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2 ProofConsider an arrival instant, and denote by � and R the number of customers present, andthe residual service time of the customer being served, respectively. For j � 1 letPj(x) = P [R � x; � = j] = P [R � x j � = j]�j (1)
j(s) = 1Z0 e�sxdPj(x) ; Re(s) � 0 (2)and U(s; z) = 1Xj=1 
j(s)zj ; jzj � 1 (3)In [1] it is shown that:U(s; z) = (1� �)�z(1� z)z �  (�� �z) � (s)�  (�� �z)s� �(1� z) � (4)where  (s) = 1R0 e�svdP (V � v).It follows thatRj = E[R j � = j] = 1Z0 xdP [R � x j � = j] = 1Z0 xdPj(x)=�j = �
0j(0)=�j : (5)By di�erentiating U(s; z) in (3) with respect to s and using (5) we get,ddsU(s; z)���s=0 = 1Xj=1 
0j(0)zj = � 1Xj=1 �jRjzj : (6)On the other hand, di�erentiation of U(s; z) in (4) yieldsU 0(0; z) = (1� �)zz �  (�� �z) � (�� �z)� z + (1� z)(�� 1)�(1� z) � (7)Equating (6) and (7) results in1Xj=1 �jRjzj = 1� �� � z1� z + (1� �)zz �  (�� �z)� : (8)Now, observe that1Xj=0  jXk=0 �k! zj = 1Xk=0 �k 1Xj=k zj = 1Xk=0 �kzk=(1� z) � U(z)=(1� z) (9)2



where U(z), the generating function of f�kg, is given byU(z) � 1Xk=0 �kzk = (1� �)(1� z) (�� �z) (�� �z)� z : (10)From (9) and (10), and using (1� �) = �0, we obtain1Xj=1  jXk=0 �k! zj = �0 (�� �z) (�� �z)� z � �0 = (1� �)z (�� �z)� z : (11)Substituting (11) into (8) leads to1Xj=1 �jRjzj = 1� �� " 1Xj=1 zj � 1Xj=1  jXk=0 �k! zj# = 1� �� 1Xj=1 "1� jXk=0 �k# zj (12)By equating coeÆcients of zj we derive,�jRj = 1� �� "1� jXk=0 �k# (13)or, as we claimed, Rj = 1� ���j "1� jXk=0 �k# j = 1; 2; 3; : : :For the M/M/1 queue, where �k = (1� �)�k and 1Pk=j+1�k = �j+1, we calculate:Rj = 1� ��(1� �)�j ��j+1� = E(V ) ;which clearly agrees with the Markovian property of the service time.The expected residual service time, given that the system is not empty, may now bederived using (10) and (13). From (10),U 0(0) = 1Xj=1 j�j = �2E(V 2)2(1� �) + � � Lq + �where Lq = 1Xj=2(j � 1)�j :Employing (13), we get1Xj=1 �jRj = 1� �� 1Xj=1 1Xk=j+1�k = 1� �� 1Xk=2 �k(k � 1) = 1� �� Lq :Since 1Pj=1�jRj = �E[R]j � 1], it follows thatE[R j j � 1] = 1� ��� Lq = E(V 2)2E(V ) :3
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