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Abstract

We analyze a generalized protocol of an M/G/1 queue with server
vacations where after returning from a vacation to an empty system,
the server (as in many real-life situations and common also to human
behaviour) activates a Timer and waits dormant. If an arrival occurs
before the Timer expires, a busy period starts immediately. If the
Timer is shorter than the inter-arrival time, the server does not wait
any more and leaves for a new vacation, and so on. We derive trans-
forms and performance measures of the system’s key variables and
show how the general results reduce to their two extreme cases: (i)
zero-length Timer yields the multiple vacation model and (ii) infinite-
length Timer yields the single vacation case.

1 Introduction

Two important extensions of the classical M/G/1 queue, which have been
studied extensively in the literature, are the multiple and single vacation
models (see Levy and Yechiali [1975], Takagi [1991] and references there).
Under the multiple vacation protocol, whenever the server returns from
a vacation and finds an empty queue, he immediately leaves for another

vacation; while under the single vacation regime, if the server finds an empty
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system after a vacation, he waits dormant until the first arrival thereafter
occurs, serves a full busy period, and only then takes another vacation.
These two protocols represent two extremes: in the multiple vacation scheme
the server never waits in front of an empty queue, whereas in the single
vacation case the server always waits for an arriving customer (job) when
he finds an empty queue upon returning from a vacation.

Yet, in many and various situations (common also to human behaviour)
the server, finding an empty queue upon returning from a vacation, may
wait idle in front of the queue for a pre-specified (random or constant) du-
ration of time (which we call a ‘Timer’), hoping for an arrival during that
‘waiting’ period. Only if the Timer expires before an arrival occurs, the
server immediately takes another vacation.

Such a protocol generalizes the two different vacation models into a uni-
fied one: if the Timer’s duration is set to zero, the multiple vacation regime
is obtained, while if the Timer’s duration is set to infinity, the result is the
single vacation model.

In this note we analyze the above generalized protocol. We derive trans-
forms and performance measures of key variables as follows: probability
generating function (PGF) and mean of the number of jobs present in the
system; Laplace Stieltjes transforms (LST) and means of the variables (i)
waiting time of an arbitrary customer, (ii) duration of a busy period, (iii)
length of a ‘Vacation Period’ (i.e. the continuous period of time the server
is not working during a cycle), (iv) length of a cycle, and (v) non-productive
idle time during a cycle. For those variables and their transforms we show
how the results of the generalized model reduce to their corresponding re-
sults for the two extreme cases: the multiple and the single vacation regimes.
Section 2 presents the model description. Sections 3 and 4 are devoted to the
analysis of the number of customers and of the waiting time, respectively.

Section 5 discusses various busy and non-busy periods.



2 The Model

We consider an M/G/1 queue where customers arrive according to a Poisson
process {A(t),t > 0} with intensity A, each requiring a service time B with
distribution B(-), mean b, and LST B*(-). A similar notational convention
is used for other random variables introduced in the sequel. The traffic
intensity is denoted by p = Ab. At the termination of a busy period, when
the queue becomes empty, the server takes a (random) vacation U. At
the end of a vacation U the server returns to the (main) queue. If, upon
return, the number of waiting jobs in the queue (denoted by Y') is greater
than 0, the server serves exhaustively (that is, he stays Y regular M/G/1-
type busy periods) and then takes a new vacation U. However, if Y = 0,
the server activates a (random) Timer T and waits. If an arrival occurs
before T expires, the arriving customer is immediately taken into service
and the server is kept busy a full (M /G/1-type) busy period, at the end of
which he takes another vacation U. If no arrival occurs during the Timer’s
duration (i.e. the Timer is shorter than the inter-arrival time), the server
does not wait any more and leaves for a vacation U. We invoke the usual
independence assumptions between arrivals, service times, vacation lengths
and Timer durations. The distributions of U and T are assumed to be

general.

3 Number of Customers

3.1 Law of Motion

In this section we shall derive the steady state distribution of the number
of customers in the M/G/1 queue with vacations and a timer. Just as
in the ordinary M/G/1 queue, it is easily verified that this steady state
distribution coincides (if it exists) with the steady state distribution of the
number of customers immediately after the departure of a customer. Let

us first concentrate on the latter quantity. Let X, := number of customers



left behind by the nth departing customer. Then the law of motion of the
system’s state X is given as follows:
If X,, > 1, then

Xop1 = X, — 1+ A(B), (1)

where A(t) := number of Poisson arrivals during a time interval of length ¢.
(We use B, rather than B, as a generic random variable.)
If X;, =0, then

A awy>1 — 1+ A(B), w.p. %’

(2)
U*(N)(1-T*(A
A(B), W.D. %

Xn+1 =

where T*(X\) = P(no arrivals in T'), U*(\) = P(no arrivals in U).

The explanation of (2) is as follows: when the server takes a vacation,
the probability of no arrivals during U is [;"e *dP(U < u) = U*(A).
Then, upon finding an empty system, the server activates a Timer T. The
probability of no arrivals during T is T*()), and the server takes another
vacation, etc. This combined process repeats itself £ > 0 times with prob-
ability [U*(A\)T*(M\)]*, until, after k& repetitions, there is an arrival dur-
ing U. This last event occurs with probability 1 — U*(\) and the server
then finds A(U)|aq)>1 waiting customers. Thus, the next departure will
leave behind A(U)|4@)>1 — 1 + A(B) waiting customers with probability
(1=T*(\) 220U N T*(V]F = r—(ayry The other possibility is that
after k repeated pairs of U and T without arrivals, there will be another va-
cation with no arrivals, but with an arrival during the following 7". This oc-
curs with probability U*(A\)(1=T*(A)) 2.2 [U*(A)T* (\)]F = %
Then, when the job arriving within 7' departs, it leaves A(B) waiting jobs
behind.

3.2 Generating Function

Let X (z) := E[2X] denote the PGF of a random variable (r.v.) X.



Using (1) and (2) we have

EBlzXm+1] = BRXTHAB)X, > 1] P(X, > 1)
1-U*(\)

4 E[z(A(U)\A(U)Zl*1+A(B))].
=0 0T

Ur(AN) (1 =T*(N))
- U (NT*(\)

+E[zAP)]. .P(X, =0).

We consider the system in steady state. It can easily be shown (e.g. by
relating the system to those with single and multiple vacations) that p < 1
is a necessary and sufficient condition for the existence of a steady state
solution.

Set po := P(X, = 0), § := A1 — 2), X(2) := lim,_,0 E[zX"]. Then,
with E[z4(B)] = B*(),

U*(8) — U*(\)  1-U*(\)
1-U(\) 1-U"WNT*(\)

X(2) = 2 'B*(0) (X (2) — po) + |2 'B*(9)

U1 =T (V)
—orore) [P ®

+B*(0)

Result (3) follows since

OOP _
Bz | X, > 1|P(X, > 1) = k —

k))P(Xn >1)=X(z) —po

and (I(.y denoting an indicator function)

B[] - B D Iaw=g)] _ U*(6) - U*(N)
P(A(U) > 1) 1 =U*())

BAO | AW) > 1) =
(4)

Rearranging terms we obtain

_ BOUOT ) -1 -2+ U0 — 1]
AR L P IV Y]




To calculate py we use X (1) = 1, which leads to

_ Po im
S TRV ey

U\ (T*N) = 1)(1—2)+U*(0) -1
z — B*(9) '

Applying I’Hospital’s rule we obtain (with p = \b),

1 — U*(\T*(\)

po=(1-p) 0 () [1 —T*(A)] B
Finally,
$(e) = | LZPB O =) | [UW[ T 0] + (1 -0 ()/(1 - 2)
B B*(5) — 2 U1 = T* (V)] + AE[U]

X301 - 02, (5)

where X(z)‘M/G/l = (1 = p)(1 — 2)B*(6)/(B*(d) — z) is the PGF of the
number of customers in a stationary M/G/1 queue with arrival rate A and
service times B, and £(z) is the PGF of an independent random variable,
X1, as will become apparent in the sequel.

The case of multiple vacations (MV) is obtained from (5) by setting
T =0, implying T*(\) = 1. Thus,

; _ (1=p)B*(d) |1 -U*(H)
YO = Fe=. | 3Em
1 - U*(5)

which coincides with Takagi [1991], equation (2.12c).

The case of single vacation (SV) is obtained from (5) by setting T = oo,
implying T*(\) = 0. Thus,

U*(\) + =L@

X(z)‘sv = X(z)‘M/G/l U(\) + )\E[ZU] : (6)

Equation (6) is identical with Takagi [1991], equation (2.23).



3.3 An Alternative Derivation

As indicated in the beginning of this section, the steady state distribution
of X is also the steady state distribution of the number of customers in the
system at an arbitrary epoch. The PGF of the latter quantity, also denoted
by X, may also be obtained by using the queue-length decomposition result
of Fuhrmann and Cooper [1985] (which holds for our model) stating that

X =Xyjan + X1, (7)

where X I := number of customers at an arbitrary non-serving epoch, while

Xa/an and XT are independent. Borst and Boxma [1997] showed that

Xg(2) — Xp(2)
(1-2)(P[Xg] - E[Xs])’

where Xg (Xpg) denotes the number of customers at the start (end) of a

BlX1] = (8)

non-serving period.

In our case, Xg = 0, while (see (2))

U*(\)[1-T* (A

x 1 w.p. 1—(U)*[(/\)T* E,\g} ’
E= AU 1-U*(\)

( )‘A(U)Zl WP Ty -

Thus, Xg(z) = 1, while (see (4))

A LGOI SOV

_ ) ey
e = o)

)

0%

1— U \)T*(\)

[ ()] aw)> ]

2U*(N )[I—T*(A | +U*(8) = U*(N)
)T*(A)

Equation (9) yields
U*(N)[L =T*(N)] + AE[U]
1—U*(\)T*(\)
,(9) and (10) leads to the PGF of X:
) T[T W] + (1 -U*9)) /(1 - 2)
M/G/ U*(\)[L = T*(\)] + AE[U] ’

E[X5] =

Combining equations (7),(8)

X(2) = X(z

which is equation (5) above.



3.4 Mean Queue Size

The mean queue size is obtained by differentiating equation (5) , and is

given by

2 2
BIX] = BlXujon] + 25— 2, (1)

2

where 5 = AE[U] + U*(\)(1 = T*(\)), and E[X61] = 52l + p is the

mean number of customers in a stationary M/G/1 system.

4 Waiting Time

Let W := waiting time (excluding service) of an arbitrary customer. Then,

since

we have

) ~ s(1-p) [1 —U* s)] + sU* (X [1 — T*(A)]
Wis) = — X+AB*(s)  s(U*(N)[1 = T*(\)] + AE[U]) 1

= Wian(s) - x(s),

where x(s) is the LST of a random variable independent of Wj/q /1.
For the MV case we obtain (as in Levy and Yechiali [1975], equation
(36), and Takagi [1992], equation (2.13)),

Wis) =3 _Ti}g*(s) . _EU[U(]) = Wiyan(s) Rir(s).

where Ry is the residual life (forward recurrence time) of the vacation length
U.
For the SV case, equation (12) reduces to

W (s) = s(l—p)  A[L=U )] +sU*(Y)
C s—A+AB*(s)  s(U*(\)+AE[U])

as in Levy and Yechiali [1975], equation (22).



4.1 Mean Waiting Time

Differentiating equation (12) results in

AE[U?] 1
2 ’ ;7 (13)

EW] = E[Wyan] +
where E[Wyr /1] = ;‘ﬁ[—f;)} and ~ is defined below (11).
For the MV case, equation (13) reduces to
E[U?]
2E|U)

EWyv] = E[WM/G/l] +

as in Levy and Yechiali [1975], equation (38).

For the SV case, equation (13) results in

EWsy] = EWaanl + 5
Clearly, E[Wgy| < E[W] < E[Wyv].

5 Busy and Non-Busy Periods
5.1 Busy Period

Let 0 := length of a busy period, i.e. the time interval extending from the
moment the server starts working after a vacation (and possibly activating
a Timer) until it leaves again for a new vacation. Following the law of
motion (2), 0 starts with either A := A(U)‘A(U)21 jobs (with probability
a=(1-U*N)/(1=U*(N)T*(N)), or with a single job (with probability
1 — «). Thus,

0*(s) = E[efsg] = E[estiA=1 9"] o+ E[efsol] (1-a),

where each 0; is distributed like a regular M/G/1-type busy period with
LST satisfying 0} (s) = B*(s + A(1 — 67 (s))) and mean E[6;] = b/(1 — p).
Now,
Ele Tl = BA[(61(s)4] = A(6](5)) ,

9



where (see (4)),

Clearly, E[A] = %

Combining the above we obtain

_ U*(A(1 = 65(s))) = U*(N) U*(A) (1= T*(N)

o°te) oy ATy -
It follows that
E6) = BAl-El6))- o+ E6](1-a)
. AE[U]+U*(N) (1 = T*(N) (15)

1-U(\) - T*(\)

For the MV case, where T'= 0 and T*(\) = 1, equation (14) reduces to

LU= 6i) ~ Ut

0*(s) — U*(i) , (16)

leading to

_ ~_AE[U] pE[U]
Bl = B0 Ty = T p = o] (a7)

Equations (16) and (17) coincide with Levy and Yechiali [1975], equations
(24) and (26), respectively.
For the SV case, where T = oo and T*(\) = 0, equation (14) becomes

0°(s) = U (A(1 = 1)) ) = U* () + 5 ()T (),
leading to
El6] = E[0:](\E[U] + U*(\)).

The above coincide, respectively, with equations (2.30a) and (2.30b) of Tak-
agi [1991].

10



5.2 Vacation Period

Let I be the Exponential(\) inter-arrival time, with LST I*(s) = 54%\ De-
note by Vp the wvacation period, i.e. the time interval beginning at the end
of an active busy period and extending to the start of the next busy period.
Let {U;,i = 1,2,3,...} ({T;,i = 1,2,3,...}) be a sequence of i.i.d. random
variables having LST U*(-) (T%(-)).

For particular realizations Uy, Us, ... ,Ugt1, 11,15, ... , Tk, and I we have

Uy +Th)+ -+ (Ug + Tk) + Ugsr W.p. e’/\zi;l(Ui*Ti)
x (1 — e AUkt1)

(Uy+T)+ -+ U +Tk) + Ugy1 + I w.p. e~ ATy (Ui T)
Xe*/\UkJFIFTk_H (I)

Vp =

where F'p,, | (I) = P[T}41 > I]. Hence

Vi(s ZE[ s>k (U +Ti) e 5Uk+18—>\2f:1(Ui+Ti)(1 _ e—/\Uk+1)}

k=0
Z [ —sYk (Ui+Ty) fsUkHef)\Zf:I(UiJrTi)ef)\UkH}E[estFTkH(I)]
k=
= [[U*(s) —U (s +N)] +U*(s + \) / - Ae—““)’FT(I)dI}
1=0
XZ U* s-l-)\T*(s-l—)\)]
k=0
Thus,
oo Us) = U s+ 0) + U (s + A 251 = T*(s + )]
Vp(s) = 1-U*(s+ A)T*(;jr ) ' (18)
Differentiating (18) yields
_E[U]+ AT )] y
ElVe] = 1- Ui(A)T*(A) CA[L=UrNTHN)] (19)

For the MV case (with T'= 0, T*(-) = 1), equation (18) reduces to

U*(s) = U*(s+ )
1-U*(s+X)

Vp(s) =

11



which coincides with Takagi [1991] equation (2.18a), while equation (19)
reduces to

E[U]

BV = Ty

(20)

Equation (20) is identical to equation (25) of Levy and Yechiali [1975] and
equation (2.18b) of Takagi [1991].
For the SV case (with T' = oo, T*(-) = 0), equations (18) and (19) yield,

respectively,
Vi(s) = Uls) = U*(s + A) + U*(s + NI (5),

and
B(ve) = Bv]+ T, (21)

5.3 Cycle Time

Let C' := Vp+6 denote the cycle time. Then, for given Uy, Ty, Us, Ts, ... , Uy,

Tk, Ug41 and I, and with A := A(Ug1)|a(v,,,)>1 We have

= S (Ui + T3) + Upgr + Zle 0j w.p. e AT (UHT) (] — ¢ Mks),
_ - -
SEU+T) + Ui +T+61 wp. e AXim Ut Tle ATy (1)

where, as before, 6; is the busy period of a regular M /G /1 queue with arrival
rate A and service times B, and Fr,, (I) = P(Tj4q > I). Then, the LST

12
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of C' is given by

O*(S) — ZE[efs Zle(Ui+Ti)e*SUk+1 . efz\zle(UrFTi)(l _ e*)\Uk+1) . e—SZle 9jj|

k=0
oo
+) F [6_5 Tl Uit T) g=sUiprgmsl ., o= AT (Ui ) =M T, (1)6_801}
k=0
= Y (U s+NT s+ M)
k=0
~ . e~ Ak41(1-07(s)) _ o= AUk41
oo
+Z U* s+ NT* s-l-)\)] U*(s+)\)>\+8 [1 —T*(s-l-)\)]ﬁi‘(s) )
k=0
Thus,
C*(s)

U[s+ A1 —05(s)] —U*(s+A) +U*(s + A)/\H [1—T*(s+ \)]0;5(s)
1 —U*(s + NT*(s + \) '

(22)

By differentiation,

BlU+ Q1 -7 ()]
(-1 - 0 VT (V)
Note: It readily follows from (15) and (23) that the fraction of time the

ElC) = (23)

server is busy is, as expected,
E[6]
= B[] (1 — p) = p.
For the MV case, equation (22) reduces to
U*[s + A1 = 05(s)] —U*(s+ )
1-U*(s+A) ’

Crv(s) =

while equation (23) reduces to

ElCuv] =

TG 29

13



Equation (24) coincides with Levy and Yechiali [1975], equation (27).
For the SV case, equation (22) reduces to

Cav(s) = U*[s + A(1 = 0()| - U*(s + X) + U* (s + A)%saf(s),

which coincides with Levy and Yechiali [1975], equation (4), while equation
(23) reduces to

E[CSV] — —p

which is identical with Levy and Yechiali [1975], equation (6).

5.4 Sum of U Durations within a Vacation Period

Let H be the sum of the durations of the vacations within a vacation period

Vp. Then, similar to the derivation of V3(-) we write

)
H*(S) — ZE[B_SZ;C:I U; . e—SUk_H . e_/\Z?:I(Ui'i'Ti)(l _ 6—/\Uk+1)i|
k=0
o)
+ ZE[efs Zle U; . 675Uk+1 . 67/\ Zle(Ui+Ti)€f)\Uk+1} (1 . T*()\))
k=0

= [U*(s) —U*(s+ ) i U*s-l—)\T*()\)]
k=0

+UH (s + M) [1=T*N)] 3 [U*(s + NN "
k=0

Thus,
ey U (s) =U*(s+ N)T*(N)
B = G+
This implies that
E[H| = ElU] (25)

1—=U*(NT*(\)’
Indeed, the server continues taking vacations U in a Bernoulli fashion with
probability U*(X)T*()).

14



5.5 Non-Productive Idle Time

The total time within a cycle in which the server is non-productive, i.e.
waiting idle for either an arrival or the expiration of the Timer, is given by
NP :=V,—-H.

Similarly to the derivations of Vp and H we write

NP*(s) = Z E[e*SZfﬁ Tig=A Zle(UiJrTi)(l _ e*AUHl)}
k=0

o0
SR T AR (Ui Ty~ AU A o
—I—kz_(:)E[e e 1 e Hl]—s—i—)\(l T*(s+ X))

1-U* (N5 — U () 25T (s + A)
1 —T*(s + A\ U*(N)

By differentiation we get

1= TH )
L—=T*\)U*(\)
Equation (26) can also be obtained from (21) and (25), since NP = Vp — H.

E[NP] = (26)
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