�ld(2)k � [�kfk(l) + �lfk(k)]dk + fk(k; l)g k 6= lfk+1(k; k) = pk�2k[d(2)k + 2dkrk + r(2)k ]+ (1� pk)f�2kd(2)k � 2�kdkfk(k) + fk(k; k)gSimilar equations are obtained for FE.Next we compute the waiting times for PE. De�ne Yi to be the number of packets servedin queue i during the visit of the server there. With the same de�nition of Qi(z) as in theprevious section, we haveQi(z) = E �PTin=1 zLi(n)�E (Ti) = piE �PYin=1 zLi(n)��� ai = 1�piE (Yijai = 1) = (1� �i)E �PYin=1 zLi(n)��� ai = 1�E �Xii� (26)The evaluation of the expression for Qi(z) is done similarly to the one in [14] p. 79, wherewe have, as in the previous section, an extra term that corresponds to the number of arrivalsduring the switch-in time. This term stems from the fact that those arriving packets are seen



14by every leaving packet, since they are not served in the current cycle. Hence, with �b de�nedas above, Qi(z) = �bi(1� �i)E(Xii )(z � �bi) �E hzXii i� 1�� r�i (�i(1� z)) (27)= pi(1� �)�bi�i �d(z � �bi) (Fi(z)� 1)� r�i (�i(1� z));from which, by di�erentiation, we deriveELi = �i + �2i b(2)i2(1� �i) + fi(i; i)2fi(i) + �iri: (28)fi(i; i) is obtained by solving equations (25).The LST and expectation of the waiting time Wi of an arbitrary job at queue i areobtained using the relations (11) and (12).For FE, the �rst two equalities in (26) still hold. However, Yi, given ai = 1, is equal tothe packets served during Xii +Ai(Ri) busy periods. HenceE(Yijai = 1) = E(Xii ) + �iri1� �i ;and instead of (27) we have (using result (24))Qi(z) = �bi(1� �i)[E(Xii ) + �iri](z � �bi) �E hzXii i� r�i (�i(1� z))� 1� (29)= pi(1� �)�bi�i �d(z � �bi) (Fi(z)� r�i (�i(1� z))� 1) ;Note that the reason for the term r�i in (29) is di�erent than in (27). In the FE case it is dueto the fact that the server stays in the queue Xii + Ai(Ri) busy periods (rather than Xii as inthe PE case). By di�erentiation, we obtainELi = �i + �2i b(2)i2(1� �i) + fi(i; i) + 2fi(i)�iri + �2i b(2)2 (fi(i) + �iri) (30)



154 Pseudo-conservation law and optimizationWe consider below a mixed system, where some queues may have the gated service discipline andothers follow one of the exhaustive regimes. Of interest is the optimization problem of choosingthe switch-in probabilities pi; i = 1; :::; N , so as to minimize the expected workload inthe system, PNi=1 �iE[Wi]. To this end, we use the expression for the decomposition of theworkload in polling systems given by Boxma [4] and Boxma and Groenendijk [5], known aspseudo-conservation laws. From these referencesNXi=1 �iEWi = �PNi=1 �ib(2)i2(1� �) + � �d(2)2 �d + �2 �PNi=1 �2i2(1� �) �d+ NXi=1EM (1)i (31)where EM (1)i is the expected un�nished work in the ith queue at an arbitrary instant of de-parture of the server from that queue. In our case, a departure instant from the ith queueis the time at which the server starts moving from that queue to the next one, regardless ofwhether service was actually given there or not. For the case of Gated service, with probabilitypi the packets present at such instant are those that arrived during the period comprised of theswitch-in time plus the service time devoted to that queue. The expectation of this numberis �i(ri + bifi(i)). In the Partially Exhaustive case, with probability pi the packets present atsuch instant are only those that arrived during the switch-in time, the expectation of which is�iri. For the FE case, this term is zero. With probability 1�pi the number found at departureinstant is the same number of packets found at the moment of server's arrival to the station(both in the gated and in the exhaustive case). ThusEM (1)i (Gated) = bi [pi�i(ri + bifi(i)) + (1� pi)fi(i)] = �i "piri � 1� �i1� � �d+ �dpi(1� �)# (32)EM (1)i (PE) = bi [pi�iri + (1� pi)fi(i)] = �i "piri � 1� �i1� � �d+ �d(1� �i)pi(1� �)# (33)EM (1)i (FE) = bi(1� pi)fi(i) = �i "�1� �i1� � �d+ �d(1� �i)pi(1� �) � ri(1� pi)# = EM (1)i (PE)� �iri(34)Let G (PE; FE) denote the set of queues that are served according to the Gated (PartiallyExhaustive, Fully Exhaustive) discipline, respectively. Substituting (32) (33) and (34) in (31)



16yield the following conservation law:NXi=1 �iEWi = �PNi=1 �ib(2)i2(1 � �) + � �d(2)2 �d + �2 �PNi=1 �2i2(1� �) �d+ Xi2G �i "piri � 1� �i1� � �d+ �dpi(1� �)#+ Xi2PE �i "piri � 1� �i1� � �d+ �d(1� �i)pi(1� �)#+ Xi2FE �i "�1� �i1� � �d+ �d(1� �i)pi(1� �) � ri(1� pi)# (35)We wish to express the latter as a function of the parameters pi. To do so, we note that�d = NXi=1(di + piri)�d(2) = d(2) + 2d NXi=1 piri + NXi=1 pir(2)i + NXi = 1i 6= j pipjrirjand hence Z(p) def= NXi=1 �iEWi (36)= �PNi=1 �ib(2)i2(1� �)+ �0BBBB@d(2) + 2dPNi=1 piri +PNi=1 pir(2)i +PNi = 1i 6= j pipjrirj2PNi=1(di + piri) 1CCCCA+ �2 �PNi=1 �2i2(1� �) NXi=1(di + piri)+ Xi2G �i "piri + PNj=1(dj + pjrj)(1� �) � 1pi � (1� �i)�#+ Xi2PE �i "piri + PNj=1(dj + pjrj)(1� �i)(1� �) � 1pi � 1�#+ Xi2FE �i "piri + PNj=1(dj + pjrj)(1 � �i)(1� �) � 1pi � 1�� ri#



17Now, the optimization becomes the following Mathematical Program (see also Section 4in [6]:Find a vector p = fp1; p2; :::; pNg that minimizes Z(p) subject to 0 � pi � 1; i = 1; :::; N .Since for every i,� 1pi � (1� �i)� > �(1� �i)� 1pi � 1�� > �(1� �i)� 1pi � 1�� ri�it readily follows from Eq. (36) that for any �xed vector of switch-in probabilities fpig, and foreach station, independently of the others, the expected workload when using PE is smallerthan when using G; and this performance-measure is even smaller when applying the FE regime.This is also a direct consequence of (32), (33) and (34). As a result, the best performance amongall choices of service disciplines in di�erent stations and of switching probabilities is obtainedwhen the Fully Exhaustive service regime is applied in all stations and the optimal switch-inprobabilities obtained through the respective Mathematical Program are used.Clearly, for all i satisfying �i > 0, the optimal pi has to be greater than zero. It seemsreasonable to expect that for a queue with a low arrival rate we would get pi < 1, so as toavoid the switch-in time to a queue that might be empty. This would allow the server to bemore frequently available for queues with higher arrival rates. We could also expect that pi = 1for that queue i whose arrival rate �i, or whose �i, is the highest. However, as we show in thesequal, even in the case when there is only a single queue, it is not always advantageous to havep1 = 1.Optimization of a single queueIn the case of a single queue, (36) reduces toE[Wgated] = �b(2)2(1 � �) + d(2) + 2drp+ pr(2)2(d+ pr) � d+ rp+ dp(1� �) (37)= �b(2)2(1 � �) + d(2) � 2d2 + pr(2)2(d+ pr) + rp+ dp(1� �)and similarly E[WPE ] = �b(2)2(1 � �) + d(2) + 2drp+ pr(2)2(d+ pr) � d+ rp+ dp (38)= �b(2)2(1 � �) + d(2) � 2d2 + pr(2)2(d+ pr) + rp+ dp



18E[WFE] = �b(2)2(1 � �) + d(2) + 2drp+ pr(2)2(d+ pr) � d+ dp (39)= �b(2)2(1 � �) + d(2) � 2d2 + pr(2)2(d+ pr) + dp = E[WPE ]� rwhere the index 1 has been omitted. Set q def= p�1. The various E[W ] are now written asE[Wgated] = const+ d(2)q � 2d2q + r(2)2(dq + r) + 1(1� �)dq (40)and similarly E[WPE] = const+ d(2)q � 2d2q + r(2)2(dq + r) + dq (41)Since E[WFE ] = E[WPE ]�r, E[WFE] it is clearly expressed by (41) too. The results describedbelow for PE thus hold for FE too. De�ne p̂gated def= p that minimizes E[Wgated] and p̂PE def= pthat minimizes E[WPE]. Further de�neq�gated = 1d 24vuutr(2)d+ 2d2r � d(2)r2 1(1��)d � r35 (42)and q�exh = 1d 24sr(2)d+ 2d2r � d(2)r2d � r35 (43)proposition 1 If q�gated is a real number and satis�es q�gated � 1 then p̂gated is given by p̂gated =[q�gated]�1. Otherwize p̂gated = 1. The same holds for the PE case.Proof: Consider �rst the Gated case. Looking for a real number q� that achieves@E[Wgated]@q = 0 (44)we get @E[Wgated]@q = d(2)r � 2d2r � r(2)d2(dq + r)2 + 1(1� �)d



19Condition (44) then yields 2(dq� + r)2 = r(2)d+ 2d2r � d(2)r1(1��)dand the proposition readily follows. The PE case is obtained similarly.If we choose p = 1 (i.e. q = 1) we shall say that a \non-idling policy" is being used,whereas \idling policy" will stand for any choice of p < 1 (hence q > 1). In the followingCorollaries we present conditions for the optimality of idling and non-idling policies.corollary 2 If the Gated discipline is used, then the optimal policy is idling i� both conditionsare satis�ed:(i) r(2)d+ 2d2r � d(2)r > 0, and(ii) � < 1� 2d(r + d)2r(2)d+ 2d2r � d(2)rIf the PE discipline is used, then the optimal policy is idling i�r(2) > 2d2 + 2r2 + 2dr + d(2)r=dProof: From (42) it is easily seen that q� > 1 is equivalent tor(2)d+ 2d2r � d(2)r > (d+ r)2 2d1� � (45)(note that (45) implies that the term inside the square-root is positive). (45) is easily seen tobe equivalent to the conditions of the proposition. The PE case is obtained similarly.corollary 3 (i) In the case of gated service discipline, a suÆcient condition for the optimalpolicy to be non-idling is that 2r2 + 2d2 + 2dr � r(2) � d(2)r=d. (ii) Under either the Gatedor the PE service discipline, if R is either deterministic or exponentially distributed, then theoptimal policy is non-idling.Proof: If the suÆcient condition is ful�lled then1 < 2d(r + d)2r(2)d+ 2d2r � d(2)r



20hence by corollary 2, p̂ < 1 only if � < 0, which can never happen. (ii) then follows from (i) forthe Gated case, and from Corollary 2 for the PE case, since r(2) = r2 in the deterministic caseand r(2) = 2r2 in the exponential case.Interpretation of corollary 2 and the conservation law:It can be seen from (45) (and corollary 3) that p̂ is less than one if the variance of Ris large enough. To understand the fact that p = 1 may not be optimal, we present anotherviewpoint on the system (with a single queue), which allows the derivation of E[W ] in analternative way.De�ne a \generalized cycle" as the time between two consecutive visits of the serverto the queue, at which it `decides' to switch in and give service. A generalized cycle is thuscomposed of a switch-in period R, service of packets (if the queue is not empty), and a geometricnumber of walking times, all distributed like D. A \generalized vacation" is then de�ned asU d=PKi=1Di+R, where K is geometrically distributed with parameter p, and Di; i = 1; 2; :::;Kare i.i.d. versions of D. It then follows thatE[U ] = dp + r (46)E[U2] = d(2)p + 2dp �(1� p)dp + r�+ r(2) (47)By standard balance arguments, the expected duration of a generalized cycle (for all threeservice disciplines) is given byE[Cgeneralized] = E[U ]1� � = d+ prp(1� �)One can then use standard decomposition for obtaining the expected waiting time E[W ](e.g. [4, 5]): E[W ] = �b(2)2(1� �) + E[U2]2E[U ] + E[M ]� (48)The second term above, E[U2]2E[U ] , is the expected residual time of a generalized vacation; note thatE[U2]2E[U ] = d(2) � 2d2 + r(2)p2(d+ pr) + dp (49)



21E[M ] is the total expected work at the departure instant of the server from the queue (after itdecided to serve it). HenceE[Mgated] = �2E[Cgeneralized] + r�; E[MPE ] = r�; E[MFE ] = 0 (50)(for the gated case, note that �E[Cgeneralized] is the expected time that the server is busy duringa generalized cycle, and �2E[Cgeneralized] is thus the work that arrives to the system during theservice time in a generalized cycle. The second term, r�, is the work that arrives during aswitch-in time).Substituting (49) and (50) into (48) yields the same expressions for E[W ] as obtainedin (37), (38) and (39).When the variance of the switch-in time R is large enough, it can be seen from (49)that by taking p < 1 we may diminish the expected residual time of a generalized vacation (incomparison to the case where p = 1), and hence diminish E[W ] if � is not too large (see (48)).This (partially) explains the conditions presented in corollary 2 for p̂ < 1.References[1] E. Altman, A. Khamisy, U. Yechiali, \Threshold Service Policies in Polling Systems",Technical Report [1991].[2] E. Altman, P. Konstantopoulos, Z. Liu, \Some qualitative properties in polling systems",Research Report, submitted to Queuing Systems special issue on polling systems.[3] J. E. Baker, I. Rubin, \Polling with a General-Service Order Table", IEEE Transactionson Communications, 35, pp. 283-288, 1987.[4] O. J. Boxma, \Workloads and Waiting Times in Single-Server Systems with MultipleCustomer Classes", Queuing Systems, 5, pp. 185-214, 1989.[5] O. J. Boxma, W. P. Groenendijk, \Pseudo-Conservation Laws in Cyclic-Service Systems",Journal of Applied Probability, 24, pp. 949-964, 1987.[6] O. J. Boxma, "Analysis and Optimization of Polling Systems", in Queueing Performanceand Control of ATM (J. W. Cohen and C. D. Pack, Eds.), North Holland, pp. 173-183,1991.
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