
A Note on an M=G=1 Queue with a WaitingServer, Timer and VacationsO.J. Boxma, S. Schlegel and U. Yechiali�AbstractWe analyze a generalized protocol of an M=G=1 queue with servervacations where after returning from a vacation to an empty system,the server (as in many real-life situations and common also to humanbehaviour) activates a Timer and waits dormant. If an arrival occursbefore the Timer expires, a busy period starts immediately. If theTimer is shorter than the inter-arrival time, the server does not waitany more and leaves for a new vacation, and so on. We derive trans-forms and performance measures of the system's key variables andshow how the general results reduce to their two extreme cases: (i)zero-length Timer yields the multiple vacation model and (ii) in�nite-length Timer yields the single vacation case.1 IntroductionTwo important extensions of the classical M=G=1 queue, which have beenstudied extensively in the literature, are the multiple and single vacationmodels (see Levy and Yechiali [1975], Takagi [1991] and references there).Under the multiple vacation protocol, whenever the server returns froma vacation and �nds an empty queue, he immediately leaves for anothervacation; while under the single vacation regime, if the server �nds an empty�Onno Boxma is with the Department of Mathematics and Computing Science, Eind-hoven University of Technology, Eindhoven, The Netherlands. Sabine Schlegel is with Eu-random, Eindhoven University of Technology, Eindhoven, The Netherlands. Uri Yechialiis with the Department of Statistics and Operations Research, School of MathematicalSciences, Tel Aviv University, Tel Aviv, Israel. This work was done mostly while Prof.Yechiali visited Eurandom during March-June 2000, supported by a grant of the Dutchresearch foundation NWO. 1



system after a vacation, he waits dormant until the �rst arrival thereafteroccurs, serves a full busy period, and only then takes another vacation.These two protocols represent two extremes: in the multiple vacation schemethe server never waits in front of an empty queue, whereas in the singlevacation case the server always waits for an arriving customer (job) whenhe �nds an empty queue upon returning from a vacation.Yet, in many and various situations (common also to human behaviour)the server, �nding an empty queue upon returning from a vacation, maywait idle in front of the queue for a pre-speci�ed (random or constant) du-ration of time (which we call a `Timer'), hoping for an arrival during that`waiting' period. Only if the Timer expires before an arrival occurs, theserver immediately takes another vacation.Such a protocol generalizes the two di�erent vacation models into a uni-�ed one: if the Timer's duration is set to zero, the multiple vacation regimeis obtained, while if the Timer's duration is set to in�nity, the result is thesingle vacation model.In this note we analyze the above generalized protocol. We derive trans-forms and performance measures of key variables as follows: probabilitygenerating function (PGF) and mean of the number of jobs present in thesystem; Laplace Stieltjes transforms (LST) and means of the variables (i)waiting time of an arbitrary customer, (ii) duration of a busy period, (iii)length of a `Vacation Period' (i.e. the continuous period of time the serveris not working during a cycle), (iv) length of a cycle, and (v) non-productiveidle time during a cycle. For those variables and their transforms we showhow the results of the generalized model reduce to their corresponding re-sults for the two extreme cases: the multiple and the single vacation regimes.Section 2 presents the model description. Sections 3 and 4 are devoted to theanalysis of the number of customers and of the waiting time, respectively.Section 5 discusses various busy and non-busy periods.2



2 The ModelWe consider anM=G=1 queue where customers arrive according to a Poissonprocess fA(t); t � 0g with intensity �, each requiring a service time B withdistribution B(�), mean b, and LST B�(�). A similar notational conventionis used for other random variables introduced in the sequel. The traÆcintensity is denoted by � = �b. At the termination of a busy period, whenthe queue becomes empty, the server takes a (random) vacation U . Atthe end of a vacation U the server returns to the (main) queue. If, uponreturn, the number of waiting jobs in the queue (denoted by Y ) is greaterthan 0, the server serves exhaustively (that is, he stays Y regular M=G=1-type busy periods) and then takes a new vacation U . However, if Y = 0,the server activates a (random) Timer T and waits. If an arrival occursbefore T expires, the arriving customer is immediately taken into serviceand the server is kept busy a full (M=G=1-type) busy period, at the end ofwhich he takes another vacation U . If no arrival occurs during the Timer'sduration (i.e. the Timer is shorter than the inter-arrival time), the serverdoes not wait any more and leaves for a vacation U . We invoke the usualindependence assumptions between arrivals, service times, vacation lengthsand Timer durations. The distributions of U and T are assumed to begeneral.3 Number of Customers3.1 Law of MotionIn this section we shall derive the steady state distribution of the numberof customers in the M=G=1 queue with vacations and a timer. Just asin the ordinary M=G=1 queue, it is easily veri�ed that this steady statedistribution coincides (if it exists) with the steady state distribution of thenumber of customers immediately after the departure of a customer. Letus �rst concentrate on the latter quantity. Let Xn := number of customers3



left behind by the nth departing customer. Then the law of motion of thesystem's state X is given as follows:If Xn � 1, then Xn+1 = Xn � 1 +A(B); (1)where A(t) := number of Poisson arrivals during a time interval of length t.(We use B, rather than Bn, as a generic random variable.)If Xn = 0, thenXn+1 = 8<:A(U)jA(U)�1 � 1 +A(B); w.p. 1�U�(�)1�U�(�)T �(�) ;A(B); w.p. U�(�)(1�T �(�))1�U�(�)T �(�) ; (2)where T �(�) = P (no arrivals in T ), U�(�) = P (no arrivals in U).The explanation of (2) is as follows: when the server takes a vacation,the probability of no arrivals during U is R10 e��udP (U � u) = U�(�).Then, upon �nding an empty system, the server activates a Timer T . Theprobability of no arrivals during T is T �(�), and the server takes anothervacation, etc. This combined process repeats itself k � 0 times with prob-ability [U�(�)T �(�)]k, until, after k repetitions, there is an arrival dur-ing U . This last event occurs with probability 1 � U�(�) and the serverthen �nds A(U)jA(U)�1 waiting customers. Thus, the next departure willleave behind A(U)jA(U)�1 � 1 + A(B) waiting customers with probability(1�U�(�))P1k=0[U�(�)T �(�)]k = 1�U�(�)1�U�(�)T �(�) . The other possibility is thatafter k repeated pairs of U and T without arrivals, there will be another va-cation with no arrivals, but with an arrival during the following T . This oc-curs with probability U�(�)(1�T �(�))P1k=0[U�(�)T �(�)]k = U�(�)(1�T �(�))1�U�(�)T �(�) .Then, when the job arriving within T departs, it leaves A(B) waiting jobsbehind.3.2 Generating FunctionLet X̂(z) := E[zX ] denote the PGF of a random variable (r.v.) X.4



Using (1) and (2) we haveE[zXn+1 ] = E[zXn�1+A(B)jXn � 1] � P (Xn � 1)+"E[z(A(U)jA(U)�1�1+A(B))] � 1� U�(�)1� U�(�)T �(�)+E[zA(B)] � U�(�)(1 � T �(�))1� U�(�)T �(�) # � P (Xn = 0):We consider the system in steady state. It can easily be shown (e.g. byrelating the system to those with single and multiple vacations) that � < 1is a necessary and suÆcient condition for the existence of a steady statesolution.Set p0 := P (Xn = 0), Æ := �(1 � z), X̂(z) := limn!1E[zXn ]. Then,with E[zA(B)] = B�(Æ),X̂(z) = z�1B�(Æ)�X̂(z)� p0�+ "z�1B�(Æ) U�(Æ) � U�(�)1� U�(�) 1� U�(�)1� U�(�)T �(�)+B�(Æ) U�(�)(1 � T �(�))1� U�(�)T �(�) #p0: (3)Result (3) follows sinceE[zXn j Xn � 1]P (Xn � 1) = 1Xk=1 zkP (Xn = k)P (Xn � 1)P (Xn � 1) = X̂(z)� p0and (I(�) denoting an indicator function)E[zA(U) j A(U) � 1] = E[zA(U)]�E[zA(U)I(A(U)=0)]P (A(U) � 1) = U�(Æ) � U�(�)1� U�(�) :(4)Rearranging terms we obtainX̂(z) = p0B�(Æ)hU�(�)�T �(�)� 1�(1� z) + U�(Æ) � 1i�z �B�(Æ)��1� U�(�)T �(�)� :5



To calculate p0 we use X̂(1) = 1, which leads to1 = p0�1� U�(�)T �(�)� � limz!1"U�(�)(T �(�)� 1)(1 � z) + U�(Æ) � 1z �B�(Æ) #:Applying L'Hospital's rule we obtain (with � = �b),p0 = (1� �)" 1� U�(�)T �(�)U�(�)�1� T �(�)�+ �E[U ]#:Finally,X̂(z) = "(1� �)B�(Æ)(1 � z)B�(Æ) � z #"U�(�)�1� T �(�)�+ �1� U�(Æ)�=(1� z)U�(�)�1� T �(�)�+ �E[U ] #= X̂(z)��M=G=1 � �(z); (5)where X̂(z)��M=G=1 = (1 � �)(1 � z)B�(Æ)=(B�(Æ) � z) is the PGF of thenumber of customers in a stationary M=G=1 queue with arrival rate � andservice times B, and �(z) is the PGF of an independent random variable,XI, as will become apparent in the sequel.The case of multiple vacations (MV) is obtained from (5) by settingT = 0, implying T �(�) = 1. Thus,X̂(z)��MV = (1� �)B�(Æ)B�(Æ) � z "1� U�(Æ)�E[U ] #= X̂(z)��M=G=1 � 1� U�(Æ)(1� z)�E[U ] ;which coincides with Takagi [1991], equation (2.12c).The case of single vacation (SV) is obtained from (5) by setting T =1,implying T �(�) = 0. Thus,X̂(z)��SV = X̂(z)��M=G=1U�(�) + 1�U�(Æ)1�zU�(�) + �E[U ] : (6)Equation (6) is identical with Takagi [1991], equation (2.23).6



3.3 An Alternative DerivationAs indicated in the beginning of this section, the steady state distributionof X is also the steady state distribution of the number of customers in thesystem at an arbitrary epoch. The PGF of the latter quantity, also denotedby X, may also be obtained by using the queue-length decomposition resultof Fuhrmann and Cooper [1985] (which holds for our model) stating thatX = XM=G=1 +XI; (7)where XI := number of customers at an arbitrary non-serving epoch, whileXM=G=1 and XI are independent. Borst and Boxma [1997] showed thatE[zXI ] = X̂S(z) � X̂E(z)(1� z)�E[XE ]�E[XS ]� ; (8)where XS (XE) denotes the number of customers at the start (end) of anon-serving period.In our case, XS = 0, while (see (2))XE = 8<:1 w.p. U�(�)[1�T �(�)]1�U�(�)T �(�) ;A(U)��A(U)�1 w.p. 1�U�(�)1�U�(�)T �(�) :Thus, X̂S(z) = 1, while (see (4))X̂E(z) = zU�(�)�1� T �(�)�1� U�(�)T �(�) +E�zA(U)jA(U)�1� 1� U�(�)1� U�(�)T �(�)= zU�(�)�1� T �(�)�+ U�(Æ) � U�(�)1� U�(�)T �(�) : (9)Equation (9) yieldsE[XE ] = U�(�)�1� T �(�)�+ �E[U ]1� U�(�)T �(�) : (10)Combining equations (7),(8),(9) and (10) leads to the PGF of X:X̂(z) = X̂(z)��M=G=1 � U�(�)�1� T �(�)�+ �1� U�(Æ)�=(1 � z)U�(�)�1� T �(�)�+ �E[U ] ;which is equation (5) above. 7



3.4 Mean Queue SizeThe mean queue size is obtained by di�erentiating equation (5) , and isgiven by E[X] = E[XM=G=1] + �2E[U2]2 � 1
 ; (11)where 
 = �E[U ] + U�(�)(1 � T �(�)), and E[XM=G=1] = �2E[B2]2(1��) + � is themean number of customers in a stationary M=G=1 system.4 Waiting TimeLet W := waiting time (excluding service) of an arbitrary customer. Then,since X̂(z) =W �(Æ)B�(Æ) ;we haveW �(s) = s(1� �)s� �+ �B�(s) � ��1� U�(s)�+ sU�(�)�1� T �(�)�s�U�(�)�1� T �(�)�+ �E[U ]� (12)= W �M=G=1(s) � �(s);where �(s) is the LST of a random variable independent of WM=G=1.For the MV case we obtain (as in Levy and Yechiali [1975], equation(36), and Takagi [1992], equation (2.13)),W �(s) = s(1� �)s� �+ �B�(s) � 1� U�(s)sE[U ] =W �M=G=1(s) � R�U (s);where RU is the residual life (forward recurrence time) of the vacation lengthU . For the SV case, equation (12) reduces toW �(s) = s(1� �)s� �+ �B�(s) � ��1� U�(s)�+ sU�(�)s�U�(�) + �E[U ]� ;as in Levy and Yechiali [1975], equation (22).8



4.1 Mean Waiting TimeDi�erentiating equation (12) results inE[W ] = E[WM=G=1] + �E[U2]2 � 1
 ; (13)where E[WM=G=1] = �E[B2]2(1��) and 
 is de�ned below (11).For the MV case, equation (13) reduces toE[WMV ] = E[WM=G=1] + E[U2]2E[U ] ;as in Levy and Yechiali [1975], equation (38).For the SV case, equation (13) results inE[WSV ] = E[WM=G=1] + E[U2]2�E[U ] + U�[�]� � :Clearly, E[WSV ] � E[W ] � E[WMV ].5 Busy and Non-Busy Periods5.1 Busy PeriodLet � := length of a busy period, i.e. the time interval extending from themoment the server starts working after a vacation (and possibly activatinga Timer) until it leaves again for a new vacation. Following the law ofmotion (2), � starts with either A := A(U)��A(U)�1 jobs (with probability� = (1 � U�(�))=(1 � U�(�)T �(�))), or with a single job (with probability1� �). Thus,��(s) = E�e�s�� = E�e�sPAi=1 �i� � �+E�e�s�1�(1� �);where each �i is distributed like a regular M=G=1-type busy period withLST satisfying ��1(s) = B��s+ �(1� ��1(s))� and mean E[�1] = b=(1� �).Now, E�e�sPAi=1 �i� = EA�(��1(s))A� = Â���1(s)� ;9



where (see (4)), Â(z) = U���(1� z)�� U�(�)1� U�(�) :Clearly, E[A] = �E[U ]1�U�(�) .Combining the above we obtain��(s) = U���(1� ��1(s))�� U�(�)1� U�(�)T �(�) + ��1(s)U�(�)�1� T �(�)�1� U�(�)T �(�) : (14)It follows thatE[�] = E[A] �E[�1] � �+E[�1](1� �)= E[�1]"�E[U ] + U�(�)�1� T �(�)�1� U�(�) � T �(�) #: (15)For the MV case, where T = 0 and T �(�) = 1, equation (14) reduces to��(s) = U���(1� ��1(s))�� U�(�)1� U�(�) ; (16)leading to E[�] = E[�1] � �E[U ]1� U�(�) = �E[U ](1� �)�1� U�(�)� : (17)Equations (16) and (17) coincide with Levy and Yechiali [1975], equations(24) and (26), respectively.For the SV case, where T =1 and T �(�) = 0, equation (14) becomes��(s) = U����1� ��1(s)��� U�(�) + ��1(s)U�(�);leading to E[�] = E[�1]��E[U ] + U�(�)�:The above coincide, respectively, with equations (2.30a) and (2.30b) of Tak-agi [1991]. 10



5.2 Vacation PeriodLet I be the Exponential(�) inter-arrival time, with LST I�(s) = �s+� . De-note by VP the vacation period, i.e. the time interval beginning at the endof an active busy period and extending to the start of the next busy period.Let fUi; i = 1; 2; 3; :::g (fTi; i = 1; 2; 3; :::g) be a sequence of i.i.d. randomvariables having LST U�(�) (T �(�)).For particular realizations U1; U2; : : : ; Uk+1; T1; T2; : : : ; Tk, and I we haveVP = 8>>>><>>>>:(U1 + T1) + � � �+ (Uk + Tk) + Uk+1 w.p. e��Pki=1(Ui+Ti)�(1� e��Uk+1)(U1 + T1) + � � �+ (Uk + Tk) + Uk+1 + I w.p. e��Pki=1(Ui+Ti)�e��Uk+1F Tk+1(I)where F Tk+1(I) = P [Tk+1 > I]. HenceV �P (s) = 1Xk=0Ehe�sPki=1(Ui+Ti)e�sUk+1e��Pki=1(Ui+Ti)(1� e��Uk+1)i+ 1Xk=0Ehe�sPki=1(Ui+Ti)e�sUk+1e��Pki=1(Ui+Ti)e��Uk+1iE�e�sIF Tk+1(I)�= h�U�(s)� U�(s+ �)�+ U�(s+ �)Z 1I=0 �e�(�+s)IF T (I)dIi� 1Xk=0 �U�(s+ �)T �(s+ �)�k:Thus,V �P (s) = U�(s)� U�(s+ �) + U�(s+ �) ��+s [1� T �(s+ �)]1� U�(s+ �)T �(s+ �) : (18)Di�erentiating (18) yieldsE[VP ] = E[U ] + U�(�)� [1� T �(�)]1� U�(�)T �(�) = 
��1� U�(�)T �(�)� : (19)For the MV case (with T = 0, T �(�) = 1), equation (18) reduces toV �P (s) = U�(s)� U�(s+ �)1� U�(s+ �) ;11



which coincides with Takagi [1991] equation (2.18a), while equation (19)reduces to E[VP ] = E[U ]1� U�(�) : (20)Equation (20) is identical to equation (25) of Levy and Yechiali [1975] andequation (2.18b) of Takagi [1991].For the SV case (with T =1, T �(�) = 0), equations (18) and (19) yield,respectively, V �P (s) = U(s)� U�(s+ �) + U�(s+ �)I�(s);and E[VP ] = E[U ] + U�(�)� : (21)5.3 Cycle TimeLet C := VP+� denote the cycle time. Then, for given U1; T1; U2; T2; : : : ; Uk,Tk; Uk+1 and I, and with A := A(Uk+1)jA(Uk+1)�1 we haveC = (Pki=1(Ui + Ti) + Uk+1 +PAj=1 �j w.p. e��Pki=1(Ui+Ti)(1� e��Uk+1);Pki=1(Ui + Ti) + Uk+1 + I + �1 w.p. e��Pki=1(Ui+Ti)e��Uk+1F Tk+1(I),where, as before, �1 is the busy period of a regularM=G=1 queue with arrivalrate � and service times B, and F Tk+1(I) = P (Tk+1 > I). Then, the LST
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of C is given byC�(s) = 1Xk=0Ehe�sPki=1(Ui+Ti)e�sUk+1 � e��Pki=1(Ui+Ti)(1� e��Uk+1) � e�sPAj=1 �ji+ 1Xk=0Ehe�sPki=1(Ui+Ti)e�sUk+1e�sI � e��Pki=1(Ui+Ti)e��Uk+1F Tk+1(I)e�s�1i= 1Xk=0 �U�(s+ �)T �(s+ �)�k�E"e�sUk+1(1� e��Uk+1) � �e��Uk+1(1���1 (s)) � e��Uk+11� e��Uk+1 �#+ 1Xk=0 �U�(s+ �)T �(s+ �)�kU�(s+ �) ��+ s�1� T �(s+ �)���1(s) :Thus,C�(s)= U��s+ �(1� ��1(s))�� U�(s+ �) + U�(s+ �) ��+s�1� T �(s+ �)���1(s)1� U�(s+ �)T �(s+ �) :(22)By di�erentiation, E[C] = E[U ] + U�(�)� �1� T �(�)�(1� �)�1� U�(�)T �(�)� : (23)Note: It readily follows from (15) and (23) that the fraction of time theserver is busy is, as expected,E[�]E[C] = E[�1]�(1 � �) = �:For the MV case, equation (22) reduces toC�MV (s) = U��s+ �(1� ��1(s))�� U�(s+ �)1� U�(s+ �) ;while equation (23) reduces toE[CMV ] = E[U ](1� �)[1� U�(�)] : (24)13



Equation (24) coincides with Levy and Yechiali [1975], equation (27).For the SV case, equation (22) reduces toC�SV (s) = U�hs+ ��1� ��1(s)�i� U�(s+ �) + U�(s+ �) ��+ s��1(s);which coincides with Levy and Yechiali [1975], equation (4), while equation(23) reduces to E[CSV ] = 11� �"E[U ] + U�(�)� #;which is identical with Levy and Yechiali [1975], equation (6).5.4 Sum of U Durations within a Vacation PeriodLet H be the sum of the durations of the vacations within a vacation periodVP . Then, similar to the derivation of V �P (�) we writeH�(s) = 1Xk=0Ehe�sPki=1 Ui � e�sUk+1 � e��Pki=1(Ui+Ti)(1� e��Uk+1)i+ 1Xk=0E�e�sPki=1 Ui � e�sUk+1 � e��Pki=1(Ui+Ti)e��Uk+1i�1� T �(�)�= �U�(s)� U�(s+ �)� 1Xk=0 �U�(s+ �)T �(�)�k+U�(s+ �)�1� T �(�)� 1Xk=0 �U�(s+ �)T �(�)�k:Thus, H�(s) = U�(s)� U�(s+ �)T �(�)1� U�(s+ �)T �(�) :This implies that E[H] = E[U ]1� U�(�)T �(�) : (25)Indeed, the server continues taking vacations U in a Bernoulli fashion withprobability U�(�)T �(�). 14



5.5 Non-Productive Idle TimeThe total time within a cycle in which the server is non-productive, i.e.waiting idle for either an arrival or the expiration of the Timer, is given byNP := Vp �H.Similarly to the derivations of VP and H we writeNP �(s) = 1Xk=0Ehe�sPki=1 Tie��Pki=1(Ui+Ti)(1� e��Uk+1)i+ 1Xk=0E�e�sPki=1 Tie��Pki=1(Ui+Ti)e��Uk+1� �s+ ��1� T �(s+ �)�= 1� U�(�) ss+� � U�(�) �s+�T �(s+ �)1� T �(s+ �)U�(�) :By di�erentiation we getE[NP ] = U�(�)� (1� T �(�))1� T �(�)U�(�) : (26)Equation (26) can also be obtained from (21) and (25), since NP = VP �H.
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