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Abstract

We consider an Asymmetric Inclusion Process (ASIP), which can also be viewed as
a model of n queues in series. Each queue has a gate behind it, which can be seen as
a server. When a gate opens, all customers in the corresponding queue instantaneously
move to the next queue and form a cluster with the customers there. When the nth gate
opens, all customers in the nth site leave the system. For the case that the gate openings
are determined by a Markov renewal process, and for a quite general arrival process
of customers at the various queues during intervals between successive gate openings, we
obtain the following results: (i) steady-state distribution of the total number of customers
in the first k queues, k = 1, . . . , n; (ii) steady-state joint queue length distributions for
the two-queue case. In addition to the case that the numbers of arrivals in successive gate
opening intervals are independent, we also obtain explicit results for a two-queue model
with renewal arrivals.
Keywords: Asymmetric inclusion process; tandem network; synchronized service; queue
length distribution.

1 Introduction

The ASIP (Asymmetric Inclusion Process), introduced and analyzed in [5]-[9] is a one-
dimensional lattice of n sites (queues), where particles (e.g. customers) arrive randomly
into the first site (Q1), stay there (‘served’) for a random time, continue moving simultane-
ously and uni-directionally from site to site while staying a random time in each site, until
finally exiting the last site (Qn) and leaving the system. The ASIP defines the missing link be-
tween the celebrated Tandem Jackson Network (TJN) and the Asymmetric Exclusion Process
(ASEP) [1, 2, 3] which plays the role of a paradigm in non-equilibrium statistical mechanics.
Imagine that each site has a gate behind it that opens every exponentially distributed random
time, allowing particles in the site to move forward to the next site. Denoting by Ccapacity the
capacity of a site (i.e. maximal number of particles that can reside in the site), and by Cgate

the capacity of the site’s gate (i.e., the maximal number of particles that can move forward
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when the gate opens), then, for the TJN, Ccapacity = ∞ and Cgate = 1, while for the ASEP,
Ccapacity = Cgate = 1. When Ccapacity = Cgate =∞, one obtains the ASIP model where, when
a gate of a site opens, then all particles (customers) present there move simultaneously to the
next site, joining the particles already there and forming a cluster of particles that continues
moving as one unit. In the present work we generalize the ASIP model by assuming that
gate openings are determined by a Markov renewal process such that if, at some time, gate
i opens, then with probability pij the next gate to open is gate j, and the time until that
gate opens is a random variable Oij . We derive the Probability Generating Function (PGF)
of the total occupancy (i.e., total number of customers) of sites 1 to k (k = 1, 2, . . . , n), while
further studying the case when pij = qj . We obtain the joint queue length distribution for
the two-queue case, and analyze the system assuming Binomial movement of particles. That
is, when gate i (say) opens, each particle from the Xi particles present in site i (Qi) will move
forward (independently of the other particles) to site i + 1 (Qi+1) with probability ai, such
that the total number of particles moving from Qi to Qi+1 is Binomially distributed with
parameters Xi and ai.
The ASIP model, first studied in [6], presents a one-dimensional lattice of n queues with
Poissonian flow only into the first site. Each gate opens, distinctly and independently of the
others, every Exponential time with rate µk for site k, implying that Oij is the same for
all (i, j) combinations, and Exponentially distributed with rate

∑
µk, while pij = µj/

∑
µk,

i, j = 1, 2, . . . , n. The multi-dimensional PGF of the occupancy vector (X1, . . . , Xn) was
studied, and it was shown that this PGF does not exhibit the famous product-form solution
characterizing Jackson Networks. Accordingly, an iterative solution procedure was developed.
However, the PGF of the total-load-up-to-site k, k = 1, 2, . . . , n, was shown to have a product-
form solution of Geometric variables. For various objective functions it was shown that the
optimal intensities of the gate openings should be equal to each other. Considering large size
ASIP, it was observed in [8], via simulations, that P (Xk > 0) ∼ k−1/2, E[Xk|Xk > 0] ∼ k1/2;
and that (standard deviation of Xk)/E[Xk] ∼ k1/4. Those observations were later proved
analytically in [7], where limit laws when n→∞ were derived. Various measures were inves-
tigated: (i) a particle’s (customer’s) traversal time, T , in a homogeneous ASIP, is distributed
as T ∼ nm + n1/2mZ, where m = mean time between successive gate openings, m2 is its
variance, and Z is the Gaussian (0, 1) random variable. (ii) The Laplace-Stieltjes Transform
(LST) and mean of the Busy Period (the time from the first arrival of a customer at an empty
system until the first moment thereafter that the network becomes empty again). (iii) The
LST and mean of the Draining time (the time from an arbitrary moment when the system is
in steady state and the inflow is stopped, until the first moment thereafter that the system
becomes empty). Occupation probabilities were considered in [9]. Closed-form results were
obtained for the probabilities that the total occupation of ‘lattice intervals’ of m sites, sites
k to k +m− 1, is equal to l, l = 0, 1, 2, . . . . In particular, when l = 0, the problem becomes
a discrete boundary value problem and the probabilities are derived with the aid of Catalan
numbers.

The main contribution of this paper is that it considerably extends the exact analysis of
ASIP tandem models: We allow the gate openings to be determined by a Markov renewal
process, instead of assuming that each gate opens after exponentially distributed intervals,
and we extend the Poisson arrival assumption by allowing a quite general arrival process of
customers at the various queues during intervals between successive gate openings. Under
these assumptions, we determine the steady-state distribution of the total number of cus-
tomers in the first k queues, k = 1, . . . , n. We obtain some additional results for the 2-queue
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case, and solve three optimization problems, thus obtaining insight into the design of ASIPs.
The paper is organized as follows. Section 2 contains the model description. Section 3 is

devoted to the analysis of the steady-state joint distribution of the numbers of customers in the
various queues just after gate openings. Section 4 contains a brief discussion on optimization
of the system performance, for the case that arrivals only occur in Q1. A few more detailed
two-queue results are presented in Section 5. We conclude with some suggestions for further
research in Section 6.

2 Model Description

Consider the following model of n queues Q1, . . . , Qn in series. Each queue has one gate behind
it, which may be viewed as a server. Gates are almost all the time closed. When gate i (the
gate behind Qi) opens, all customers present in Qi are instantaneously transferred to Qi+1,
i = 1, 2, . . . , n− 1; when gate n opens, all customers present in Qn instantaneously leave the
system. After the transfer, the gate immediately closes again. Gate openings are determined
by a Markov renewal process. If, at some time t, gate i opens, then with probability pij the
next gate to open is gate j; and the time until that gate opens is a random variable Oij . We
assume that the Markov chain governing the successive gate openings is irreducible and we
denote its steady-state distribution by πi, i = 1, . . . , n.

During an Oij period, customers may arrive at all queues. We assume that the vectors of
arrival numbers in successive gate opening intervals are independent, but may depend on the
indices i and j. The generating function of the numbers of arrivals into Q1, . . . , Qn during
an Oij period is given by Aij(z1, . . . , zn). In addition, we denote the generating function
of the cumulative number of arrivals into Q1, . . . , Qk during an Oij period by Aijk(z) :=
Aij(z, . . . , z, 1, . . . , 1), where the last z occurs at position k. Notice that one example is
provided by a batch Poisson arrival process, possibly with dependence between batch sizes
at different queues, and with arrival rates which may depend on the type of gate opening
interval.

The ASIP model as introduced and studied in [5]-[9] is a generic model that may represent
many different stochastic processes in chemistry, physics and everyday life. From a queue-
ing perspective, it is a series of queues with unlimited batch service. The notion of batch
service is closely related to growth-collapse processes. Stochastic growth-collapse temporal
patterns appear in a variety of systems, like sandpile models and systems in self-organized
criticality, stick-slip models of interfacial friction, Burridge-Knopoff models of earthquakes
and continental drift, stochastic avalanche models, and stochastic Ornstein-Uhlenbeck capac-
itors (cf. page 16 of [5], and references given there). From a statistical physics perspective,
the ASIP is a reaction-diffusion model for unidirectional transport with coagulation. Our
model significantly generalizes the model of [5]-[9], allowing us to more accurately represent
those stochastic processes. It also allows one to represent movements of ships, crowds or cars.
An ASIP model may represent a series of sluices, with ships simultaneously moving from one
section to the next one when a gate is opened. An ASIP may also represent the movement of
a crowd through a series of sections of an amusement park – and in both settings it is more
natural to model the gate openings by a Markov renewal process than by assuming that all
gates open according to independent Poisson processes (independent exponential gate opening
intervals). Furthermore, in several settings, for example in a series of road traffic intersections
with traffic lights, it is also restrictive to only allow external arrivals at Q1. In our model,
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during a gate opening interval Oij , arrivals at all the queues are possible.
We do restrict ourselves to the case in which customers from Qi can only move to Qi+1,

i = 1, 2, . . . , n − 1. That assumption will allow us to obtain exact results for the total
number of customers X(k) which are present in the first k queues right after a gate opening
(k = 1, 2, . . . , n). Our results will become somewhat simpler in the special case in which the
next gate opening is of gate j with a fixed probability qj , i.e., irrespective of the index of the
previous gate opening. Notice that the original ASIP model of [5]-[9] also has this property,
as there the gate openings are governed by independent Poisson processes. We work out this
special case of fixed gate opening probabilities qj in an example in Section 3, showing that
just like in [6, 7] X(k) can be written as the sum of k independent random variables. We also
consider the problem of optimally choosing the gate opening fractions qj in Section 4.

3 Analysis

We are interested in the steady-state joint distribution of the numbers of customers (X1, . . . , Xn)
just after a gate opening. To argue the existence of such a distribution, let ξk = (ξk1, . . . , ξkn)
be the state of the network right after the kth gate opening and let qk be the gate that opened.
Then, because the external arrival process is independent of the process of the gate openings,
(ξk, qk) is a Markov chain. To argue that it is positive recurrent (on an appropriate state
space), let us define an auxiliary process as follows. Let ηki = 1{ξki≥1}. Then (ηk, qk) is also
a Markov chain and ξk is the zero vector if and only if ηk is. We note that for every station
j, the state (0, j) is accessible from every other state. This is because if we block external
arrivals, the time until the network becomes empty is finite (actually has a finite expected
time). When this happens, we are in some state (0, `). Since qk is irreducible, then, if we once
again block all arrivals the state (0, j) is accessible from (0, `) (actually, without arrivals, it
will also be reached after finite expected time). With positive probability the time until the
first arrival is greater than the (independent) time to reach (0, j) without arrivals and thus
(0, j) is accessible from any other state. Thus, on the states (y, j) which are accessible from
(0, j) (which include (0, `) for all 1 ≤ ` ≤ n and all states that are accessible from (0, `) for
any such `), we have that (ηk, qk) is an irreducible Markov chain and since the state space
is finite (contained in or equal to {0, 1}n × {1, . . . , n}) it follows that it is positive recurrent.
Therefore, for any j, the time between visits to state (0, j) has a finite mean. This implies
that the time between visits of (ξk, qk) to (0, j) also has a finite mean and thus the (ξk, qk) is
also positive recurrent on an appropriate state space (all the states which are accessible from
(0, j) for some, hence all, j). We note that this idea can be used to argue stability for the
continuous time process, which although it is not semi-Markov due to the arrival process, is
nevertheless regenerative with finite mean regeneration epochs, provided that Oij have finite
means. Since we do not need it here, we omit the details.

In the present section we shall in particular focus on X(k) := X1 + · · · + Xk, viz., the total
number of customers in the first k queues right after a gate opening. Introducing M , the
index of the gate that has just opened, we consider

Gki(z) := E[zX(k)I(M = i)], k, i = 1, . . . , n, (1)

where I(·) denotes an indicator function. The fact that customers can only move to down-
stream queues (i.e., with higher index), will allow us to express all Gki(z) for a fixed k into
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functions Gk−1,j(z), and finally into the functions G1j(z), which can be determined explicitly.
We begin by giving the equations for G1j(z), j = 1, . . . , n. Obviously

G11(z) = P(M = 1) = π1; (2)

indeed, after gate 1 has opened, Q1 instantaneously has become empty. Now consider two
successive gate openings in steady state, the latter one being an opening of gate j, and sum
over all possible gates i opened at the previous gate opening, to obtain:

G1j(z) =
n∑
i=1

G1i(z)pijAij1(z), j 6= 1. (3)

Here we have used that Aij1(z) is the generating function of the number of arrivals at Q1 in
the gate opening interval.

Notice that we can rewrite (3) as

G1j(z) =

n∑
i=2

G1i(z)pijAij1(z) +G11(z)p1jA1j1(z), j 6= 1. (4)

Introducing the (n− 1)-dimensional vector

Ḡ1(z) := (G12(z), . . . , , G1n(z)),

the (n− 1)-dimensional vector

R1(z) := (p12A121(z), . . . , p1nA1n1(z)),

and the matrix P1(z) with as (i, j) element pijAij1(z), we can write (4) as

Ḡ1(z) = Ḡ1(z)P1(z) +G11(z)R1(z), (5)

and hence, with I the matrix with ones on the diagonal and zeroes outside the diagonal, we
have Ḡ1(z)(I − P1(z)) = G11(z)R1(z), yielding

Ḡ1(z) = G11(z)R1(z)(I − P1(z))
−1. (6)

All the terms in the righthand side of (6) are known; in particular, G11(z) = π1 is given in
(2). Hence we have determined G11(z), G12(z), . . . , G1n(z).

Now let us show how the terms Gkj(z), j = 1, . . . , n, are for 2 ≤ k ≤ n expressed into
Gk−1,i(z), i = 1, . . . , n. Considering two successive gate openings in steady state, the last one
being of gate j, and summing over all possible gates i for the first gate opening, we have for
k = 2, . . . , n, j 6= k:

Gkj(z) =

n∑
i=1

Gki(z)pijAijk(z), (7)

whereas

Gkk(z) =

n∑
i=1

Gk−1,i(z)pikAik,k−1(z). (8)

The explanation for the deviating terms (Gk−1,i(z) instead of Gki(z) and Aik,k−1(z) instead
of Aikk(z)) is that Qk has become empty right after an opening of gate k; so the total number
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present in Q1, . . . , Qk equals the total number present in Q1, . . . , Qk−1 after the previous gate
opening, plus the number of new arrivals in the first k − 1 queues.

We can rewrite (7) as follows:

Gkj(z) =
∑
i 6=k

Gki(z)pijAijk(z) +Gkk(z)pkjAkjk(z). (9)

Introducing the (n− 1)-dimensional vector

Ḡk(z) := (Gk1(z), . . . , Gk,k−1(z), Gk,k+1(z), . . . , Gkn(z)),

the (n− 1)-dimensional vector

Rk(z) := (pk1Ak1k(z), . . . , pk,k−1Ak,k−1,k(z), pk,k+1Ak,k+1,k(z), . . . , pknAknk(z)),

and the matrix Pk(z) with as (i, j) element pijAijk(z), we can write (9) as

Ḡk(z) = Ḡk(z)Pk(z) +Gkk(z)Rk(z), (10)

yielding
Ḡk(z) = Gkk(z)Rk(z)(I − Pk(z))−1. (11)

Introducing the column vector
CTk−1(z) := (p1kA1k,k−1(z), . . . , pk−2,kAk−2,k,k−1(z), pkkAkk,k−1(z), . . . , pnkAnk,k−1(z))

T ,
we can rewrite (8) as

Gkk(z) = Ḡk−1(z)C
T
k−1(z) +Gk−1,k−1(z)pk−1,kAk−1,k,k−1(z). (12)

We have thus expressed Ḡk(z) into Gkk(z) via (11), and Gkk(z) into Ḡk−1(z) and Gk−1,k−1(z)
via (12). Iterating, defining an empty product to be one and defining Ḡ0(z)C

T
0 (z) to equal

π1 for notational elegance, we obtain:

Gkk(z) =
k−1∑
i=0

Ḡi(z)C
T
i (z)

k−1∏
j=i+1

pj,j+1Aj,j+1,j(z). (13)

By carefully studying the structure of the above recursions, and introducing

Hi(z) := Ri(z)(I − Pi(z))−1CTi (z), i = 1, . . . , n,

the following is seen to hold:

Gkk(z) = π1Σ
k−1∏
i=1

Fi(z), k = 1, . . . , n, (14)

where Σ denotes a sum over the 2k−1 terms that arise when each Fi(z), i = 1, . . . , k − 1, is
either Hi(z) or pi,i+1Ai,i+1,i(z). For example, for k = 3 we get:

G33(z) = π1[H1(z)H2(z) +H1(z)p23A232(z) + p12A121(z)H2(z) + p12A121(z)p23A232(z).

With this explicit Expression (14) for the Gkk(z), and Expression (11) for Ḡk(z), we have a
recipe to determine all Gkj(z) explicitly, for k, j = 1, . . . , n.
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Example. Let us consider the special case in which pij ≡ qj , ∀ i, j, and Aijk(z) =: Âjk(z),
∀ i, j, k. Viz., the Markov renewal process that determines the gate openings and the inter-
vals in between has a simple structure: Each time the next gate opening is of gate j with
probability qj , and the interval length until the next opening also only depends on j. In this
case we can obtain a simple expression for E[zX(k) ] =

∑n
j=1Gkj(z). We have:

G11(z) = π1 = q1, (15)

and from (3):

G1j(z) = qjÂj1(z)
n∑
i=1

G1i(z), j = 2, . . . , n. (16)

Hence

E[zX(1) ] =
n∑
j=1

G1j(z) = q1 +
n∑
j=2

qjÂj1(z)E[zX(1) ], (17)

yielding

E[zX(1) ] =
q1

1−
∑n

j=2 qjÂj1(z)
. (18)

Furthermore, from (7) and (8),

Gkj(z) = qjÂjk(z)

n∑
i=1

Gki(z), (19)

Gkk(z) = qkÂk,k−1(z)
n∑
i=1

Gk−1,i(z), (20)

leading to the following recursive expression of E[zX(k) ] into E[zX(k−1) ]:

E[zX(k) ] =
qkÂk,k−1(z)

1−
∑

j 6=k qjÂjk(z)
E[zX(k−1) ]. (21)

Via iteration we obtain:

E[zX(k) ] =

k∏
i=1

qiÂi,i−1(z)

1−
∑

j 6=i qjÂjk(z)
, (22)

where Â10(z) := 1.
Notice that (22) represents a decomposition property: The generating function is a product
of k terms, all of which are generating functions of random variables, and this implies that
X(k) can be represented as the sum of k independent random variables, cf. [6, 7]. In the
special case that arrivals only occur at Q1, and that the generating function of the number
of arrivals in all gate intervals is the same, to be denoted by Â(z), we have:

E[zX(k) ] = Âk−1(z)

k∏
i=1

qi

1− Â(z)(1− qi)
. (23)
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When we consider for this case the steady-state number of customers N(n) just before a gate

opening, we get a slightly more elegant expression. Observing that E[xN(n) ] = E[zX(n) ]Â(z),
we can write:

E[zN(n) ] =
n∏
i=1

qiÂ(z)

1− Â(z)(1− qi)
. (24)

This shows that N(n) is distributed like the sum of n independent geometric sums of numbers
of arrivals during one gate interval. In particular,

EN(n) = EA
n∑
i=1

1

qi
, (25)

VarN(n) = (EA)2
n∑
i=1

(
1

q2i
− 1

qi
) + VarA

n∑
i=1

1

qi
. (26)

The special choice Â(z) = z (one arrival in each gate interval) yields

E[zX(k) ] = zk−1
k∏
i=1

qi
1− (1− qi)z

, (27)

and hence X(k) = k − 1 +
∑k

i=1Bi, where Bi ∼ geom(1 − qi) for i = 1, . . . , k, and EX(k) =

k − 1 +
∑k

i=1
1−qi
qi

=
∑k

i=1
1
qi
− 1.

The special choice Â(z) = µ
µ+λ(1−z) (a Poisson distributed number of arrivals in an exp(µ)

distributed interval, giving rise to a geometrically distributed number of arrivals in a gate
interval) yields

E[zX(k) ] = (
µ

µ+ λ(1− z)
)k−1

k∏
i=1

qi(µ+ λ(1− z))
qiµ+ λ(1− z)

, (28)

and hence X(k) = Fk−1 +
∑k

i=1Ci, where Fk−1 is negative binomially distributed with pa-

rameters k − 1 and λ
µ+λ and where Ci equals zero with probability qi and is geom( qiµ

qiµ+λ
)

distributed with probability 1− qi, i = 1, . . . , k. Hence EX(k) = (k − 1)λµ +
∑k

i=1(1− qi)
λ
qiµ

.

More generally, it follows from (23) that EX(k) = [k − 1 +
∑k

i=1
1−qi
qi

]EA, A denoting the
number of arrivals during one gate opening.

4 Optimization under constraints

In this section we consider three optimization problems, which are very similar to optimiza-
tion problems studied in [6] for the special case of exponential gate openings. Our goal is to
design an efficient ASIP system. We restrict ourselves to the case, leading to (24), in which
arrivals only occur in Q1 while the generating function of the number of arrivals in all gate
intervals is the same. For this case we pose the question which choice of (q1, . . . , qn), with∑n

i=1 qi = 1, (i) minimizes the mean number of customers N(n) just before a gate opening,
(ii) minimizes the variance of N(n), and (iii) maximizes the probability of zero load (an empty
system).
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Optimization problem (i): minimization of the mean number of customers
It follows from (25) that the minimization of the mean number of customers amounts to
minimizing

∑n
i=1

1
qi

, sub
∑n

i=1 qi = 1. This optimization problem is a special case of the
class of resource allocation problems with a separable convex objective function – i.e., the
objective function can be separated into n terms, the ith one being a function of qi only, that
is convex in qi, i = 1, . . . , n. We wish to minimize this separable convex function under a
linear constraint. This class of problems is extensively studied in [4]. In particular, if f is
convex then

f(1/n) = f

(
1

n

n∑
i=1

qi

)
≤ 1

n

n∑
i=1

f(qi)

and so,
∑n

i=1 f(1/n) ≤
∑n

i=1 f(qi) for any qi ≥ 0 such that
∑n

i=1 qi = 1, thus the optimal
solution of our minimization problem is q1 = · · · = qn = 1

n .
It should be noted that the mean number of customers just before a gate opening is readily

expressed in the steady-state mean number of customers at an arbitrary epoch; just subtract
the mean number of arrivals in a residual gate opening interval. The latter is linearly related
to the mean time in system via Little’s law. Hence the above optimization problem also sheds
light on the minimization of time in system.

Optimization problem (ii): minimization of the variance of the number of customers
It follows from (26) that the minimization of the variance of the number of customers amounts
to minimizing

∑n
i=1[(

1
q2i
− 1

qi
)(EA)2 + 1

qi
VarA]. The same reasoning as for (i) applies; we

again are faced with a separable convex objective function, and again the optimal solution is
q1 = · · · = qn = 1

n .

Optimization problem (iii): maximization of the probability of an empty system
It follows from (24) that the maximization of the probability of an empty system amounts

to maximizing
∏n
i=1

qiÂ(0)

1−(1−qi)Â(0)
, and hence to minimizing

∑n
i=1 ln[1−Â(0)qi

+ Â(0)]. The same

reasoning as for (i) and (ii) applies once again; we have a separable convex objective function,
and again the optimal solution is q1 = · · · = qn = 1

n .

5 Some two-queue results

In this section we study the two-queue case in some more detail. In that case one can
sometimes determine the joint queue length distribution at gate opening intervals. In Sub-
section 5.1 we determine the joint queue length distribution at gate openings for a specific
choice of the pij and the same arrival distributions for gate 1 intervals and gate 2 intervals. In
Subsection 5.2 we determine the joint queue length distribution for the case in which, when
the gate of Q1 opens, only a binomially distributed number of the customers in Q1 moves to
Q2. These two-queue studies not only lead to more detailed results; they also sometimes give
an indication of the limitations of our approach. For example, if one would not only at Q1,
but also at Q2, allow a binomially distributed number of customers to leave when its gate
opens, then a functional equation in the two-dimensional queue length probability generating
function results, which seems very difficult to analyze exactly.
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5.1 Joint queue length distribution

Let us consider the problem of determining the generating function of the steady-state joint
queue length distribution right after gate openings, G(z1, z2) = E[zX1

1 zX2
2 ]. Take n = 2;

take only arrivals at Q1, with generating function A(z) of the number of arrivals per gate
opening, regardless whether it is an opening of gate 1 or of gate 2; and take fixed gate opening

probabilities pij ≡ qj . Realizing that, with X
(r)
i the number of customers in Qi right after

the rth gate opening, and with Ar+1 the number of arrivals in the interval between the rth
and (r + 1)st gate openings,

X
(r+1)
1 = 0, X

(r+1)
2 = X

(r)
1 +Ar+1 +X

(r)
2 ,

if the (r + 1)st gate opening is of gate 1, and

X
(r+1)
1 = X

(r)
1 +Ar+1, X

(r+1)
2 = 0,

if the (r + 1)st gate opening is of gate 2, we obtain in steady state:

G(z1, z2) = q1A(z2)G(z2, z2) + q2A(z1)G(z1, 1). (29)

Actually we already know G(z1, 1), which equals E[z
X(1)

1 ]; but it also follows from (29) by

putting z2 = 1. We also already know G(z1, z1), which equals E[z
X(2)

1 ]; but it also follows
from (29) by putting z2 = z1. We find:

G(z1, 1) =
q1

1− q2A(z1)
, (30)

G(z1, z1) =
q1q2A(z1)

1− q2A(z1)

1

1− q1A(z1)
, (31)

G(z1, z2) =
q1q2A(z2)

1− q2A(z2)

q1A(z2)

1− q1A(z2)
+

q1q2A(z1)

1− q2A(z1)
. (32)

Remark. One could extend the above analysis to the case of arrivals at both queues, and
different PGFs for different gate openings. However, this comes at the expense of messier
expressions, and we have decided not to include this case in the paper.

One could also in principle analyse the steady-state queue length PGF at an arbitrary
epoch. One then would have to average over different gate opening intervals. However, the
arrival process must then first be specified in more detail; do arrivals all take place at the
beginning of a gate opening interval, or at the end, or maybe according to a Poisson process?

5.2 Binomial movements

Consider the case of n = 2 queues in series, with the special feature that, when the gate of
Q1 opens, each customer present in Q1 (independently from the other customers) moves with
probability a1 > 0 to Q2, and stays with probability 1−a1 in Q1. We restrict ourselves to the
case of a Poisson arrival process, with rate λ, at Q1, and no external arrivals at Q2; moreover,
we assume that gate openings at Qi occur after i.i.d., exponentially, distributed intervals with
mean 1/µi, i = 1, 2. Denoting by Xi(t) the number of customers in Qi at time t, i = 1, 2,
and by Xbin

1 (t) the number of customers who do move from Q1 to Q2 at a gate opening of

10



Q1 that takes place at time t, we can write (suppressing initial conditions; we shall anyway
soon turn to the steady-state situation):

E[z
X1(t+h)
1 z

X2(t+h)
2 ] = (1− (λ+ µ1 + µ2)h)E[z

X1(t)
1 z

X2(t)
2 ]

+ λhz1E[z
X1(t)
1 z

X2(t)
2 ]

+ µ1hE[z
X1(t)−Xbin

1 (t)
1 z

X2(t)+Xbin
1 (t)

2 ]

+ µ2hE[z
X1(t)
1 ] + o(h), h ↓ 0,(33)

leading to

d

dt
E[z

X1(t)
1 z

X2(t)
2 ] = −(λ+ µ1 + µ2)E[z

X1(t)
1 z

X2(t)
2 ]

+ λz1E[z
X1(t)
1 z

X2(t)
2 ]

+ µ1E[((1− a1)z1 + a1z2)
X1(t)z

X2(t)
2 ]

+ µ2E[z
X1(t)
1 ].(34)

Denoting the probability generating function of the joint distribution of the steady-state queue
length vector (X1, X2) by H(z1, z2), we have

[µ1 + µ2 + λ(1− z1)]H(z1, z2) = µ1H((1− a1)z1 + a1z2, z2) + µ2H(z1, 1). (35)

We shall first obtain H(z1, 1). Substituting z2 = 1 into (35) yields:

[µ1 + µ2 + λ(1− z1)]H(z1, 1) = µ1H((1− a1)z1 + a1, 1) + µ2H(z1, 1), (36)

and hence
H(z1, 1) =

µ1
µ1 + λ(1− z1)

H((1− a1)z1 + a1, 1). (37)

Iteration of this relation gives

H(z1, 1) =
∞∏
j=0

µ1
µ1 + λ(1− z1)(1− a1)j

. (38)

This infinite product is said to converge iff
∑∞

j=0(1−
µ1

µ1+λ(1−z1)(1−a1)j ) < ∞, and hence the

infinite product indeed converges if 0 < a1 < 1. If a1 = 1 one obtains H(z1, 1) = µ1
µ1+λ(1−z1) .

This is not a surprising result; it is the generating function of the number of Poisson(λ)
arrivals during an exp(µ) interval. According to PASTA it also equals the generating function
of the steady-state queue length distribution of Q1. Observing that µ1

µ1+λ(1−z1)(1−a1)j is the

probability generating function of a geometrically distributed random variable with success

parameter λ(1−a1)j
µ1+λ(1−a1)j , one can write

X1
d
=
∞∑
j=0

Hj , (39)

where all Hj are independent, Hj being geometrically distributed with success parameter
λ(1−a1)j

µ1+λ(1−a1)j .

11



Having determined H(z1, 1), we now turn to the determination of H(z1, z2). It follows
from (35) that

H(z1, z2) = Y1(z1)H((1− a1)z1 + a1z2, z2) + Y0(z1), (40)

where
Y1(z1) :=

µ1
µ1 + µ2 + λ(1− z1)

, Y0(z1) :=
µ2

µ1 + µ2 + λ(1− z1)
H(z1, 1).

Iteration of (40) gives:

H(z1, z2) =
∞∑
j=0

Y0(fj(z1, z2))

j−1∏
i=0

Y1(fi(z1, z2)), (41)

an empty product being equal to one and fi(z1, z2) := (1−a1)iz1+[1−(1−a1)i]z2, i = 0, 1, . . . .
Using d’Alembert’s ratio test one can show that this infinite sum converges. In fact, the sum
converges geometrically fast. Indeed, since a1 > 0, one has fj(z1, z2) → z2, and the ratio of

two successive terms in the sum H(z1, z2), which is given by
Y0(fj+1(z1,z2))
Y0(fj(z1,z2))

Y1(fj(z1, z2)), is for

large j bounded by µ1/(µ1 + µ2).

Above we have restricted ourselves to the case of a Poisson arrival process, with rate λ, at Q1,
and no external arrivals at Q2; moreover, we assumed that gate openings at Qi occur after
i.i.d. exponentially distributed intervals with mean 1/µi, i = 1, 2. Let us now turn to the
more general case of Section 2, in which gate openings are determined by a Markov renewal
process, and where a gate opening of Qi is with probability pij followed by a gate opening of
Qj , while Aij(z1, z2) is the generating function of the numbers of arrivals in Q1 and Q2 during
the period in between those two successive gate openings. Considering the steady-state joint
distribution of numbers of customers (X1, X2) immediately after gate openings, and letting
(cf. (2))

Gi(z1, z2) := E[zX1
1 zX2

2 I(M = i)], i = 1, 2, (42)

it is easily seen by observing the system at two successive gate openings that

G1(z1, z2) = p11A11((1− a1)z1 + a1z2, z2)G1((1− a1)z1 + a1z2, z2)

+ p21A21((1− a1)z1 + a1z2, z2)G2((1− a1)z1 + a1z2, z2),(43)

G2(z1, z2) = p12A12(z1, 1)G1(z1, 1) + p22A22(z1, 1)G2(z1, 1). (44)

It is immediately obvious from (44) that G2(z1, z2) does not depend on z2, as we could have
expected because Q2 becomes empty after a gate opening at Q2. Hence it follows from (44)
that

G2(z1, z2) = G2(z1, 1) =
p12A12(z1, 1)

1− p22A22(z1, 1)
G1(z1, 1). (45)

Plugging z2 = 1 in (43) and using (45) gives:

G1(z1, 1) = p11A11((1− a1)z1 + a1, 1)G1((1− a1)z1 + a1, 1)

+ p21A21((1− a1)z1 + a1, 1)
p12A12((1− a1)z1 + a1, 1)

1− p22A22((1− a1)z1 + a1, 1)
G1((1− a1)z1 + a1, 1),(46)

which can be written as

G1(z1, 1) = L(z1)G1((1− a1)z1 + a1, 1), (47)
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with an obvious choice of the function L(·). Iteration readily yields that

G1(z1, 1) =
∞∏
j=0

L(d(j)(z1)), (48)

where
d(j)(z1) := (1− a1)jz1 + 1− (1− a1)j , j = 0, 1, . . . . (49)

The infinite product converges iff the corresponding infinite sum
∑∞

j=0[1 − L(d(j)(z1))] con-
verges. The latter sum convergences geometrically fast. This can be seen by making the
following two observations. Observation (i): L(z1) has the meaning of a probability generat-
ing function. Indeed, distinguish between the possibility that a gate opening of Q1 is followed
by another gate opening of Q1 (probability p11) and the possibility that it is followed by a
gate opening of Q2, followed by a geometric(p22) number of gate openings of Q2, and finally
again a gate opening of Q1. Observation (ii): 1 − d(j)(z1) = (1 − a1)

j(1 − z1) converges
geometrically fast to 0.

Having determined G1(z1, 1) and hence, using (45), G2(z1, z2) = G2(z1, 1), we substitute
the result in (43), obtaining:

G1(z1, z2) = K1(z1, z2)G1((1− a1)z1 + a1z2, z2) +K0(z1, z2), (50)

where
K1(z1, z2) := p11A11((1− a1)z1 + a1z2, z2), (51)

K0(z1, z2) := p21A21((1−a1)z1+a1z2, z2)
p12A12((1− a1)z1 + a1z2, 1)

1− p22A22((1− a1)z1 + a1z2, 1)
G1((1−a1)z1+a1z2, 1).

(52)
Iteration of (50) gives:

G1(z1, z2) =

∞∑
j=0

K0(fj(z1, z2), z2)

j−1∏
i=0

K1(fi(z1, z2), z2). (53)

Again dÁlembert’s ratio test readily shows the convergence of the infinite sum, by using that
|K1(z1, z2)| < p11. Finally notice that G1(z2, z2), which is the generating function of the total
number of customers X(2) = X1 +X2 in the two queues just after gate openings of Q1, follows
by substituting z1 = z2 in (53). Since fj(z2, z2) ≡ z2, that formula degenerates into

G1(z2, z2) =
K0(z2, z2)

1−K1(z2, z2)
. (54)

After some calculations, this expression is seen to agree with the expression for G21(z2)
that can be derived from (7). This agreement may at first sight seem strange, as we have
binomial movements in the present subsection. However, notice that we compare G1(z2, z2)
and G21(z2), both giving the total number of customers in both queues. It then does not
matter whether some of them are still in Q1 after a gate opening of Q1.
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5.3 An ASIP model with a renewal arrival process at Q1

In this subsection we consider the case in which arrivals only take place at Q1, and follow a
renewal process: successive interarrival times are i.i.d., with distribution A(·) and Laplace-
Stieltjes transform α(·). We restrict ourselves to n = 2 queues. We furthermore restrict
ourselves to the case in which openings of the gate of Qi occur at i.i.d. exp(µi) distributed
intervals, independent of each other and independent of the arrival intervals.

Let (Yn,1, Yn,2) denote the vector of numbers of customers in (Q1, Q2) just before the nth
arrival at Q1, n = 1, 2, . . . . Let An denote the arrival interval between customers n− 1 and
n. We need to distinguish between the following five cases.
(i) No gate opening in An. This event has probability α(µ1 +µ2); and (Yn,1, Yn,2) = (Yn−1,1 +
1, Yn−1,2).
(ii) No openings of gate 1 and at least one opening of gate 2 in An. This event has probability
α(µ1)− α(µ1 + µ2); and (Yn,1, Yn,2) = (Yn−1,1 + 1, 0).
(iii) No openings of gate 2 and at least one opening of gate 1 in An. This event has probability
α(µ2)− α(µ1 + µ2); and (Yn,1, Yn,2) = (0, Yn−1,1 + 1 + Yn−1,2).
(iv) Both gates open at least once in An; the first opening of gate 1 occurs after the last
opening of gate 2. This event has probability α(µ1 + µ2) − µ2

µ2−µ1α(µ2) − µ1
µ1−µ2α(µ1); and

(Yn,1, Yn,2) = (0, Yn−1,1 + 1).
(v) Both gates open at least once in An; but the first opening of gate 1 occurs before the last
opening of gate 2. This event has probability 1 − µ2

µ2−µ1α(µ1) − µ1
µ1−µ2α(µ2), as can, e.g., be

seen by writing the probability of this event as the probability that the sum of an exp(µ1)
plus an exp(µ2) random variable is less than An. We now have (Yn,1, Yn,2) = (0, 0); notice
that this is the only way to get into the state (0, 0).
Restricting ourselves to steady-state queue lengths just before arrivals, to be denoted by
(Y1, Y2), and introducing their generating function L(z1, z2) := E[zY11 zY22 ], we obtain:

L(z1, z2) = α(µ1 + µ2)z1L(z1, z2)

+ (α(µ1)− α(µ1 + µ2))z1L(z1, 1)

+ (α(µ2)− α(µ1 + µ2))z2L(z2, z2)

+ [α(µ1 + µ2)−
µ2

µ2 − µ1
α(µ2)−

µ1
µ1 − µ2

α(µ1)]z2L(z2, 1)

+ 1− µ2
µ2 − µ1

α(µ1)−
µ1

µ1 − µ2
α(µ2).(55)

Taking all L(z1, z2) terms together, and introducing

ζ := 1− µ2
µ2 − µ1

α(µ1)−
µ1

µ1 − µ2
α(µ2),

(which actually is L(0, 0) = P (Y1 = 0, Y2 = 0), see above) and

ω := α(µ1 + µ2)−
µ2

µ2 − µ1
α(µ2)−

µ1
µ1 − µ2

α(µ1) = α(µ1 + µ2)− α(µ1)− α(µ2) + 1− ζ,

we obtain

(1− α(µ1 + µ2)z1)L(z1, z2) = (α(µ1)− α(µ1 + µ2))z1L(z1, 1)

+ (α(µ2)− α(µ1 + µ2))z2L(z2, z2)

+ ωz2L(z2, 1) + ζ.(56)
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Substitution of z2 = 1 in (56), and using the fact that α(µ2)−α(µ1 +µ2) + ζ+ω = 1−α(µ1)
yields

(1− α(µ1 + µ2)z1)L(z1, 1) = (α(µ1)− α(µ1 + µ2))z1L(z1, 1) + 1− α(µ1), (57)

and hence

L(z1, 1) = E[zY11 ] =
1− α(µ1)

1− α(µ1)z1
. (58)

The marginal distribution of Y1 hence is geometric. The explanation is that Y1 increases by
1 for a geometrically distributed number of arrival intervals (with parameter α(µ1), which is
the probability that gate 1 does not close during an arrival interval), and then falls back to
zero.

Substituting z1 = z2 in (56) allows us to express L(z2, z2) into L(z2, 1):

(1− α(µ2)z2)L(z2, z2) = (α(µ1)− α(µ1 + µ2))z2L(z2, 1) + ζ + ωz2L(z2, 1), (59)

yielding the following expression for the generating function of the total number of customers
in the system just before an arrival at Q1:

L(z2, z2) =
(α(µ1)− α(µ1 + µ2) + ω) (1−α(µ1))z21−α(µ1)z2 + ζ

1− α(µ2)z2
. (60)

Finally, Equations (56), (58) and (60) give the generating function of (Y1, Y2):

L(z1, z2) =
1

1− α(µ1 + µ2)z1

× [(α(µ1)− α(µ1 + µ2))
(1− α(µ1))z1
1− α(µ1)z1

+ (α(µ2)− α(µ1 + µ2))
z2

1− α(µ2)z2
(ζ +

(1− α(µ1))z2
1− α(µ1)z2

(α(µ1)− α(µ1 + µ2) + ω))

+ ω
(1− α(µ1))z2
1− α(µ1)z2

+ ζ].(61)

Substituting z2 = 0 in (61) gives

L(z1, 0) =
(α(µ1)− α(µ1 + µ2))

(1−α(µ1))z1
1−α(µ1)z1 + ζ

1− α(µ1 + µ2)z1
. (62)

In a similar way we get L(0, z2) and L(1, z2) = E[zY22 ]. In particular,

L(1, z2) =
1

1− α(µ1 + µ2)

× [(α(µ1)− α(µ1 + µ2))

+ (α(µ2)− α(µ1 + µ2))
z2

1− α(µ2)z2
(ζ +

(1− α(µ1))z2
1− α(µ1)z2

(α(µ1)− α(µ1 + µ2) + ω))

+ ω
(1− α(µ1))z2
1− α(µ1)z2

+ ζ].(63)
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Substituting z2 = 0 in (61) gives

L(z1, 0) =
(α(µ1)− α(µ1 + µ2))

(1−α(µ1))z1
1−α(µ1)z1 + ζ

1− α(µ1 + µ2)z1
. (64)

It is seen that the marginal distribution of Y2 has an atom in 0 and furthermore is a weighted
sum of (i) a geometric(α(µ1)) distribution, (ii) a geometric(α(µ2)) distribution, and (iii) a
convolution of two such geometric distributions.

Finally we determine the generating function of the joint distribution of the steady-state
numbers of customers (S1, S2) in Q1 and Q2 at an arbitrary epoch. It is easily seen that this
distribution is obtained by considering the queue lengths at a time Ar after the last customer
arrival, where this forward recurrence interarrival time or residual interarrival time has LST
αr(s) = 1−α(s)

sE[A] . We can follow the reasoning leading to (55), simply replacing each α(·) term

by αr(·). Hence

E[zS1
1 zS2

2 ] = αr(µ1 + µ2)z1L(z1, z2)

+ (αr(µ1)− αr(µ1 + µ2))z1L(z1, 1)

+ (αr(µ2)− αr(µ1 + µ2))z2L(z2, z2)

+ ω̃z2L(z2, 1) + ζ̃,(65)

where ω̃ and ζ̃ are obtained from ω and ζ by replacing α(·) by αr(·) everywhere.

6 Suggestions for further research

The following extensions might be of interest:

1. Firstly, and perhaps most interestingly, there are various asymptotic questions. For
example, one could let n→∞, and study, e.g., the fraction of empty stations. We refer
to Chapter 6 of [5] and to [7, 8, 9] for an interesting collection of limit laws for three
limiting regimes (for the case of only arrivals at Q1, and exponential gate openings): (i)
The heavy-traffic regime, in which the arrival rate at Q1 goes to infinity; (ii) the large-
system regime in which n→∞; (iii) the balanced-system regime, in which n→∞, the
gate opening intervals tend to zero, and the product of n and the mean gate opening
interval tends to a positive limit.

2. We are presently exploring ASIP models with finite waiting rooms. In such a case it is,
e.g., interesting to allocate the waiting room sizes – under a constraint on total waiting
room size – such that the throughput of the ASIP is as large as possible.

3. A batch can move one or two queues ahead at a gate opening. The approach taken in
Section 3 to obtain expressions for the Gki(z) (cf. (1)) breaks down when batches could
move more than one queue ahead after a gate opening.

4. At each gate opening, multiple gates can open. If, with probability ri, gates i and i+ 1
open, i = 1, 2, . . . , then this amounts to a batch moving two queues ahead. So this
variant is related to the previous one.

5. Non-tandem configurations. E.g., there are three queues, Q1 feeding into Q2 and Q3 –
with fixed probabilities, or via a fixed alternating pattern.
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