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Abstract

Polling systems have been the subject of extensive research in recent years with the analyses
focusing on evaluating performance measures of fixed-template routing schemes under the Exhaus-
tive, Gated or Limited service disciplines. Optimal server routing procedures were only recently
studied and dynamic policies derived (Browne and Yechiali [1988], [1989]) for systems where either
all channels are of the Exhaustive type, or all channels follow the Gated regime.

Recently various probabilistic (yet static) service disciplines the Binomial-Gated and the
Binomial-Exhaustive — were proposed to help deal with the control of polling systems by assigning
different service proportions to distinct channels. In this work we introduce two new variations of
service regimes — the Bernoulli-Gated and the Bernoulli-Exhaustive — and consider the problem of
dynamically control the server’s transitions from one channel to another. We extend our previous
results on optimal dynamic server routing policies to cover all four systems, as well as systems with
mixed sets of channels. The policies derived are easy to implement — being of Dynamic Allocation
type (Gittins index), they are “fair” in the sense of preserving the cyclic nature of the polling
systems, and they are applicable and make sense even in the case of non-stable systems.
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1. Introduction

Research on polling systems has previously focused on evaluating and computing performance
measures for fixed-template routing schemes under three main service disciplines: the Exhaustive,
Gated, or Limited service regimes. Most of the results have been summarized in a book (Takagi
[5]), and in surveys (Watson [7], Takagi [6]).

Recently, the study of optimal control procedures for polling systems has been broached in the
literature. The authors, in previous works ([2], [3]), considered the problem of optimal dynamic
server routing in fully Gated or fully Exhaustive systems and found the optimal policies to be
of simple index-form that allowed direct implementation for the adaptive control of the systems.
For the static control problem H. Levy [4] introduced and analyzed a new service policy, called
Binomial-Gated, where, as usual, a single server attends cyclically K distinct channels, each of
which being of the M/G/1 - queue type, but if the server finds m,; customers present in queue i,
he serves there only a random number of customers, N;, where NN; is Binomially distributed with
parameters m; and p;. That is, according to this policy, the server renders service (on the average)
to only a fraction p; of the customers present at the moment he enters queue 7. This discipline was
introduced to allow for pseudo-prioritization of the stations in that the higher priority queues will
be assigned higher p;’s, helping to reduce response times for higher priority customers.

Another type of “fractional service” discipline is the so-called Binomial-Exhaustive. This
policy was suggested by W. P. Groenendijk and presented by O. Boxma [1] who derived pseudo-
conservation laws for the two Binomial-type disciplines, as well as for various other regimes. This
policy limits the attendance time of the server at queue i to only IN; busy periods, where, as
in the Binomial-Gated case, N; is Binomially distributed with parameters m; and p;, such that
E[N;|m;] = m;p;.

In this paper we introduce two new service regimes which are also of the “fractional”-type

the Bernoulli-Gated and the Bernoulli-Exhaustive. These policies may be visualized as follows:
each time the server reaches channel ¢ a coin with probability of “success” p; is flipped and the
server enters the channel to serve either regular Gated or regular Exhaustive, respectively, only
if the outcome is successful. These schemes preserve the random nature of the Binomial-Gated and
the Binomial-Exhaustive disciplines, but in cases where switch-in or switch-out times are involved,
it reduces those ‘overhead’ losses by allowing the server to make his decision before entering the

channel.

We provide complete probabilistic analyses for the procedures described above, and blend the
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static and dynamic control aspects by extending our previous results on optimal dynamic polling
schemes to cover all four systems, as well as systems with mixed service disciplines. The main
characteristic of our dynamic polling scheme is that it minimizes in each round the expected length
of the new cycle to be traversed by the server. According to these policies the server can visit each
channel only once in a cycle, but the order in which the queues are visited may change from one
cycle to another, depending on the state of the system at the beginning of the cycle. This, in effect,
changes priorities among the various queues in response to the dynamic evolution of the process.
By considering dynamic routing in the Binomial or Bernoulli type systems the server is free in each
new cycle to optimize his path, while the priorities of customers may be dealt with by the choice of
the “success” probabilities. For further discussion of the implications of policies where the server
dynamically optimizes his path, the reader is referred to Browne and Yechiali [1989].

Another important characteristic of our dynamic routing policies is that they are meaningful
even if the entire system is not stable as long as the rate of work flowing to each individual channel
is less than unity. This last condition implies that the duration of each visit of the server to a given
channel is finite with probability 1, so that every cycle is completed with probability 1. Thus,
minimizing anew each cycle-time optimizes in some sense the performance of the system.

In section 2 we describe the model, and in section 3 we calculate the Laplace-Stieltjes transform
and mean cycle time under the Binomial-Gated regime. The analysis leads to an index-form type
of optimal route that minimizes the mean length of any given cycle that starts with an arbitrary
state-vector (ny,ns,...,ng) of customers present in the various queues. In section 4 we analyze the
Bernoulli-Gated scheme, while switching times are introduced in section 5. In sections 6 and 7
the Binomial-Exhaustive and the Bernoulli-Exhaustive regimes, respectively, are studied, and in
section 8 polling systems with mixed sets of channels are considered. We show that, in all models

discussed above, the same principle determines the optimal dynamic polling policies of the server.

2. The Model

A single server attends (polls) sequentially K channels (queues) where queue i (1 < i < K) is of
the M/G; /1 type with Poissonian arrival rate \;, and service requirements V; possessing probability
distribution function G;(-), mean E(V;), and Laplace-Stieltjes Transform (LST) V;(-). Consider
first the Binomial-Gated and the Binomial-Exhaustive disciplines. Suppose that the server finds m;

customers when he enters queue i, and let N;(m;) be a Binomial random variable with parameters
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m,; and p;. Then, according to the Binomial-Gated (BG) policy the server resides in channel i until
he serves N;(m;) customers, while according to the Binomial-Exhaustive (BE) policy he stays there
for N;(m;) busy periods. That is, under the BE policy, when the server exits channel i he leaves
behind him m; — N;(m;) waiting customers, whereas under the BG policy he leaves behind him
m; — N;(m;) + A; customers, where A; is the number of new arrivals to channel ¢ during the visit
time of the server.

The Bernoulli-Gated and Bernoulli-Exhaustive disciplines differ from their Binomial counter-
parts in that the decision whether to serve customers in channel 7 or not, is probabilistically made
before the server enters the channel. With probability p; he enters the queue, and with probability
1—p; he skips it. When the decision is to enter and render service, then, according to the Bernoulli-
Gated (BRG) regime, service is completed only to those m; customers present at the moment of
decision, whereas according to the Bernoulli-Exhaustive (BRE) scheme, the server resides at queue
1 for m; busy periods.

One important aspect of the distinction between the Binomial regimes and the Bernoulli
schemes becomes evident when switching times are involved. In the Bernoulli schemes those “over-

head” costs are saved if the decision is not to enter the channel at the current cycle.

3. Minimizing Cycle Time under the Binomial-Gated Policy

Suppose that at time 0 the state of the system is (ny,ns,...,nk), where n; is the number of
customers present in queue 7. Suppose also that the server visits the channels following the order
(policy) mp = (1,2,..., K), and the service discipline is Binomial-Gated. Let X; be the server‘s
sojourn time in channel j if he finds there m; customers upon entering the queue. Then, the LST

of X; is given by

X;(slmy) = Elexp{—sX;}m;] = Y _ Elexp{—s()_ Vjx)}|P[N;(m;) = m]
" " - ()
= T () = T + (™ = D

where Vjj, are distributed like V. Clearly, E(X;|m,;) = m,;p;E(V;). Under policy 7y = (1,2,3,...,K)
j—1

the exit time of the server from channel j —1is S;_; = ) X, so that the number of customers
i=1

present when the server enters channel j is m; = n; + A;(S;_1), where A;(S;_1) is the number of

customer arrivals to channel j during the time interval (0,.S;_;]. Thus,

Xj(slng + A4(S51)) = [p;Vi(s) + (1 = py )80
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Since A;(S;_1) is a Poisson random variable we obtain

( ‘Sy 1 ZDn exp{ A Sy 1}(A S7 1) /n!

= D} (s) exp{~A;p; (1~ V;())S;-1}
Finally, unconditioning on S;_;, we have

X;(s) = [p;Vi(s) + (1 = p)]™ 81 (\ips (1 = V5(9))) - (2)
JFrom Eq. (2) it readily follows that
E(X;) =n;p; E(V;) + bjp; E(S; 1) (3)

where b; = A\;E(V;) is the average amount of work flowing to channel j per unit time. As in
Browne and Yechiali [1989], by adding Z; = E(S;_1) to both sides of Eq.(3) we obtain a system

of difference equations

Zj — (L+pibj)Zj—1 = njp; E(V;) . (Zo =0) (4)
whose solution is
J J
2 =Y pm B[] +pbo) (G=12,....K). 5)
=1 r=i+1

Note that p;n; E(V;) is the expected sojourn time of the server in queue i due to the original n;

customers present at time 0. During that period of time one expects A, ;1p;n; E(V;) new arrivals

to channel i 4+ 1, but only a fraction p;;1 of them will be served, requiring p;1b;+1p;n; E(V;) time.

Thus, the total expected delay in channels ¢ and ¢+ 1 caused by the original n; customers in queue ¢

will be p;n; E(V;)(1 + pij+1bi+1). Proceeding in this manner it follows that the total expected delay

caused to the cycle by the n; initial customers in channel i is p;n; E(V;)[ ﬁ (14+p,-b,)]. Therefore,
r=i+1

the expected total cycle time, following policy mg, is the sum of the expected delays caused by all

initial customers present at the start of the cycle

Ly = sz'n E H (1 +prr)] . (6)

r=i+1
Define a; = p;n; E(V;), and a; = p;b;. a; is the initial expected processing time requirement at
channel i, called its core, while «; is the expected growth in service requirement at channel i for

every unit time delay in performing service to channel i. Thus,



Similarly, if the server polling sequence is determined by the policy © = (7 (1), w(2), ..., 7(K)), then

the mean cycle length is

=1 r=i+1

Applying an interchange argument we have shown in [2] that Eq. (8) is minimized if the
channels are visited following a sequence determined by ordering the channels via increasing values

of a;/a;. We therefore conclude

Theorem 1. Suppose that at time () the state of the system is (ni,no,...,ng). Then, for the
Binomial-Gated policy, the cycle time is minimized if the server visits the channels in an order

determined by increasing values of n;/\;.

Proof: a;/a; = pin; E(V;)/(pibi) = ni/ ;. Q.E.D.

Remark. Tt is interesting to note that the optimal policy is independent of the p;’s and E(V;)’s,
and it is the same as the optimal policy for the regular Gated policy (see[2]).

4. Cycle Time Under the Bernoulli-Gated Scheme

Consider now the Bernoulli-Gated service discipline. If m; customers are present at channel j

when the server reaches the station then his sojourn time there is

m
> Vjk, with probability p;
Xj=4q k=1~ '

0, otherwise

Therefore, the LST of X is derived as follows:

X;(slmy) = p;[Vi(s)]™ + (1 — p;) = DI (s)

Hence,
Xj(slng + A;(851)) = py V() H 450 4 (1= py)
(68,0 =y - e - e s Qa8 g )
= iV ()] - eSO (1)
Thus,
Xi65) =5 [ 85mn (1= T5)) + (1 - pp), (9)



from which it readily follows that
EX; =pin; E(V;) + p;b; E(Sj-1) - (10)

Writing, as in Eq. (4), Z; — (1 +p,b;)Z;—1 = p;n,;EV,, we get that Eqs. (5) and (6) hold in this
case as well, with the same core a; = p;n;E(V;) and growth rate «;. That is, the same order of

visits — by increasing values of n;/\; — minimizes the cycle time under the Bernoulli-Gated regime.

5. Switching Times

The above analyses need be only slightly modified to account for switching times. Assume
that a direct switch from station ¢ to station j takes time 6; 4+ T}, where 6, is the time to switch
out of queue i and T} is the time to switch into channel j (T; and 6, are independent of each other

and of X;, T; and §; for all j # ¢). Let Y; denote the total server occupation time with channel j

j

during one cycle, so that now the exit time from channel j is S; = ) Y; with mean Z; = E(S;).
i=1

Assuming that the customers are gated only after the server switches into a channel, then, for the

Binomial-Gated,

Nj(mj)
)/}:Tj—i‘ Z ‘/jk'*'gja where mj:nj—l—Aj(Sj,]—i—Tj) .
k=1
Hence,
Y;(s|Ty,my) = 0,(s) exp{—sTj} En, [V;(s)]"9 (™) = 0;(s) exp{—sT;} D} (s) ,
Y;(s|Ty, Sj—1) = 0;(s) exp{—sT;} D1 (s) Ea,[ D} (s)]
= 0;(s) D}’ (s) exp{—sTj} exp{—X;(Sj—1 + T;)p;(1 — V(s))} ,
so that
Yi(s) = 0;(s)[p;Vi(s) + (1 — p)™ 851 (Ngws (1 = Vi(s))Ty(s + Moy (1 = Vi(s))) . (11)

and

E(Y;) =pin; E(V;) +pibj E(S; 1) + (1 + p;b;) E(T;) + E(8;) . (12)

Upon identifying p;n; E(V;) + (1 + p;b;)E(T;) + E(0;) as the “core”, a;, and p;b; as the

“erowth rate”, «;, we can write for mg,

Zk =Y [pmiE(V;) + (1+pib) E(Ty) + E@)[ [ (1 +peby)] (13)

i=1 r=i+1

i From our previous principles we obtain



Theorem 2. The order of visits that minimizes cycle time in a Binomial-Gated policy with switch-

ing times is determined by an increasing order of

pini E(V;) + (1 + pibs) E(T;) + E(6;)
pibi

(14)

Now, for the Bernoulli-Gated with switching times and routing policy 7y, suppose that the

coin is flipped after leaving channel j—1, and before entering station j. Then,

nj+A;(S;—1+Tj)
Y, = T; + kz_:l Vir| +6, , with probability p;
0, otherwise

Assuming, as before, that the customers are gated only after the server switches into a channel,

then

Vi(s [ T5.85 1) = ; [@(s)e”f [T, (s)]™ ST (s) e S i S + T

n=0

! ]Hl_pﬂ')

= p; [0;(5) [T ()] e Be M S DI=BO] (1 — )

= p, [gj(s)[f/j(3)]"16(—“)\]‘(1—‘6(8)))@ . e—Aj(l—Vj(S))ijl} + (1 - p;)

Unconditioning, we obtain

Vils) = py |0V T (s + 0 (1= Vi) S (1= V)| 90 =) (15)
EY; = p;[E0; + n; E(V}) + (1 + b;) E(T}) + b; E(S;-1)] (16)

Thus,
Zj = (L+p;ibj) Zj—1 = p;[n; E(V;) + (1 + b;) E(T;) + E(6;)] , (17)

which results in arranging the channels in increasing order of

n; E(V;) + (1 + b)) E(T}) + E(6;)
b,

(18)

It is interesting to note that the policy dictated by Eq. (18) is identical to the optimal policy
derived for the pure Gated regime (see [2]). Note also that the (small) difference between result
(14) and policy (18) is due to the fact that in the derivation of Eq. (14) the server switches with
probability 1 to channel j and only then the value of the random variable N;(m;) is realized, whereas
in the derivation of Eq. (18) the coin is flipped before the server switches into the channel. Thus,
while the growth rate p;b; is identical for the Binomial-Gated and the Bernoulli-Gated regimes,
the cores are different. For the former the core is a; = E(T;) 4+ p;[n: EV; + b, E(T;)] + E(6;), whereas
for the latter the core is p;[ET; +n; E(V;) + b, E(T;) + E(0;)].
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6. The Binomial-Exhaustive Policy

Consider now the Binomial-Exhaustive regime where the server, if he finds m; customers in
queue i, stays there until the queue length is depleted by N;(m;) customers (i.e., for N;(m;) busy
periods), where N;(m;) is Binomially distributed with parameters m; and p;. This is the Binomial-
generalization of the Exhaustive class of disciplines.

Suppose first that there are no switching times. Then, using the same notation as for the
Binomial-Gated case, we derive

v S 54 m [T m m;—m 5 m; m;
Xj(s | my) = _[Bi(s)] ‘(J)p.f(l —p))™ ™ = [psBy(s) + (1 - p)]™ = R™ (s)
m=0 )
where B; is the length of a regular busy period in an M/G;/1 queue, and g,(@) is its LST with
mean F(B;) = E(V;)/(1—0b;). Under policy my the number of customers present in channel j when

the server enters the channel is m; = n; + A;(S;_1). Hence,

X;(s|Sj-1) = R (s) - exp{—Njp;(1 — Bj(5))S;_1}

from which we derive

Xj(s) = [piBi(s) + (1 = pi)]"? S (Ajpi (1 = Bj(s))) (19)

n;p; E(V;) +ij.1E(5j—1) .

E(X;) =
(X5) T, 1,

(20)

We can now identify p,;n;E(V;)/(1 —b;) as the “core” of channel j, and p;b;/(1 —b;) as its

“erowth rate”. Correspondingly, it is immediate that the expected cycle length has the evaluation

K K
ZK—Z(ille 11 (Hle)]’ (21)

=1 r=i+1

and that the optimal policy is to once again order the channels in an increasing order of n;/\;,
which is identical to the optimal policy for the Binomial-Gated and again independent of p; and
E(VA).
When switching times are incurred, utilizing previous notation, we can readily modify the
above by observing that Y}, the server’s occupation time with channel j, can be written as
Nj(mj)

Y;=Tj+ > Bjx+0;
k=0
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where m; =n; + A;(S;—1 +T;), and Bjj are distributed like B;. Hence,

Yi(s | Ty, Sj=1) = 0;(s) R} (s) exp{—sT;} exp{—;(Sj—1 + T;)p; (1 — B;(s))}

J

so that

Yi(s) = 0;()lp; B;(s) + (1 — pj]" Sj—1(\jpi (1 — By () Ty (s + Ajps(1 — By(s)))  (22)
and
E(Y;) = pingE(V))/(1 = b;) + [psb; /(1 — b)]E(S;_1) + [1 +p;b; /(1 — b)) E(Ty) + E(9;) . (23)

As before, this leads to a mean cycle time

Zic = 3 Alpmi (V) + (1= b+ pib) E(T) + (1= b)) E(8.))/ (1 —bi)}[ 11 (%)] - (24)

r=i+1

We conclude

Theorem 3. The optimal sequence of visits by the server is determined by arranging the queues
in an increasing order of

pini E(V;) + (1 — b; + pib ) E(T;) + (1 — b;) E(6;)
pibi

7. The Bernoulli-Exhaustive Scheme

In this case, if the server enters channel j and finds m,; customers, he resides there for m;
busy period. As before, the decision whether to enter or not is governed by a Bernoulli trial with
probability of success p;. As mj; = n; + A(S;_1), then, without switching times, we have

> Bji , with probability p,
Xj =4 k=1

j
0, otherwise
with LST N N
Xj(s [ ny + A(Sj-1)) = i (B;(5))™ (B;(5))" =) + (1 - py)
X;(s]Sj-1) = pj(Bj(s))rie 2% (75D 4 (1 —pj)
Finally,

Xj(s) = p;(B;())" Sj1(A; (1 = Bj(s))) + (1 = pj) , (25)



D,
EXj = pjln;E(B;) + A B(B;)E(Sj-1)] = 1 7‘7,), (n; EV; + b; E(S;-1) (26)
3
so that
P;b; pin; EV;
z; (1 - .
! <+1b.1> 1 — b,
Identifying
BV Y
a; = Pii®Yi  and a; = D39 :
: 1-— b] ' 1-— bj

the optimal order of visits is determined by increasing values of a;/a; = n;/);, exzactly as in the
case for the Binomial-Exhaustive regime without switching times.

If we take into account switching times, we write

Y; = {T + Zn i+ A (St ) g Bj, +0; , with probability p;

0, otherwise
so that
Vils) = p3 BB ) Tyl + A0 = Bi(s))S; 1 (1= Bis))| + (1 =p)  (27)
and
EV; b; b;
EY; = Ef; 1 ET) E . 2

p7|: +n71—b ( +1_bJ) +1 b S7 1:| (8)

Setting
— b n; EV; + ET; + (1 — b;) EO; and a = p;b; ’
’ 1-— bj 1-— bj

the optimal sequence is determined by the index

aj TLJ'EV}' + ETJ‘ + (1 — bj)EHj

a; b;

which is identical to the case with (fully) Exhaustive regime.

8. Mixed Sets of Channels

Our representation of the cycle times for the above four service disciplines in terms of cores
(a;) and growth rates (a;) allows us to immediately solve for cases with Mized channels, where
the service discipline is not common for all channels, but rather, some channels require a pure
Exhaustive regime, others - a pure Gated mode, and others one form or another of “fractional-
type”. In addition, some channels may require switch-in or switch-out times or both. We then

have
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Theorem 4. The mean cycle time is minimized if the channels are arranged by increasing values

of a;/c;, where, if a channel is Binomial-Exhaustive, then
a; = [pini E(V;) + (1 — b; + pibs) E(T;) + (1 — b;) E(0;)]/(1 — b;)
a; = pibi/(1 — b;)
whereas if it is Binomial-Gated,
a; = pini E(Vi) + (1 + pibi) E(T3) + E(6;)
a; = pib; .
If a channel is Bernoulli-Gated, then
a; = pi[n; E(V;) + (14 ;) E(T;) + E(6;)]
a; = pib;

whereas, if it is Bernoulli-Exhaustive,

a; = pi[ni EV; + ET; + (1 — b;) E0;]/(1 — b;)
a; = pibi /(1 —b;) .
Proof: Imitating the previous derivations, the expected cycle time under 7y for any Mixed set

of channels is given by

3

C(m) = Zai [ IT a+a)

=1 r=i+1

from which it follows that ordering by increasing values of a; /«; minimizes the expected cycle time.

Q.E.D.

9. Conclusion

We have derived optimal dynamic polling schemes for several service disciplines and for sets
with mixed channels. Our methods take into account the dynamic and stochastic evolution of the
process, while at the same time maintain a degree of fairness among the various channels by visiting
each queue once in every cycle. The underlying principle in these dynamic policies is to look — at
each decision epoch — at the “core” accumulated in each queue (that is, at the amount of work
waiting for the server if he enters the queue at that moment), and to look at the “growth rate”
of work associated with each queue. The ratio “core” /“growth” determines for every queue its
position in the sequence of visits to be performed next by the server. The principle is applicable
to any mix of service-disciplines of the queues and it is easy to implement regardless if one is able

to calculate mean waiting times or not.
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